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1. Introduction

It is known that the critical groups are useful in distinguishing critical points, cf. [Cha].
We shall present here a few examples from semilinear elliptic boundary value problems in
showing how do they work in the study of multiple solutions. Let us consider the following
problem

-Au = g(x,u) \
u\au = 0 J {iA)

where O is a smooth bounded domain in 1RP. Let Xj be the j ' - th eigenvalue of —A with
O-Dirichlet boundary data. We assume,

(9l)geCl(Qx]Ri,M1), g(x,0) = 0

(g2) g'(x,Q) < X, V x € Q

(g3) lim ^ - ± 9oo > X2

goo satisfies one of the following three conditions:

(i) Poo ^ <T(—A), the spectrum of —A.

?oo G <T(—A) am
Lazer condition

(ii) g<x> G <T(—A) and <f>(x,u) = g{x,u) — g^u is bounded and satisfies the Landesman-

m
ax —* oo as > t —• oo

ft
where ®(x,t)= / ip(x,s)ds, span{<pittp2,...tpm} = Ker(-A - gxl).Jo

(in) goo G a{—A) and ^ satisfies the strong resonance condition:

V & G J2m, | 6 | — oo V uj -> « in ^ ( f t ) and

we have
^ I 7* 7/ * ( T l -4- > i^ P - l T * l 1 7 M T W T 2 ^ fl

*\ jW h ' )
and

lim $ [x, Uj(x) + y^ Ci ei(x)) v(x)dx = 0

where {ejfx)}™ is an orthonormal basis of the eigenspace Ker(—A — g^l), and

Our first result is

Theorem A. Assume g satisfies (#i) - (53), then (1.1) has at least three nontrivial
solutions.

For the second result we assume that g satisfies,
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(9A) Ai < g'{x, 0) < Afc < 5oo V x € fi, where p^ satisfies one of the conditions (i), (ii),
(iii) given in (p3).

Then we have

Theorem B. Assume g satisfies (pi), (54). And assume that there exists to ̂  0 such
that g(x,to) = 0 V i e H , then (1.1) has at least three nontrivial solutions. Moreover, if
we substitute (54) by the following

W A2 < g'(x, 0)<Xk<gao, V x € Q,

then (1.1) has at least four nontrivial solutions.

Corollary. Assume g satisfies (50,(34). And assume that there exist t\ < 0, tz > 0
such that g(x,ti) = 0 V x € fi, i = 1,2, then (1.1) has at least five nontrivial solutions.

Remark. Many authors have made contributions in this problem. The results for at
least one nontrivial solution were obtained in [AmZ], [LiL], [FM], for at least two nontrivial
solutions in [AmbM], [Ah] and [H] under the assumption: g^ < X\. Further results have
been studied by many authors (see e.g. [Cha] and references therein).

Our theorems deal with the case g^ > A2. Theorem A is quite similar to the super-
linear case (see [Wa]). But Theorem B and its Corollary are more delicate.

2. Proof of Theorem A

Set

for u e X= H£(Q), where G(x,t) = f g{x,r)d,T. It is well known that / e C2(XtSi)

satisfies the Palais-Smale condition. Any critical point of / corresponds to a (weak)
solution of (1.1). Without loss of generality, we assume that / has only finite number of
critical points.

Theorem A is proved by the following two steps.

Step 1. (1.1) has two nontrivial solutions, one is positive, another is negative.
Set

and consider the modified problem

-Au =gi(x,u)
i t l o n = 0 .

We define



ft
where G\{x,t) — I gi(x,r)d.T. We claim that /x satisfies (PS). Let (un) be a sequence

such that

and
V/i(Un) -» 0 as n -> oo . (2.3)

From (53) and (2.1) we get

9i(x,t) = g^t + 0(i) as i > 0 large . (2.4)

(2.3) implies that V <p E X

I [Vun V(p - gi(x,un)(p]dx —> 0 as n —> 00 . (2.5)

Set ip = un, we have

Kll2 <

i s bounded, then so is \\un\\. Otherwise, ||tin||L2 ->• +00. Let vn = -—^—, then

(Milî nlUa = 1 and Ĥ nll is bounded. A subsequence of vn converges to v with ||I?||L2 = lj
strongly in L2 and weakly in H\. From (2.5) it follows

f [Vu V ^ - gooV+<p]dx = 0, V ip e H\, (2.6)

where
v+ = max{0,z;} .

The regularity theory implies

f Av + goov+ = 0 in Q ,
1 v = 0 on ^ ° {Z<()

By the maximum principle v = v+ > 0. But g^ ^ X1 and hence v = 0 which contradicts
with ||v||£,a = 1. A standard argument shows that (Un) has a convergent subsequence.
(PS) is true for /1P

From ((/2) there exist p> 0,8 > 0 such that

and from ôo > A2 we can take t large such that

where (pi is the first eigenfunction of —A with 0-Dirichlet boundary data. Consequently,
by the mountain pass lemma (2.2) has a weak solution u\. By means of maximum principle
and regularity of solution of elliptic BVP we know that the solution m of (2.2) is classical



and «i > 0 for x G U and the outward directional derivative —— < 0 for x G dft.
an

Therefore Ui is a solution of (1.1).
Similarly, we get a negative solution u<z of (1.1).
Using Chapter II, Theorem 1.6 of [Cha], we have

rank CtifuuJ = 6ql (2.8)

where Cq(j,u) denotes the qth critical group of / at u. By Chapter III, Theorem 1.1 and
Corollary 1.2 of [Cha], we have

rank Cq(f,ui) = rank Cq(f\ci^,ui) = rank Cq(fi\ci{Ct)>Ui) = 8qi V <j = 0 , 1 , 2 , . . .
(2.9)

By the same method, we have

rank Cq(f,u2) = 6ql V g = 0 , 1 , 2 , . . . (2.10)

Step 2. The existence of third solution.
Let X~(X+) be the negative (positive) subspace of (-A - poo/) (respectively), then

there exists R > 0 such that

Sup f(u) < inf f(y) .
uex- \\U\\>R v£x+

According to [Liu] we know that / possesses a critical point u satisfying

rankCm{f,u)^Q (2.11)

where 2 < m = dimX". Since 6 is a local mimimizer, we have

qU,d) = 8qQ. (2.12)

Combining (2.9), (2.10), (2.11) and (2.12) we proved that u is the third nontrivial solution
of (1.1). Theorem A is proved.

Remark 2.1 When g^ satisfies condition (iii), / satisfies the (PS)C condition V c ^ O .
The first deformation theorem can be extended to study the fake critical set (see [ChaL]).

3. Proof of Theorem B

The proof is divided into four steps. We suppose to > 0, the proof is similar for to < 0.

Step 1. Let us define
0 t < 0

g{x,t) t€[O,to]
0 t>tQ .



and

where C(x,t) = /0* g(x,r)dT. Since / is bounded below and satisfies (PS), there is a
minimizer ux of / . According to the maximum principle, we obtain: either u1 = 0 or

dux

0 < ul(x) < tQ V x € Q, — a n < 0. But by the assumption g'(x,Q) > \lt 6 is not

a minimizer, i.e., ul ^ 9. Thus ul must be a local minimizer of the functionals / and
/i (the latter was defined previously in Theorem A), in the CQ(Q) topology. However,
according to Chapter III, Theorem 1.1 and Corollary 1.2 of [Cha] (as well as [BrN]), one
concludes that u1 is also a local minimizer of / in HQ(Q) topology. Thus

rankCq{f,u1) = 8q0. (3.1)

Step 2. Since fi is unbounded below, and u1 is a local minimizer of / i , we obtain a
positive mountain pass point u2 ^ 9 of fu (cf. Chapter II, Remark [Cha]). By the same
reason, u2 is also a critical point of / , and we have

= Cq{fuu
2).

Therefore
rank Cq{f,u2) = 6qi (3.2)

the last equality follows from Chapter II, Theorem 1.6 [Cha]. (3.1) and (3.2) imply that
ul ? ix2.

Step S. As in the proof of Theorem A, we obtain a critical point v? satisfying

rankCq(f,u
3)?0 (3.3)

with ra = dim X~ > 2.
We only want to show u3 ^ 8. Indeed,

rank Cq(f, 9) = 0 (3.4)

Vo>dim© ker (—A — A*/), because g'(x.Q) < A*.

JYom Afe < goo, we obtain
Cm(f,d) = 0. (3.5)

Therefore u3 ^ 0.

5iep ^. Under (g^)' we can get one more solution by the mountain pass lemma.
In Step 1 we have obtained a u1 e Cx which is a local minimizer of / , where Cx =

CC\ C£{Q) and C = {u <E H^(n)\tipi < u < tota.e. for t small}. Therefore cPfiu1) is
nonnegative and we have

- A - g'(x, u1) = cPfiu1) > 0 . (3.6)

5



Let

we have
^^^g'^u1) (3.7)

and (1.1) is equivalent to

vie, = 0 . ) (3-8)

Let
i )dl(x t ) - i 9 i ( , t ) t > 0

and define

where Gi(x,£)= / gv{x,r)d,T, Gi(x,t)= / ^(x.rjtfr.

From (3.6) and (3.7) we get

- A - 5 i ( z , 0 ) > O . (3.10)

From (3.10) we know that 8 is a local minimizer of fv. Using the mountain pass lemma
we immediately get a critical point v+ of / i , v+ > 8 and

rank Cp{fuv+) = 5pl . (3.11)

Let u+ = v+ + u1 then u+ >u1. Note that

/1(w) = /(u) + const (3.12)

and thus

Therefore
ranfcCp(/,u+) = 6pl . (3.13)

By the similar way we get a negative solution v~ of (3.8). Let u~ = v~ + ul, then u~ < u1

and u" is a solution of (1.1) which satisfies

rank Cj,(f,u-) = 6pl . (3.14)

By A2 < g'(x, 0) we have
r a n k C p ( f , 8 ) = 8pk k > 2 (3.15)

(3.14) and (3.15) implies u~ =£ 9. In combining with Step 3, then we get four nontrivial
solutions. Theorem B. is proved.

Proof of Corollary. By the assumption 3 U < 0 such that g(x, U) = 0 we can do in the
same way by cut off function and obtain two other negative solutions: a local minimizer,
and a mountain pass point.
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