IC/93/344

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

REMARKS ON MULTIPLE SOLUTIONS FOR ASYMPTOTICALLY LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chang Kung Ching

Li Shujie

 \mathbf{and}

Liu Jiaquan

INTERNATIONAL ATOMIC ENERGY AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

MIRAMARE-TRIESTE

International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

REMARKS ON MULTIPLE SOLUTIONS FOR ASYMPTOTICALLY LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS ¹

Chang Kung Ching², Li Shujie³ and Liu Jiaquan⁴ International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

Some new results on the existence of multiple solutions for asymptotically linear elliptic boundary value problems via critical gorups are obtained.

MIRAMARE – TRIESTE October 1993

Key words and phrases: multiple solutions, elliptic boundary value problems, critical groups.

¹Partially supported by Chinese National Science Foundation

²Permanent address: Institute of Mathematics, Peking University, Beijing 100871, People's Republic of China.

³Permanent address: Institute of Mathematics, Academia Sinica, Beijing 100080, People's Republic of China.

⁴Permanent address: Department of Mathematics, Graduate School, Academia Sinica, USTC, Beijing 100039, People's Republic of China.

1. Introduction

It is known that the critical groups are useful in distinguishing critical points, cf. [Cha]. We shall present here a few examples from semilinear elliptic boundary value problems in showing how do they work in the study of multiple solutions. Let us consider the following problem

$$\begin{array}{l} -\Delta u &= g(x, u) \\ u|_{\partial\Omega} &= 0 \end{array} \right\}$$
 (1.1)

where Ω is a smooth bounded domain in \mathbb{R}^n . Let λ_j be the *j*-th eigenvalue of $-\Delta$ with 0-Dirichlet boundary data. We assume,

 $(g_1) \ g \in C^1(\bar{\Omega} \times \mathbb{R}^1, \mathbb{R}^1), \quad g(x,0) = 0$ $(g_2) \ g'(x,0) < \lambda_1 \quad \forall \ x \in \bar{\Omega}$ $(g_3) \ \lim_{|t| \to \infty} \ \frac{g(x,t)}{t} \ \triangleq \ g_{\infty} > \lambda_2$

 g_{∞} satisfies one of the following three conditions:

- (i) $g_{\infty} \notin \sigma(-\Delta)$, the spectrum of $-\Delta$.
- (ii) $g_{\infty} \in \sigma(-\Delta)$ and $\phi(x, u) \stackrel{\Delta}{=} g(x, u) g_{\infty}u$ is bounded and satisfies the Landesman-Lazer condition

$$\int_{\Omega} \Phi\left(x, \sum_{j=1}^{m} t_j \varphi_j(x)\right) dx \to \infty \quad \text{as} \quad \sum_{j=1}^{m} t_j^2 \to \infty$$

where
$$\Phi(x,t) = \int_0^t \varphi(x,s) ds$$
, $span\{\varphi_1,\varphi_2,\ldots,\varphi_m\} = Ker(-\Delta - g_\infty I)$.

(iii) $g_{\infty} \in \sigma(-\Delta)$ and ϕ satisfies the strong resonance condition:

$$\forall \xi_j \in \mathbb{R}^m, |\xi_j| \to \infty \quad \forall u_j \to u \quad \text{in} \quad H_0^1(\Omega) \quad \text{and} \quad \forall v \in H_0^1(\Omega);$$

we have

$$\lim_{j\to\infty}\int\phi\left(x,u_j(x)+\sum_{i=1}^m \xi_j^i e_i(x)\right) v(x)dx=0$$

and

$$\lim_{j \to \infty} \int_{\Omega} \Phi\left(x, u_j(x) + \sum_{i=1}^{m} \xi_j^i e_i(x)\right) v(x) dx = 0$$

where $\{e_i(x)\}_1^m$ is an orthonormal basis of the eigenspace $Ker(-\Delta - g_{\infty}I)$, and $\xi_j = (\xi_j^1, \xi_j^2, \dots, \xi_j^m)$.

Our first result is

Theorem A. Assume g satisfies $(g_1) - (g_3)$, then (1.1) has at least three nontrivial solutions.

For the second result we assume that g satisfies,

(g₄) $\lambda_1 < g'(x,0) < \lambda_k < g_{\infty} \quad \forall x \in \overline{\Omega}$, where g_{∞} satisfies one of the conditions (i), (ii), (iii), (iii) given in (g₃).

Then we have

Theorem B. Assume g satisfies $(g_1), (g_4)$. And assume that there exists to $\neq 0$ such that $g(x, t_0) = 0 \quad \forall x \in \overline{\Omega}$, then (1.1) has at least three nontrivial solutions. Moreover, if we substitute (g_4) by the following

 $(g_4)'$ $\lambda_2 < g'(x,0) < \lambda_k < g_{\infty}, \quad \forall \ x \in \overline{\Omega},$

then (1.1) has at least four nontrivial solutions.

Corollary. Assume g satisfies $(g_1), (g_4)$. And assume that there exist $t_1 < 0, t_2 > 0$ such that $g(x, t_i) = 0 \quad \forall x \in \overline{\Omega}, i = 1, 2$, then (1.1) has at least five nontrivial solutions.

Remark. Many authors have made contributions in this problem. The results for at least one nontrivial solution were obtained in [AmZ], [LiL], [FM], for at least two nontrivial solutions in [AmbM], [Ah] and [H] under the assumption: $g_{\infty} < \lambda_1$. Further results have been studied by many authors (see e.g. [Cha] and references therein).

Our theorems deal with the case $g_{\infty} > \lambda_2$. Theorem A is quite similar to the superlinear case (see [Wa]). But Theorem B and its Corollary are more delicate.

2. Proof of Theorem A

Set

$$f(u) = \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 - G(x, u) \right] dx$$

for $u \in X \triangleq H_0^1(\Omega)$, where $G(x,t) = \int_0^t g(x,\tau)d\tau$. It is well known that $f \in C^2(X,\mathbb{R})$ satisfies the Palais-Smale condition. Any critical point of f corresponds to a (weak) solution of (1.1). Without loss of generality, we assume that f has only finite number of critical points.

Theorem A is proved by the following two steps.

Step 1. (1.1) has two nontrivial solutions, one is positive, another is negative. Set

$$g_1(x,t) = \begin{cases} g(x,t) & t \ge 0\\ 0 & t \le 0 \end{cases}$$
(2.1)

and consider the modified problem

$$\begin{array}{ccc} -\Delta u &= g_1(x, u) \\ u|_{\partial\Omega} &= 0 \end{array} \right\}$$
 (2.2)

We define

$$f_1(u) = \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 - G_1(x, u) \right] dx$$

where $G_1(x,t) = \int_0^t g_1(x,\tau) d\tau$. We claim that f_1 satisfies (PS). Let (u_n) be a sequence such that

 $|f_1(u_n)| < c$

and

$$\nabla f_1(u_n) \to \theta \quad \text{as} \quad n \to \infty .$$
 (2.3)

From (g_3) and (2.1) we get

$$g_1(x,t) = g_{\infty}t + 0(t)$$
 as $t > 0$ large. (2.4)

(2.3) implies that $\forall \varphi \in X$

$$\int_{\Omega} [\nabla u_n \ \nabla \varphi - g_1(x, u_n) \varphi] dx \to 0 \quad \text{as} \quad n \to \infty .$$
(2.5)

Set $\varphi = u_n$, we have

$$\|u_n\|^2 \leq \int_{\Omega} g_1(x, u_n) u_n \, dx + 0(\|u_n\|) \\ \leq C + C \|u_n\|_{L^2}^2 + 0(\|u_n\|) \, .$$

If $||u_n||_{L_2}$ is bounded, then so is $||u_n||$. Otherwise, $||u_n||_{L^2} \to +\infty$. Let $v_n = \frac{u_n}{||u_n||_{L^2}}$, then $||v_n||_{L^2} = 1$ and $||v_n||$ is bounded. A subsequence of v_n converges to v with $||v||_{L^2} = 1$, strongly in L^2 and weakly in H_1^0 . From (2.5) it follows

$$\int_{\Omega} [\nabla v \ \nabla \varphi - g_{\infty} v^{+} \varphi] dx = 0, \quad \forall \ \varphi \in H_{1}^{0},$$
(2.6)

where

$$v^+ = \max\{0, v\} .$$

The regularity theory implies

$$\begin{cases} \Delta v + g_{\infty} v^{+} = 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial\Omega \end{cases}.$$
(2.7)

By the maximum principle $v = v^+ \ge 0$. But $g_{\infty} \ne \lambda_1$ and hence $v \equiv 0$ which contradicts with $||v||_{L^2} = 1$. A standard argument shows that (u_n) has a convergent subsequence. (PS) is true for f_1 .

From (g_2) there exist $\rho > 0, \delta > 0$ such that

$$f_1(u) \ge \delta \quad \forall \ u \in S_\rho = \{u \in X | \|u\| = \rho\}$$

and from $g_{\infty} > \lambda_2$ we can take t large such that

$$f_1(t \varphi_1) < 0$$

where φ_1 is the first eigenfunction of $-\Delta$ with 0-Dirichlet boundary data. Consequently, by the mountain pass lemma (2.2) has a weak solution u_1 . By means of maximum principle and regularity of solution of elliptic BVP we know that the solution u_1 of (2.2) is classical

and $u_1 > 0$ for $x \in \Omega$ and the outward directional derivative $\frac{\partial u(x)}{\partial n} < 0$ for $x \in \partial \Omega$. Therefore u_1 is a solution of (1.1).

Similarly, we get a negative solution u_2 of (1.1).

Using Chapter II, Theorem 1.6 of [Cha], we have

$$rank \ C_q(f_1, u_1) = \delta_{q1} \tag{2.8}$$

where $C_q(f, u)$ denotes the q^{th} critical group of f at u. By Chapter III, Theorem 1.1 and Corollary 1.2 of [Cha], we have

$$rank \ C_q(f, u_1) = \ rank \ C_q(f|_{C_0^1(\bar{\Omega})}, u_1) = \ rank \ C_q(f_1|_{C_0^1(\bar{\Omega})}, u_1) = \delta_{q1} \ \forall \ q = 0, 1, 2, \dots$$
(2.9)

By the same method, we have

$$rank \ C_q(f, u_2) = \delta_{q1} \quad \forall \ q = 0, 1, 2, \dots$$
(2.10)

Step 2. The existence of third solution.

Let $X^{-}(X^{+})$ be the negative (positive) subspace of $(-\Delta - g_{\infty}I)$ (respectively), then there exists R > 0 such that

$$\sup_{u\in X^-} \int f(u) < \inf_{v\in X^+} f(v) .$$

According to [Liu] we know that f possesses a critical point u satisfying

$$rank \ C_m(f,u) \neq 0 \tag{2.11}$$

where $2 \leq m = \dim X^-$. Since θ is a local minimizer, we have

$$rank \ C_q(f,\theta) = \delta_{q0} \ . \tag{2.12}$$

Combining (2.9), (2.10), (2.11) and (2.12) we proved that u is the third nontrivial solution of (1.1). Theorem A is proved.

Remark 2.1 When g_{∞} satisfies condition (iii), f satisfies the (PS)_c condition $\forall c \neq 0$. The first deformation theorem can be extended to study the fake critical set (see [ChaL]).

3. Proof of Theorem B

The proof is divided into four steps. We suppose $t_0 > 0$, the proof is similar for $t_0 < 0$.

Step 1. Let us define

$$\tilde{g}(x,t) = \begin{cases} 0 & t < 0 \\ g(x,t) & t \in [0,t_0] \\ 0 & t > t_0 \end{cases}.$$

and

$$\tilde{f}(u) = \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 - \tilde{G}(x, u) \right] dx$$

where $\tilde{G}(x,t) = \int_0^t \tilde{g}(x,\tau)d\tau$. Since \tilde{f} is bounded below and satisfies (PS), there is a minimizer u^1 of \tilde{f} . According to the maximum principle, we obtain: either $u^1 \equiv 0$ or $0 < u^1(x) < t_0 \quad \forall \ x \in \Omega, \frac{\partial u^1}{\partial n}\Big|_{\partial\Omega} < 0$. But by the assumption $g'(x,0) > \lambda_1$, θ is not a minimizer, i.e., $u^1 \not\equiv \theta$. Thus u^1 must be a local minimizer of the functionals f and f_1 (the latter was defined previously in Theorem A), in the $C_0^1(\bar{\Omega})$ topology. However, according to Chapter III, Theorem 1.1 and Corollary 1.2 of [Cha] (as well as [BrN]), one concludes that u^1 is also a local minimizer of f in $H_0^1(\Omega)$ topology. Thus

$$rank \ C_q(f, u^1) = \delta_{q0} \ . \tag{3.1}$$

Step 2. Since f_1 is unbounded below, and u^1 is a local minimizer of f_1 , we obtain a positive mountain pass point $u^2 \neq \theta$ of f_1 , (cf. Chapter II, Remark [Cha]). By the same reason, u^2 is also a critical point of f, and we have

$$egin{array}{rll} C_q(f,u^2) &= C_q(f|_{C_0^1(ar\Omega)},u^2) \ &= C_q(f_1|_{C_0^1(ar\Omega)},u^4) \ &= C_q(f_1,u^2) \ . \end{array}$$

Therefore

$$rank \ C_q(f, u^2) = \delta_{q_1} \tag{3.2}$$

the last equality follows from Chapter II, Theorem 1.6 [Cha]. (3.1) and (3.2) imply that $u^1 \neq u^2$.

Step 3. As in the proof of Theorem A, we obtain a critical point u^3 satisfying

$$rank \ C_q(f, u^3) \neq 0 \tag{3.3}$$

with $m = \dim X^- \ge 2$.

We only want to show $u^3 \neq \theta$. Indeed,

$$rank \ C_q(f,\theta) = 0 \tag{3.4}$$

 $\forall q > \dim \bigoplus \underset{1 \le i \le k-1}{ker} (-\Delta - \lambda_i I)$, because $g'(x, 0) < \lambda_k$. From $\lambda_k < g_{\infty}$, we obtain

$$C_m(f,\theta) = 0. ag{3.5}$$

Therefore $u^3 \neq \theta$.

Step 4. Under $(g_4)'$ we can get one more solution by the mountain pass lemma.

In Step 1 we have obtained a $u^1 \in C_X$ which is a local minimizer of \tilde{f} , where $C_X = C \cap C_0^1(\bar{\Omega})$ and $C = \{u \in H_0^1(\Omega) | t\varphi_1 \leq u \leq t_0, a.e. \text{ for } t \text{ small}\}$. Therefore $d^2\tilde{f}(u^1)$ is nonnegative and we have

$$-\Delta - g'(x, u^1) = d^2 \bar{f}(u^1) \ge 0 .$$
(3.6)

Let

$$v = u - u^{1}, g_{1}(x, v) = g(x, v + u^{1}) - g(x, u^{1})$$

we have

$$g'_1(x,\theta) = g'(x,u^1)$$
 (3.7)

and (1.1) is equivalent to

$$\begin{array}{l} -\Delta v = g_1(x,v) \\ v|_{\partial\Omega} = 0 \end{array} \right\}$$
 (3.8)

Let

$$\tilde{g}_{1}(x,t) = \begin{cases} g_{1}(x,t) & t \ge 0 \\ 0 & t \le 0 \end{cases}$$
(3.9)

and define

$$f_1(v) = \int_{\Omega} \left[\frac{1}{2} |\nabla v|^2 - G_1(x, v) \right] dx ,$$

$$\tilde{f}_1(v) = \int_{\Omega} \left[\frac{1}{2} |\nabla v|^2 - \tilde{G}(x, v) \right] dx$$

where $G_1(x,t) = \int_0^t g_1(x,\tau) d\tau$, $\tilde{G}_1(x,t) = \int_0^t \tilde{g}_1(x,\tau) d\tau$. From (3.6) and (3.7) we get

$$-\Delta - g_1'(x,\theta) \ge 0 . \tag{3.10}$$

From (3.10) we know that θ is a local minimizer of \tilde{f}_1 . Using the mountain pass lemma we immediately get a critical point v^+ of $\tilde{f}_1, v^+ > \theta$ and

rank
$$C_p(\tilde{f}_1, v^+) = \delta_{p1}$$
. (3.11)

Let $u^+ = v^+ + u^1$ then $u^+ > u^1$. Note that

$$f_1(v) = f(u) + const \tag{3.12}$$

and thus

$$C_{p}(f, u^{+}) = C_{p}\left(f\Big|_{C_{0}^{1}(\bar{\Omega})}, u^{+}\right) = C_{p}\left(f_{1}\Big|_{C_{0}^{1}(\bar{\Omega})}, v^{+}\right) = C_{p}\left(\tilde{f}_{1}\Big|_{C_{0}^{1}(\bar{\Omega})}, v^{+}\right) = C_{p}\tilde{f}_{1}, v^{+}).$$

Therefore

rank
$$C_p(f, u^+) = \delta_{p1}$$
. (3.13)

By the similar way we get a negative solution v^- of (3.8). Let $u^- = v^- + u^1$, then $u^- < u^1$ and u^- is a solution of (1.1) which satisfies

$$rank \ C_p(f, u^-) = \delta_{p1} \ . \tag{3.14}$$

By $\lambda_2 < g'(x,0)$ we have

$$rank \ C_p(f,\theta) = \delta_{pk} \quad k \ge 2 \tag{3.15}$$

(3.14) and (3.15) implies $u^- \neq \theta$. In combining with Step 3, then we get four nontrivial solutions. Theorem B. is proved.

Proof of Corollary. By the assumption $\exists t_1 < 0$ such that $g(x, t_1) = 0$ we can do in the same way by cut off function and obtain two other negative solutions: a local minimizer, and a mountain pass point.

Acknowledgments

The authors would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.

·

X

REFERENCES

- [Ah] S. Ahmad, "Multiple nontrivial solutions of resonant and nonresonant asymptotically linear problems", Proc. Amer. Math. Soc. 96 (1987) 405-409.
- [AmZ] H. Amann and E. Zehnder, "Nontrivial solutions for a class of nonresonance problem and applications to nonlinear differential equations", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980) 539-603.
- [AmbM] A. Ambrosetti and G. Mancini, "Sharp nonuniqueness results for some nonlinear problems", Nonlinear Anal. 5 (1979) 635–645.
- [BrN] H. Brezis and L. Nirenberg, " H^1 versus C^1 local minimizers", (to appear).
- [Cha] K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems (Birkhäuser, Boston, 1993).
- [ChaL] K.C. Chang and J.Q. Liu, "A strong resonance problem", Chinese Ann. Math. 11, B.2 (1990) 191-210.
- [FM] D.G. De Figueiredo and O.H. Miyagaki, "Semilinear elliptic equations with the primitive of the nonlinearity away from the spectrum", Nonlinear Anal. 17 (1991) 1201-1219.
- [H] N. Hirano, "Multiple nontrivial solution of semilinear elliptic equations", Proc. Amer. Math. Soc. 103 (1988) 468–472.
- [LiL] S.J. Li and J.Q. Liu, "Nontrivial critical points for asymptotically quadratic function", J. Math. Anal. and Applications 165 (1992) 333-345.
- [Liu] J.Q. Liu, "A Morse index of a saddle point", System Sci. and Math. Sci. 2 (1989) 32-39.
- [Wa] Z.Q. Wang, "On a superlinear elliptic equation", Ann. Inst. Henri Poincaré, Vol.8, No.1 (1991) 43–57.