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ABSTRACT

Some new results on the existence of multiple solutions for asymptotically linear elliptic
boundary value problems via critical gorups are obtained.
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1. Introduction

It is known that the critical groups are useful in distinguishing critical points, cf. [Cha).
We shall present here a few examples from semilinear elliptic boundary value problems in
showing how do they work in the study of multiple solutions. Let us consider the following

problem
—Au = g(z,u)
ulsn =0 } (1.1)

where {2 is a smooth bounded domain in R". Let A; be the j—th eigenvalue of —A with
0-Dirichlet boundary data. We assume,

() g€ C' (@ x R, R'), ¢(z,0)=0
(92) 9'(z,0) <\ VzeQ

. T,
(g5) Yim g—(t—l £ oo > X

Joo satisfies one of the following three conditions:

(i) goo & o(—A), the spectrum of —A.

(ii) goo € o(—A) and ¢(z,u) 2 9(z,u) — goou is bounded and satisfies the Landesman-
Lazer condition

L@(x,itjcpj(z))d:cﬁoo as Zt?—voo
=1

=1

. _
where ®(z,t) = fo w(x,s)ds, span{p1,v2,...om} = Ker(—A — gooI).
(ili) goo € o(—A) and ¢ satisfies the strong resonance condition:
V& eR™ €] oo Yu;—u in Hy() and Y we H ),

we have

lim fqb (:c, u; (x) + i 3 e,(a:)) v(z)dz =0
e i=1

and

lim { ¢ (:x:, u;i(z) + i 3 e,—(:r:)) v{z)dz =0

J—ooJq

where {e;(z)}T" is an orthonormal basis of the eigenspace Ker(—A — g.o1), and

&j = (6;: ?:' ”&-‘;’no)'

Qur first result is

Theorem A. Assume g satisfies (¢1) — (g3), then (1.1) has at least three nontrivial

solutions.
For the second result we assume that g satisfies,
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(ga) M < (z,0) < M < goo ¥V z €, where g, satisfies one of the conditions (i), (ii),
(iil) given in {g3).

Then we have

Theorem B. Assume g satisfies (g1),(g94). And assume that there exists to # 0 such
that g(z,t0) =0 V z €, then (1.1) has at least three nontrivial solutions. Moreover, if

we substitute (g4) by the following
(ga)) I <g(x,0) <M <go, VzeL,
then (1.1) has at least four nontrivial solutions.

Corollary. Assume g satisfies (1), (g9¢). And assume that there exist &; < 0, {2 > 0
such that g(x,t;,) =0 Vz € Q,i=1,2, then (1.1) has at least five nontrivial solutions.

Remark. Many authors have made contributions in this problem. The results for at
least one nontrivial solution were obtained in [AmZ], [LiL], [FM], for at least two nontrivial
solutions in {AmbM], [Ah] and [H] under the assumption: g < A;. Further results have
been studied by many authors (see e.g. [Cha] and references therein}.

Our theorems deal with the case go > A2. Theorem A is quite similar to the super-
linear case (see [Wa]). But Theorem B and its Corollary are more delicate.

2. Proof of Theorem A

Set 1
flu) = fn [§|Vu|2—c(x,u)] dz

t
forue X2 H}(Q), where G(z,t) = fog(m,r)dr. It is well known that f € C%(X, R)
satisfies the Palais—Smale condition. Any critical point of f corresponds to a (weak)
solution of (1.1). Without loss of generality, we assume that f has only finite number of

critical points.
Theorem A is proved by the following two steps.

Step 1. (1.1) has two nontrivial solutions, one is positive, another is negative.
Set

B t>0
qi(z,t) = { g(m ) t20 (2.1)
and consider the modified problem
~Au = gi(z,u)
’ 2.2
ulsn =0. } (22)

We define 1
hw=[ [-Q—IVulz—Gl(a:,u)]dm




t
where G(z,t) = [] q1{z, 7)dr. We claim that f) satisfies (PS). Let (u,) be a sequence
such that

ifl(un)l <c
and ,
Vilu,) -8 as n— 0. (2.3)
From (gs3) and (2.1) we get
g1(z,t) = gt +0(t) as t>0 large. (2.4)
(2.3) implies that V ¢ € X
/Q[Vun Vo —gqi{z,us)pldz -0 as n—o0. (2.5)

Set ¢ = u,, we have

funl® < [ 912 un)un do + OHua)
< C+ Cllunlfa +0(unl)

Un

———, then
[ln || 22
lvnllzz = 1 and |lua|| is bounded. A subsequence of v, converges to v with Jv|lzz = 1,

strongly in L? and weakly in f12. From (2.5) it follows

If fun| L, is bounded, then so is fjus|. Otherwise, ||ty |2z — +00. Let v, =

/n (Vv Vo — goovtoldz =0, ¥ pe HY, (2.6)

where

4

v*t = max{0,v} .

The regularity theory implies

(2.7)

Av+go vt =0 in
v=20 on JN.

By the maximum principle v = v+ > 0. But g, # A, and hence v = 0 which contradicts

with [Jv];2 = 1. A standard argument shows that (u,) has a convergent subsequence.
(PS) is true for f;.
From (g2) there exist p > 0,6 > 0 such that

hw)26 VueS,={ucX||ul=p}

and from go, > A2 we can take ¢ large such that

fHit ) <0

where (¢, is the first eigenfunction of —A with 0-Dirichlet boundary data. Consequently,
by the mountain pass lemma (2.2) has a weak solution u;. By means of maximum principle
and regularity of solution of elliptic BVP we know that the solution u; of (2.2} is classical
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Ou(z)

and u; > 0 for z € © and the outward directional derivative -— <0 for x € S
n
Therefore u, is a solution of (1.1).
Similarly, we get a negative solution us of (1.1).
Using Chapter 11, Theorem 1.6 of [Chal, we have
rank Cy(f1,u1) = éq (2.8)

where C,(f,u) denotes the ¢** critical group of f at . By Chapter III, Theorem 1.1 and
Corollary 1.2 of [Cha], we have

rank Cy(f,u;) = rank Cq(f|cé(ﬁ),u1) = rank Cq(fllcé(m,ul) =6n Vg=0,1,2,...
(2.9)
By the same method, we have

rank Co(fiug) =6, Yag=0,1,2,... (2.10)

Step 2. The existence of third solution.
Let X~ (X*) be the negative (positive) subspace of (—A — go,[) {(respectively), then
there exists R > 0 such that

Su u < inf ) .
e P f) Jnf ()

According to [Liu] we know that f possesses a critical point u satisfying
rank Cp(f,u) #0 (2.11)
where 2 < m = dim X~. Since ¢ is a local mimimizer, we have
rank Cy(f,0) = 640 . (2.12)

Combining (2.9), (2.10), (2.11) and (2.12) we proved that u is the third nontrivial solution
of (1.1). Theorem A is proved.

Remark 2.1 When g, satisfies condition (iii), f satisfies the (PS). condition ¥ ¢ # 0.
The first deformation theorem can be extended to study the fake critical set (see [ChaLl]).

3. Proof of Theorem B

The proof is divided into four steps. We suppose o > 0, the proof is similar for {5 < 0.
Step 1. Let us define

0 t <0
gz, t) = ¢ glz,t)  t €0t
0 >t .




and

fw = [ [llvm?—é(x,u)] dx

where G(z,t) = Jo §(z,7)dr. Since f is bounded below and satisfies (PS), there is a

minimizer u! of f. According to the maximum principle, we obtain: either u! = 0 or
!

0<ul(z) <ty Yz, I lan
a minimizer, i.e., u' # 6. Thus u' must be a local minimizer of_the functionals f and
f1 (the latter was defined previously in Theorem A), in the C}{Q2) topology. However,
according to Chapter 111, Theorem 1.1 and Corollary 1.2 of [Cha| (as well as [BrN]), one
concludes that ! is also a local minimizer of f in H}(f2) topology. Thus

rank Cy(f,u') = 64 . (3.1)

< 0. But by the assumption ¢’(z,0) > A, ¢ is not

Step 2. Since f; is unbounded below, and »! is a local minimizer of f;, we obtain a
positive mountain pass point u? # @ of fi, (cf. Chapter II, Remark [Chal]). By the same
reason, u® is also a critical point of f, and we have

Co(fiu?) = Cq(flcg(n), u?)
= Cq(fl’cg(ﬁ):u4)
= Cq(fl: u2) .

Therefore
rank Cy(f,u?®) = 6, (3.2)

the last equality follows from Chapter II, Theorem 1.6 [Cha]. (3.1) and (3.2) imply that
u! # Ul
Step 3. As in the proof of Theorem A, we obtain a critical point 43 satisfying

rank C,(f,u3) # 0 (3.3)

with m=dim X~ > 2.
We only want to show u® # 6. Indeed,

rank Co(f,0) =0 (3.4)

+ . 7
Vg> dlmealsigﬁef_l (=A = M), because ¢'(z,0) < Ag.

From Ax < goo, We obtain

Cn(f,8)=0. (3.5)
Therefore u® # 6.

Step 4. Under (g4)’ we can get one more solution by the mountain pass lemma.

In Step 1 we have obtained a u! € Cx which is a local minimizer of f , where Cx =
CNCHQ) and C = {u € H{(D)tw, < u < to,ae. for t small}. Therefore d?f(u') is
nonnegative and we have

A -g(x,u)=dfu")>0. (3.6)
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Let
v=1u—u!,q(z,0) = glz,v+u") - g(z,u'),

we have

gi(z,0) = ¢'(z,u") (3.7)
and (1.1) is equivalent to

-Av = gi(z,v)

Ugg =0. (38)
Let ( >0

. zt 2

and define

f) = /ﬂ[—;—lejlz—Gl(x,v)}dx,
i) = [ 5190 - Ciay)] a

¢ . ¢
where G, (z,t) = [0 gz, T)dr, Gi(z,t) = fo Gi(z, 7)dr.
From (3.6) and (3.7) we get
-A - g(z,8) 2 0. (3.10)

From (3.10) we know that & is a local minimizer of fi. Using the mountain pass lemma
we immediately get a critical point v* of fi,v* > 8 and

rank Co(f1,v) = 6p1 - (3.11)
Let ut = v+ + u! then u* > u'. Note that
f1(v) = f(u) + const (3.12)
and thus
B gflcs(mwg =G (fley ")
=G f1|cé(n)»‘U+ = Cpf1,v%) .
Therefore

rank Cp(f,u™) = &p1 . (3.13)
By the similar way we get a negative solution v~ of (3.8). Let u~ = v~ +u!, then u~ < u!
and u~ is a solution of (1.1} which satisfies

rank Co(f,u™) =bp . (3.14)
By A2 < ¢'(z,0) we have

rank Co(f,0) =6 k>2 (3.15)

(3.14) and (3.15) implies u~ # #. In combining with Step 3, then we get four nontrivial
solutions. Theorem B. is proved.

Proof of Corollary. By the assumption 3¢, < 0 such that g(z,t,) = 0 we can do in the
same way by cut off function and obtain two other negative solutions: a local minimizer,
and a mountain pass point.
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