
REFERENCE
IC/94/35

INT€<RNATIONAL CENTRE FOR

THEORETICAL PHYSICS

BETHE ANSATZ
AND QUANTUM DAVEY-STEWARTSON 1 SYSTEM
WITH MULTICOMPONENT IN TWO DIMENSIONS

Yi Cheng

Mu-Lin Yan

and

Bao-Heng Zhao

INTERNATIONAL
ATOMIC ENERGY

AGENCY

UNITED NATIONS
EDUCATIONAL,

SCIENTIFIC
AND CULTURAL
ORGANIZATION

MIRAMARE-TRIESTE





IC/94/35

International Atomic Energy Agency
and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

BETHE ANSATZ AND QUANTUM DAVEY-STEWARTSON 1 SYSTEM
WITH MULTICOMPONENT IN TWO DIMENSIONS

Yi Cheng
Department of Mathematics, University of Science and Technology of China,

Hefei, Anhui 230026, People's Republic of China,

Mu-Lin Yan1

International Centre for Theoretical Physics,Trieste, Italy

and

Bao-Heng Zhao
Department of Physics, Graduate School, Chinese Academy of Sciences,

P.O. Box 3908, Beijing 100039, People's Republic of China.

ABSTRACT

The quantum 2-component DSl system was reduced to two ID many-body problems
with 6—function interactions, which were solved by Bethe ansatz. Using the arisatz in
Ref.[l] and introducing symmetric and antisymmetric Young operators of the permutation
group, we obtain the exact solutions for the system.
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1. The Davey-Stewartson I (DSl) system is an integrable model in space of two spatial
and one temporal dimensions ((2+l)Dj. The quantized DSl system can be formulated in
terms of Hamiltonians of quantum many-body problems in two dimensions, and some of
them can be solved exactly'1^. Particularly, it has been shown in Ref.[2] that these 2D
quantum many-body problems can be reduced to the solvable one-dimensional quantum
many-body problems with two-body potentials^3'. Thus through solving the ID many-
body problems we can get the solutions of 2D's. In the present paper, we intend to
generalize this idea to multicomponent DSl system. Specifically, we will consider the case
that the potential between two particles with two components in one dimension is delta-
function. It is well known that the Bethe ansatz is useful and legitimate for solving ID
many-body problems with delta-function interactions'4"5^. Thus Bethe ansatz (including
nested Bethe ansatz or Bethe-Yang ansatz'5') will also play an important role for solving
the 2D many-body problems induced from multicomponent DSl system. Like ID cases,
the effects of multicomponent in 2D many-body problems cannot be trivially counted
by summing single-component modes. Namely, a careful and non-trivial consideration is
necessary. For definiteness, we will do so for a specific model of 2D quantum DSl system
with two components.

2. Following usual DSl equation'1^6', the equation for the DSl system with two com-
ponents reads

iq=-^(d2
x + d2

y)q + iA1q + iA2q, (1)

where q has two colour components,

and

(dx-3y)A1 = -ic(dx

(dx + dy)A2 = ic(dx -

where notation f means the hermitian transposition, and c is the coupling constant.
Introducing the coordinates £ = x+ y,r] ~ x — y, we have

A, = -ic^a-'Cqtq)-™^) (3)

A2 = icdr,d-i\q^q) + iu2{r}) (A)

where

V f Vf f r V t / ' , 0 - (5)
— C O -i X)

and U\ and u-i are constants of integration. According to Ref.[2], we choose them as

(7)



Thus Eq.(l) can be written as

iq = _(0= + a,2)q + ^

+ \jdedri[Ui(S - a + U2(V - f/)](qt'q')q, (8)

where q' = q(^', 77', £)• We quantize the system with the canonical commutation relations

l - rf), (9)

(10)

where a, b = 1 or 2, [, ]+ and [, ]_ are anticommutator and commutator respectively. Then
Eq.(8) can be written in the form

q=l[tf ,q] (11)

where H is the Hamiltonian of the system.

H^y^dq ( -q^fif + ^ q + ^ K W + W J C q ^ J q

+^y>Wqf[tM£ - r) + U2(V - r/)](q'tq')q ) . (12)

The /V-particle eigenvalue problem is

H \ V ) = E \ V ) (13)

w h e r e

I * > = f dZrfm ... d^NdriN Y, * a i . - a J V ( 6 ' 7 i • • • 6 v ^ ) q ] 1 ( 6 ' 7 i ) • • . q l ^ C ^ j v ^ / v ) | 0 > .
oi...ajv

(14)

The ^-particle wave function ^ai...aN is defined by Eq.(14), which satisfies the Af-body
Schrodinger equation

(15)

where ^- = ^ - -̂,<5'(&>) = ^ f i ^ y ) , and <:(&) = 1 for ^ > 0,0 for ^ = 0,-1 for
£ij < 0. Since there are products of distributions in Eq.(15), an appropriate regularization
for avoiding uncertainty is necessary. This issue has been discussed in Ref.[7].

3. Our purpose is to solve the A^-body Schrodinger equation (15). The results in
Ref.[2] remind us that we can make the following ansatz



E
a\ . . . a'N

where M and H are matrices independent of the coordinates of f and 77;
Xa.l...aN{^,\ • •.£/v) and Yb1...bN('r}i • • • WN) are required to satisfy the following one- dimen-
sional A^-body Schrodinger equations with two-body potentials

IJV ~ ElXai...aN ( I " )

. bN — L'2ibx...hN U°J

where E1 + E2 = E. At this stage M and M are unknown temporarily. It is expected that
after ID many-body problems (i.e., Eqs.(17) (18)) are solved, we could construct the so-
lutions ^AI...AN for 2D many-body problems Eq.(15) through constructing an appropriate
M. x J\f- matrix.

Now, let us consider the case of Ui(£ij) = 2g5(£ij) and ^ ( ^ j ) = 2.76(r/tj) (g > 0, the
coupling constant). Then Eqs.(17) and (18) become

= E\Xai a (19)

. — EoYh > (20)

If X and Y are wave functions of Fermions with two components, denoted by X1' and
VF , the problem has been solved by Yang ^ (more explicitly, see Rcf.[8] and Rcf. [!)]).
According to the Bethe ansatz, the continual solution of Eq.(15) in the region of 0 <
^Qi **• ^Q-i < • • • < £QJV < ^ r e a d s

XF =
p

v P i 2 i V , n(Q)
11...N ~ 21.-N11...N 21.-N

+(N\ - 2) others terms (21)

where XF € {X^^}, P = [Pu P2,- - •, PN] and Q = [Ql,Q2, • • • ,QN) are two permuta-
tions of the integers 1,2,..., N, and

K j ^ - (23)

The eigenvalue is given by
ti\ = /Cj + fc2 + • • • + fcyv, (•^/1)



w ere {&J are determined by the Bethe ansatz equations,

M
— FT H^J ~ IVPI ~ g/2

~ ^i(k,-A0) + g/2

" i(fcj-Aa)

jJi i(k A)
^ »i(Aa-Ap)+g

jJi i(kj - Aa) + g/2 AA i(Aa

(25)

(26)

with a = 1 , . . . , M, j = 1 , . . . , N. Through exactly same procedures we can get the solution
YF and E2 to Eq.(20).

In the Bosonic case, the wave-functions, denoted by XB and YB, are given by

n(Q) _
y...ij... ~~

(27)

(28)

(29)

and the Bethe ansatz equations are as follows'9'

" fcj - h + ig *i A^ - fcj + g/2

l
r=, fcj - k i - i g ^ A0 - kj - g/2

~ Aa + ig _ ^ Ap - kj + £p/2
- AQ - ig

(30)

(31)

Similarly for YB. It is well known that XF and YF(XB and YB) are antisymmetric
(symmetric) when the coordinates and the colour-indices of the particles are interchanged
simultaneously.

Nl

4. For permutation group
operator is .

and the totally antisymmetric Young operator is

'• {ei:z = l,---,N\}, the totally symmetric Young

(32)

(33)

The Young diagram for ON is | 1 | 2 | 3

example, we have

N , and for AN, it is

N

To S3, for

12p23 _^ p23pl2P 1 2 P (34)



a p23 pl2 ^ ^

Lemma 1: ( O / V - ^ F ) ( ( I I 6 ) ' '" I£JV) is antisymmetric with respocL to the coordinate's

interchanges of (£ < • £;).

Proof: From the definition of ON (Eq.(32)), we have

ONPab = PabON = ON. (36)

To N - 3 case, for example, the direct calculations show O3P
12 = P12O3 = O3, OaP23 =

= C?3 and so on. Using Eqs.(36) and (23), we have

p . (37)

From Eqs.(21) and (23), XF can be written as

Ar> + (N\ - 3) other terms }a[f v

(38)

Using Eqs.(37) and (38), we obtain

*Civ) + (TV! - 3) other terms

« J. (39)
p

Therefore we conclude that (0/v^F)(£i, • • • ,£jv) is antisymmetric with respect to (£

Lemma 2: (ANX ) (^ I , ^2, - • • ,£N) is antisymmetric with respect to the coordinate's
interchanges of (& *—• £j).

Proof: Noting (see Eqs.(33) (29) (27))

ANPab = PabA=-AN, (10)

(41)

we then have

p

Then the Lemma is proved.

5. The ansatz of Eq.(lG) can be compactly written as

*=nci-r(&M»to



where (MX) and (NY) are required to be antisymmetric under the interchanges of the
coordinate variables. According to Lemmas 1 and 2, we see that

N for ID Boson. [ J

If the DSl fields <?o(£,??) in Eq.(l) are (2+l)D Bose fields, the commutators ([,]_, see (9)
and (10)) must be used to quantize the system and the 2D many-body wave functions
denoted by * f l must be symmetric under the simultaneous colour-interchange (a* <—* a.j)
and the coordinate-interchange ((fyrji) <—• (€jWi))- Namely, the 2D Bose wave functions

must satisfy
B * (45)

For qa ,(2+l)D Fermi fields, the anticommutators should be used, and 4>r must be anti-
symmetric under simultaneous interchange of (a* <—• ay) and ((£,??i) '—" (€jVi))> namely,

F ^ * F U _ ^ = - * F . (46)

Thus for the 2D Boson case, two solutions of * f i can be constructed as following

* f = 11(1 - 2«&H'ki))[OtfXF(Zl • • • tN)][OJ*YF{rh • • • VN)}, (47)

*2S = I K 1 - hfaHrmmAuXtfa • • • SN)][AVYB(VI • • • VN)}. (48)

Using Eqs.(36),(39),(40) and (42), we can check Eq.{45) directly. In addition, from the
Bethe ansatz equations (25) (26) (30) (31) and E = Ei + E2> we can see that the eigen-
values of tyf and ^2 a r e different from each other generally, i.e., the states corresponding
to ^ f and $2 a r e non-degenerate.

For the 2D Fermion case, the desired results are

• * • tx

Eq.(46) can also be checked directly. The eigenvalues corresponding to tyF are also de-
termined by the Bethe equations and E = E^ + E2.

The proof given in Ref.[2] can be extended to show that ^f2 and *f">2 , shown above,
are also the exact solutions of Eq.(15). Thus we conclude that the 2D quantum many-
body problem induced from the quantum DSl system with 2-component has been solved
exactly.

6. To summarize, we formulated the quantum multicomponent DSl system in terms
of the quantum multicomponent many-body Hamiltonian in 2D space. Then we reduced
this 2D Hamiltonian to two ID multicomponent many-body problems. As the potential
between two particles with two components in one dimension is <$—function, the Bethe
ansatz was used to solve these ID problems. By using the ansatz of Ref.[l] and introducing



some useful Young operators, we presented a new ansatz for fusing two ID-solutions to
construct 2D wave functions of the quantum many-body problem which is induced from
the quantum 2-component DSl system. There are two types of wave functions: Bosons
and Fermions. Both of them satisfy the 2D many-body Schrodingcr equation of the DSl
system exactly.
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