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ABSTRACT

We show that an ensemble of logistic maps, with parameters distributed in some range

inside a chaotic region, cannot be statistical. This is so because any parameter range for

this map includes periodic windows. The effects of this periodicity in the averages of the

system can be estimated, and are also apparent in the power spectra of average values.

As a counterexample, we show that the behavior for tent maps, where chaotic regions do

not include periodic windows, is statistical.
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I. INTRODUCTION

It was shown in a recent work by Sinha [l] that independent chaotic maps under

the influence of global noise behave in a nonstatistical manner. In particular, it

was found that when a collection of logistic maps in their chaotic regime has time-

dependent but spatially homogeneous fluctuations in its nonlinear parameter, the

average value of x shows persistent fluctuations even in the large N limit. This

behavior is similar to that of an ensemble of chaotic maps under weak global coupling,

a problem that has been studied in several recent works [2-5],

It was also claimed in that work that when the applied noise is static but space

dependent, the behavior of this uncoupled chaotic systems is statistical. This means

that, for instance, if we have a large collection of logistic maps with their parameters

distributed in some narrow range in the chaotic region, the average value of x should

converge to some fixed value with fluctuations that die out as l/\/jV. At first sight,

this seems quite plausible, since this just reflects the statistical behavior one expects

from a collection of independent chaotic oscillators, where each and everyone of them

is characterized by an invariant probability distribution with finite support. But upon

more careful examination one has to realize that there is a failure in this reasoning.

This failure lies in that the statistical superposition mentioned before works only if

all the mappings included in the parameter region of interest are purely chaotic. (By

"purely chaotic" we mean the absence of any periodic behavior, i. e., we exclude

cases where the motion covers in a periodic way a finite collection of distinct chaotic

windows).

But it is well known [6J that this is impossible to do with any smooth distribution

of parameters in the logistic map, since there is at least a periodic window between

any two different points in parameter space where the map is chaotic, and this periodic

window (or windows) represent a non-zero fraction of the parameter range. Therefore,



as we increase the size of the lattice on which we are working, we will be at the same

time maintaining some fraction of the elements moving in a periodic way. And this

part of the system will spoil the convergence of the average, by keeping persistent

fluctuations whose origin is simply the periodicity of the map in these windows.

In this report we show that the intrusion of periodic windows does alter the

statistical properties of a collection of chaotic maps whose parameters are distributed.

We also show that in typical cases this effect is extremely small, thus explaining the

results reported in ref. [1]. We show how this effect depends in the initial configuration

of the lattice, and how the effect of periodic windows on the fluctuations of the average

can be estimated.

II. UNCOUPLED LOGISTIC MAPS WITH PARAMETRIC NOISE.

The model used for this work is

ri — 1 — <IVT' \2 Cl\\

where i is the space index and n is the time index. The values of the parameter a are

given by

a' = a + crt\ (2.2)

where t' is a random number uniformly distributed between -1 and 1, a is the (small)

amplitude of the parameter fluctuations, and a is just the center of the distribution.

This is denoted as "case (iii)" in ref. [1], where a slightly different prescription a1 =

a(l + a't^) was used. It is clear that these two prescriptions are identical if one makes

tj = acr.

In order to test whether or not this system is statistical we calculate the instan-

taneous mean value hn of the variable ij,, over large size lattices, and study the time

evolution of this average. In particular, we check its Mean Square Deviation (MSD),
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which is defined by ((< h > —h)1), where the angular brackets are time averages. We

also check its power spectrum, which for a superposition of purely chaotic systems

should be broad.

A comment should be made here about the meaning of these averages. What

we want to know here is whether a single lattice, made out of many elements, can

be statistical, in the sense that averages over those elements obey the central limit

theorem and the taw of large numbers. We are not considering the different problem

of an ensemble of lattices [7], which depending on the conditions of the problem may

or may not be statistical.

Before going over the numerical results, let us try to give an estimate of the size

we can expect these effects to have. For this, we can do the following approximation:

we can separate the average hn in two parts. One comes from the points of the lattice

where a falls in the purely chaotic region, and another that comes from those points

with a in a periodic window,

a' chaotic a1 periodic

(2.3)

Now, the part that comes from chaotic a will converge towards some fixed value h'

in the infinite lattice limit, with uncorrelated fluctuations £„. These fluctuations will

have zero mean and a mean square deviation that decays as 1/JV (multiplied by some

coefficient of order 1).

For the periodic part we will take into account only the largest periodic window,

of periodicity K. At some arbitrarily chosen time n = 0, after the transients have

died, a fraction wi, will have been attracted to the kth point in the cycle, denoted

X*. It is clear that the value n changes along the window, and is not even well

defined at its end, where the motion is over narrow chaotic strips. However, since for

narrow periodic windows these changes are small, we will just approximate the whole



interval, including the chaotic strips, by a single representative value of ijt-

With these approximations the value for the periodic part of the average is now

K

h^ = A y^tojj xic, (2.4)

where u>J! = w(i-n)modA' is the fraction of points in the lattice with value x* at time

n, and A is the relative width of the periodic window, assumed to be small. The time

average of h is

K-
(2.5)

where the \(K comos from the time average of w£. The mean square deviation of h

becomes

1 / / K i \ 2 \

(2.6)

(2.7)

where we are taking (1 —A)2 as 1. Notice that if one could choose the initial conditions

for the lattice so as to cover equally the K basins of attraction of the map fK, then

all the wt would be equal to I/A" and the second term would be zero. Therefore, we

are considering here an effect that is strongly dependent on the distribution of the

initial conditions. In general, if this distribution is homogeneous between some two

values —not too close to each other— and covers a good part of the (-1, 1) range,

there will be small but nonzero deviations from the \jK mean value. This effect is

the one that induces persistent fluctuations on the mean values for a lattice of logistic

maps.

III. NUMERICAL RESULTS

A. Estimate of Nonetatistical Effects

To verify what have been said above, we have done a numerical estimate of the size

of the effects one may expect in a simulation of a logistic map lattice, in order to see

under which conditions we may expect to find them. The first limiting factor here is

the relative width of the periodic window, which for typically small cases (say of order

10~3), already makes the possible effects visible only for lattices of a million points or

more. Besides this, we also have to check what are the typical values for the fractions

tuij for a uniformly distributed set of initial conditions. Our numerical results show

that these fractions tend to deviate from the even value 1 jK by a small amount —of

order of a few per cent— for initial conditions with some bias (for instance, x'o chosen

between 0 and 1), and even less for initial conditions distributed homogeneously in

the whole (-1, 1) range. This adds another factor of 10~3-10~4 or smaller to our

estimate for the saturation point of the MSD, and means that in typical cases one

should not see any nonstatistical effects for lattices of less of 109-1010 points. This

explains the null results found in ref. jl], where lattices up to lC points were used,

and means that in order to see the nonstatistical behavior of these systems in smaller

lattices one has to look for some specific conditions, in particular, a parameter range

that includes small but still appreciable periodic windows.

In our simulations we have used the parameters a = 1.96 and a = 0.02, which

gives us a' in the range 1.94 to 1.98. This range in parameter space includes a narrow

four-window around a = 1.941, which takes close to 1/18 of the covered range. We

have tested the saturation value given by Eq. 2.7 using an initial distribution with

x'a between -.5 and .5, which introduces some bia5. The results obtained for three

different points inside the window —one of them in its chaotic part— were consistent

with each other, and the final estimate for the saturation point of the MSD is around

1.5 x 10s. The actual values of u>* and X), for the three tested points are given in



Table 1.

B. Actual Simulation of the Lattice

We have simulated the dynamics of this systems on lattices of sizes up to 633960

points, with the same ranges of a and of initial conditions given above. The first

5000 iterations were discarded as a transient, and the statistics were collected over

50 runs of 1024 iterations each. Since these elfects are sensitive to fluctuations in the

distribution of initial conditions, we have repeated the simulation 4 times, each with

a different set of initial conditions. The results of this calculation are given in Fig.

1, which shows the beginning of the saturation of the MSD of h as N grows, and in

Fig. 2, which shows the power spectrum of h.

In Fig. 1 we can see that for large N the MSD has deviated strongly from the l/N

behavior, and is clearly starting to saturate, with values that approach our previous

estimate of 1.5 x 10~6 from above. The bars give the total spread obtained for the

4 repetitions, i.e., they go from the minimum to the maximum value obtained for

the MDS. As a comparison (and control, in order to test that this effect is not just

some round-off effect from the computer), we are including the results from the same

calculations performed on lattices of tent maps,

using exactly the same parameters and run-times as in the logistic case. This system

is expected to show perfectly good statistical behavior in this case, because it does

not have any periodic windows in the range of a considered; the tent map is purely

chaotic for all values of a in the range 1.94-1.98. In the figure we see that the behavior

of the MSD for tent map lattices is perfectly statistical, following the l/N law. We

have not included spread bars for these points since here the spreads are negligible.

In Fig. 2 we have plotted the power spectrum of h for both the logistic and the
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tent lattices, for N = 633960. The spikes corresponding to the frequencies 1/2 and

1/4 are quite evident. We should mention that these spikes are visible even for much

smaller lattices, and appear in the power spectrum well before saturation of the MSD.

For comparison, we also plot the power spectrum for the mean value for a lattice of

tent maps. It is evident that there is no periodicity at all in this case.

IV. CONCLUSIONS

We have shown that nonstatistical behavior appears for lattices of uncoupled

chaotic maps when these maps are subject to static parametric fluctuations. This

effect is due to the intrusion of periodic windows in the chaotic parameter sector,

which makes it impossible to say that a given parameter range is purely chaotic. The

magnitude of this effect can be calculated, and the results from actual simulations

agree with other estimates. These effects disappear in cases where it is possible to set

a parameter range where the evolution of the maps is purely chaotic, as in the case

of the tent map. (Notice that tent maps were used in ref. [7]).

This nonstatistical behavior is manifested in the saturation of the MSD of the

average h as the lattice size N grows, and in the appearance of sharp spikes in the

power spectrum of h. However, for most typical cases, the saturation values for the

MSD of the average h are so small that they affect only extremely large lattices. Also,

the effect is quite sensitive to the distribution one chooses for the initial conditions in

the lattice. In principle, it may even be possible to produce a distribution of initial

conditions that cancels the effects of at least the largest periodic window, and makes

the system behave statistically for even larger sizes of the lattice.

The situation with the power spectrum is different. The spikes that signal peri-

odicity in the lattice appear even for small lattice sizes, even though their behavior

becomes consistent only as N grows. For large lattices, one can observe very clearly



the effect of the periodic windows on the evolution of the average.

This is a very simple model, whose nonstatistical behavior ia easy to understand,

so much so that it can be estimated beforehand. We believe, however, that there

has to be a connection with the more complex but similar phenomena one finds

in the case of globally coupled chaotic mappings. (A review is given in ref. [8]).

Both of them show saturation of the MSD, peaks in the power spectrum (broad

in the coupled case), and in both cases the nonstatistical effects disappear for the

continuously chaotic example of the tent map. In the uncoupled case the explanation

of this fact is simple; with no periodic windows one gets invariant distributions for any

values of a, which gives finally simple statistical behavior. For the coupled case the

connection between continuous (in parameter space) chaos and statistical behavior

has been only postulated and discussed within a static approximation [9], but still

the similarity between the two modes seems to imply a deeper connection.
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FIGURES

FIG. 1. Mean Square Deviation for the lattice average ft vs. Lattice Size. The squares

correspond to lattices of logistic maps, and the bars show the spread of the MSD. The

expected saturation value for the MSD is around 1.5 x 10~9. The crosses correspond to

lattices of tent maps, whose MSD does not saturate.

FIG. 2. Power spectrum of the lattice average h for lattices of logistic maps (top), and

tent maps (bottom). The vertical scale is the same for both figures.

II

TABLES

TABLE I. Values of x for the four cycle, and fractions of initial conditions attracted to

them after 5000 iterations. The statistics were compiled over 50 runs, on lattices of 40000

points. Here we show the results for 3 different values of a inside the four-window. Errors

in the fractions w are all of order 2 X 10~4.

a

1.9410

1.9415

1.9425

-.9410

-.9412

-.9425

-.7186

-.7199

-.7255

-.0022

-.0062

-.0225

.9999

.9999

.9990

IB,

.2506

.2500

.2502

.2376

.2355

.2315

1113

.2698

.2740

.2809

tt>4

.2420

.2405

.2374

MSD.,t.

1.1 x 10'6

1.6 x 10~6

2.7 x 10-6
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