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1. In t roduc t ion 

The most important degrees of freedom which are necessary to describe the 

interaction of two nuclei are the distance between the centers of colliding nuclei R, 

mass asymmetry degree of freedom 77 = (A\ — A2)/A (A\ and A2 are mass numbers 

of nuclei, A = A\ + A-i) and a neck radius or other characteristic of a neck 1 _ 6 ) . 

Therefore, the Hamiltonian of dinuclear system should depend on these dynamical 

variables. The important ingredient of the Hamiltonian is an inertia tensor. There 

are different approaches to calculate its value. These approaches mainly use the 

cranking expression and perform calculations in different single particle basis. In 

refs. 2~4) the calculations have been done using adiabatic two-center shell model 

basis. The approach based on the dissipative diabatic dynamics has been realized in 

7,e) by exploiting the diabatic two-center shell model. In refs. 9 , n ) the inertia tensor 

has been found in the framework of the linear response theory using quasi-adiabatic 

two-center basis. Inertia tensor obtained in terms of the adiabatic representation is 

given in refs. I 3 ~ 1 5 ) . 

The values of mass parameters and their dependence on dynamical variables 

considerably influence dynamics of the dinuclear system. For instance, in refs. u ' 1 2 ) 

it was shown that the nondiagonal component of the inertia tensor describing the 

motion in the R — n plane increases significantly with increase of mass asymmetry. 

Due to the coupling of R— and 77— modes of motion the part of the kinetic energy 

of n—mode transforms into the kinetic energy of the radial motion and system 

approaches to the radial potential harrier with the increase of 77. As a consequence, 

the stability of the dinuclear system for large mass asymmetry decreases and the 

production of light isotopes increases. 

The nondiagonal component of inertia tensor plays an important role in the 

evolution of the dinuclear system . However, its dependence on various dynamical 

variables makes the computations very cumbersome. To obtain the results in a 

simpler way, we develop in this paper a simple and mainly analytical method to find 

the components of the mass tensor for a dinuclear system. 

The paper is organized as follows. In sect. 2 we obtain the general form for 
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inertia tensor and discuss some useful relations. In sect. 3 the definition of neck 

is introduced. The simple analytical expressions are obtained to calculate mass 

parameters both macroscopically and microscopically. The results of calculations 

are presented in sect. 4. 

2. Inertia tensor 

It can be shown , 6 '1 7) that the nuclear Hamiltonian of the general type with the 

two-body forces 

ft2 / r 
H = — I drVф+(r)Vф(r) + J drdr'ф+(г)ф(г)и(г - г')ф+(г')ф(г'), (1) 

where ф+, ф are micleon field operators, can be expressed in terms of current 

2m 
j ( ' ) = - y - (V>+(r)V^(r) - VV>+(rMr)) (2) 

and density 

f{t) = V+(r)V-(r) (3) 

operators as given below: 

H = jjdrj(r)p-\r)j(r) + ... (4) 

The omitted term depends only on p and is not necessary for the following consid­

erations. Operators p and j satisfy the commutation relation , 6 ) 

Wr), j (r ' ) ] = - ^ V r ( * ( r - r > ( r ) ) (5) 

and the current operator has the following functional representation 

М'%*{ютУ (6) 

Using eqs. (4)-(6) we can represent the kinetic energy part T of the total Hamilto­

nian in terms of the functional derivatives of p 

T = _ | L fdr V (p(r)-^) -j-,V (p(r)-^) . (7) 
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In what follows, we sliall use the expression (7) to derive the inertia tensor for the 

collective motion of two-center system. We assume that the density p depends on 

some number of collective variables q} which are defined by the relations 

q, = j dv p(r)gj(r), (8) 

where </j(r) are functions required to derive q,. Then, with the expression for the 

functional derivative as given below 

6 -EftWr w 
we obtain the kinetic energy term as: 

T = - ^ • E T - / * ^ r ) v f t ( p ) v f t . ( r ) ^ -
2m ~ dq, J dqy 

it is evident from (10) that the components of inverse inertia tensor are: 

( B - ' Ь / = ^Jdrp{r)V9j(r)Vgy{r). (11) 

Using the density of the dinuclear system 

P(r)=<0\ £ «(r-r*)|0>. 
*=' 

we can rewrite the formula (11) in the following way: 

(B-%. = - < 0 | £ Vkg]irk)Vkgj.(rk)\0 > . (12a) 
m

 k 

If the nucleon-nucleon forces are velocity independent then 

(*" ' )« • = 5 р < 0 | [ и . , [ / / , и ] ] | 0 > (12Ь) 

_ 2 ^ < н | | / / , , , ] | 0 > < 0 | [ / Л , , . ] | „ > 
- I J L p—F (1 2 c) 

n „,so fc« - '-n 

= p E ( £ o - £„) < n\qj\0 X 0\qj.\n > , ( Ш ) 
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where |0 > and \n > are the ground and excited states of the dinuclear system with 

corresponding energies Eo and E„. Since 

^—jiZBviH.tf—i^Bvb (13) 

and 

ZBln(B-%y = 6j}., (14) 

we can obtain from (10) the well known expression for the collective kinetic energy 

" ii' 

Usually, the inertia tensor B}y is calculated with the help of cranking expression 

2 ̂  < п\д/дд,\о >< o\a/dgj.\n > 

using the two-center shell model basis. 

To demonstrate the equivalence of the inertia tensor in (11,12) and the crank­

ing expression (15), we insert (13) into (15) and. using (12c), obtain the following 

relation 

я». = £*«.*«••(*"')** (16) 

which is satisfied identically because of (14). 

From eq. (16) we can express matrix elements Bjy in terms of matrix elements 

(B~l)jy and vice versa. For example, if the relative distance between the fragment 

centers R and mass asymmetry parameter 17 are taken as the collective variables, 

then, all the components of inertia tensor are: 

BRR = (в-%(в-1)яя-[(я-Чя,Г (17а) 

R (B~1)RR . 

*" - (B-')w(B-»)m - l(B-i)R4r ( } 

д (B~ )яч /17c\ 
аящ (B- 1 UB- l ) j»- [ (B- , )*P' l ' 
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For (В 'JHTJ to be small, above components (17) can be expressed as: 

^ Л Я * / p - n > ^ 1 4 И , D_14 . ^ f t ) ; 

( B - ' W •" (В" ' )™' "" ( Д - » Ы В - 1 ) я я " 

The solution of eq. (16) as given by eqs. (17), leads to the following useful relations: 

Biin = — Bt 

Bm(B~ )m = BRR(B )ЛД, 

j BRRBm , , 
\I(B->)RR(B->)JB )Л» 

Э2 _ D__D ?M D - . Q B™ BRV = BRRBm - , „ _ , . = BRRB^ - , 

BRV{B~1}RTI + Bm{B~ )m = BR4(B~ ) Д , + BRR{B~ )RR = 1, 

[BV„BRR - BRr)}[(B-l)vv{B-')RR - ( B " 1 ) ^ ] = 1, 

BRV < B^BRR, 

(B-'Ji, < (Я-WB- 'W 

3. Macroscopic and microscopic cons idera t ions 

Let us firstly consider as collective variables the relative distance R between the 

fragment centers and the mass asymmetry parameter ij. For well separated frag­

ments we get the usual definitions of R and r) if we substitute in (8) the expressions 

for gR and g, defined by the equations: 

dgR _ 0(z) 0(-z) 
dz A\ Ai (18a) 

ft = ^(«W-*(-*))• (18b) 

Here z is the axis connecting fragment centers and в is the step function. The z = 0 

is the point where the densities of nuclei are equal to each other. From (18a) it 

follows that: 

ined by the relation as given below: 

Д ( . ) = Jdrp{r)0(±z). (19a) 

9R 

Fragment mass numbers are defined by the relation as given below: 
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Fig. 1. Schematic form of the func­

tion в(г). 

0 Z 

We generalize the definitions (18a,b) by introducing a function в instead of 0 to take 

into account the mutual interpenetration of nucleons belonging to the overlapping 

nuclei. This function 0 is defined in the following way 

*W = 5(1 + e r f(!)) (20) 

where a is the small interval over which the value of 0 jumps from zero to one. 

(Function 0 is schematically depicted in fig.l.). In the limit a —> 0, 6 —* 0. Physically 

interval a amounts to the diffusion of nucleon density distribution in nucleus. The 

norm of 0 is defined as in eq. (19a) 

A{i) = JdrP(r)6(±z). (19b) 

Substituting (18a,b) with в instead of в into (11) and using (19b) we obtain 

(B-')RR = 
1 

+ -
1 

mA\ mA-i 

Since (0(±z) — 02(±z)) and 0{z)0{—z) are always positive, it is obvious from (21) 

that BfiR decreases as the overlapping of interacting nuclei increases. For the well 

separated fragments we obtain a reduced mass /i — ТП.А1А2/А for two interacting 

nuclei. 

Taking into account (20), the approximate value of eq. (21) is 

<в_1ь*=Ub (j - T£ZI***~* [4)) •' ^ 
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where Ъ2 = ка2/4 which demonstrates that values of b and a are close. 

The integral which appears in (22a) can be interpreted as the number of particles 

in the neck between two fragments 

A,^ = Jdvp(r)cxp(-^j. (23) 

We obtain the other components of inverse inertia tensor as 

^^-ii^ii (22b) 

, „ _ i . _ » Ancct A2 — Ax ,„„ , 
( « lib, = —о /-и л л л ( 2 2 с ) 

т2у/тгЬ АА\А2 
and 

|Вл,| l(B-')a.l П I - ( Л , - Л 2 ) . (22d) 

Here Ai > А2. As it is seen from (22c,d) the nondiagonal component of inertia tensor 

Вц„ is very small for almost symmetric configurations but increases significantly if 

the mass asymmetry parameter ц increases. 

It is convenient to introduce a degree of freedom v connected with the neck as 

the ratio of the number of particles in the neck Antck to the total number of particles 

in the system A: 

v=A„cck/A. (24) 

In the same way as above we obtain 

(В-1)ю = - - ^ - , (25a) 

(*"')*< = --T4TT-- (25b) 

\BRv\ V2 AAncct 

VBRRBVV ] ж A,A2-AAneck/4 ( 2 5 c ) 

Substituting in (23) an expression for p in the second quantized form and using 

the results of microscopic calculations for the nucleoli occupation numbers l s) we 

can find A„rck and, therefore, the components of mass tensor inicroscopirallv. Since 

we are interested in the description of the dinnrlear system in the пишч|щШ)пиш 
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stage we shall use as a basis the single particle wave functions of the noninteracting 

nuclei i.e. projectile (c,Si) and target (v>2)- Thus, taking into account the small 

overlapping of the colliding nuclei, p can be written as 

1.Г 2,2' 

+ E K t r W r J a + a a + h.c). 
1,2 

Assuming the chaoticity of the phases of the nondiagonal matrix elements of p and 

neglecting their contribution we obtain from (26) 

< 0|/Kr)|0 > = £ п А Ы г ) | 2 , 
1:61,2 

where nt are the Fermi occupation numbers. Ultimately, eq. (23) becomes: 

Amck = 5 3 n* j d r e x P [-]?) \^(r)\2. (26) 

Because of the approximations used to derive the components of inverse inertia 

tensor the influence of the interacting nuclei shell structure on the value of BJJI is 

only partly taken into account. This influence manifests through the microscopical 

definitions of Ancck- In the consistent microscopical calculation we should use di­

rectly the cranking expression to determine the inertia tensor. Thus, use of (17), 

(22), (25) and (27) in numerical calculations allows us to obtain the smoothed parts 

of the elements of inertia tensor. Hcwever, the obtained results give possibility 

to elucidate the values of mass parameters and its dependences on the collective 

variables. 

4. Results of calculations 

To illustrate the results of the previous sections we have considered the systems 
5 8 Ni+ S 8 Ni- 1 1 6 Ba and U 8 Pd+ , 1 8 Pd-* 2 3 6 U. The components of the inertia tensor 

are calculated exploiting the expressions (17), (22), (25) and (27). Using the single 

particle wave functions of harmonic oscillator in the cylindrical representation, the 

matrix elements in (27) can be obtained analytically. For the frequency parameter 

8 



of the harmonic oscillator wave functions we have taken the value 19) и = (0.9A ]/3 + 

0.7) - 1 fm"2 which reproduces the systematics of nuclear radii. We have used b = 0.8 

fm in our calculations. The dependences of Лпе<* on -q at R = R^ + R2 + d (Ri,2 = 

are the nuclear radii and d = — 1,0,2 fm) are presented in figs. 2 and 3. 

It is seen that the nucleon number in neck decreases with increasing »/. The values 

of Ancck are larger at smaller R i.e. Ancck is proportional to the overlapping volume 

of nuclei in contact. 
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Fig. 2. Dependence of Ancck on 

mass asymmetry rj at various val­

ues of fragment separations R = 

Ri + R-2 + d for the system 
58Ni+58Ni. The calculated results 

at d = —1,0,2 fm are presented 

by solid, short dashed and long 

dashed lines, respectively. 
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Fig.4. Mass parameters Bnn, Виц, Вдл, Bvv and BRV as functions of mass asym­

metry r/ at various values of fragment separations R = Rt + R2 + d {or the system 
5SNi+5SNi. The calculated results at d = —1,0,2 fm are presented by solid, short 

dashed and long dashed lines, respectively. 
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Fig.5 .The same as in fig. 4, but for the system I 1 8 Pd+ l l s Pd . 

The mass parameters Bjy calculated as functions of r\ for various values of the 

fragment separation R are presented in figs. 4 and 5. The oscillations of the values 

of mass parameters which are seen in figs. 4 and 5 are the consequences of the 

nuclear shell structure. The values of Bm and Bvl, increase with increasing JJ. In the 
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asymptotic limit when R —» oo, the components of inertia tensor go to: BR„ —> 0 

BRU 0, B„, со, ft. oo and # я я —> fi. The influence of the intrinsic 

degrees of freedom on the radial motion becomes visible with decrease of R since 

BRP increases as compared to \i. 

0.5 T1TTTIT M i n i ГГП Г1 I I, 

0.2 

0.1 

Fig.6. Dependences 

of ratios BBV/IJBRRB^ and 

\BRV\I\/BRRBVV on mass asym­

metry ij at various values of frag­

ment separations R = Rj -f- R2 + d 

for the system s eNi+MNi. The 

calculated results at d = —1,0,2 

fm are presented by solid, short 

dashed and long dashed lines, re­

spectively. 
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It is seen that the values of Bm and B„v are not too different. The change 

of collective variables depends on the initial velocities of these modes of motion, 

the values of mass parameters and the corresponding gradients of the potential 

energy surface. So, there is a possibility of a small growth of a neck size during 

the evolution of the dinuclear system. In this case the nuclei forming the dinuciear 

system retain their individual properties 2 0 '2 1) . The results obtained are important 

1 2 
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for the description of the nuclear fusion process because the consideration of the neck 

formation is necessary to investigate the dinuclear system transition to mononucleus. 

0.5 ,i п ii и if 11 n m 11 i | i n r i m ii I I irrviiiiiiiTTiiii, 
1 i aPd+mPd system 
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Fig.7. The same as in fig. 6, but 

for the system u 8 P d + , l 8 P d . 

5.0 0.2 0 4 0.6 0.8 1.0 

For the symmetric configurations the coupling between R— and 17— modes of 

motion vanishes. However, the value of the ratio Вщ/J'ВнцВт (figs.6,7) increases 

significantly with increasing mass asymmetry 4 and can approach to 0.4 in the limit 

т) -* 1. This behavior of BR^ in in agreement with the results of refs. 23>24). The 

condition Влч <S JBRRB^ is not correct for strongly asymmetric dinuclear systems 

and the nondiagonal components of the inertia tensor should be taken into account. 

The coupling between R— and 17— modes of motion can be the reason of the enhanced 

yield of light particles in fusion-type reactions observed in the experiments 2°.21.M). 
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The role of the coupling between R— and v—modes of motion is considerable as 

well (figs.6,7). So, all components of inertia tensor are necessary to describe the 

evolution of asymmetric umuclear system. 

5. Summary 

On the basis of approach suggested above the general expressions for the diagonal 

and nondiagonal components of inertia tensor, describing a dinuclear system formed 

in the dissipative heavy ion collisions, have been obtained. The derivation is based 

on the nuclear Hamiltonian of a general form. The results obtained confirm the con­

clusion of refs. 21-22) that the nondiagonal component of inertia tensor connecting 

R— and rj— modes of motion is small for almost symmetric configurations but it 

increases strongly if mass asymmetry increases. Thus, it is important to take into 

account the nondiagonal matrix elements of the inertia tensor to consider dynamics 

of the strongly asymmetric systems. However, for almost symmetric configurations 

the condition BR,, <S у/ВццВт is justified ''). The results of this paper can be 

useful in the consideration of nuclear fusion process. 
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Адамян Г.Г., Антоненко Н.В., Джолос Р.В. Е4-93-324 
Массовые параметры для двойной ядерной системы 

Предложен микроскопический метод для получения диагональных и 
недиагональных компонент тензора инерции для двойной ядерной систе­
мы. Анализируется связь мод движения для различных значений массовой 
асимметрии и межцентрового расстояния. Вводится определение парамет­
ра шейки. Показано, что связь радиальной и масс-асимметричной мод 
движения мала для систем,близких к симметричной конфигурации. Эта 
связь значительно возрастает в сильно асимметричных конфигурациях. 

Работа выполнена в Лаборатории теоретической физики ОИЯИ. 
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Adamian G.G., Antonenko N.V., Jolos R.V. E4-93-324 
Mass Parameters for Dinuclear System 

A microscopical method is proposed to derive the diagonal and nondiagonal 
components of the inertia tensor for a dinuclear system. The coupling between 
different modes of motion for various configurations and fragment separations 
is analyzed. The definition of a neck parameter for the dinuclear system is 
proposed. It is shown that the coupling of the radial and mass asymmetry modes 
is weak for almost symmetric configuration but it enhances significantly as the 
asymmetry increases. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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