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1. Introduction

The most important degrees of freedom which are necessary to describe the
interaction of two nuclei are the distance between the centers of colliding nuclei R,
mass asymmetry degree of freedom 5 = (A; — A;)/A (A; and A, are mass numbers
of nuclei, A = A; + A2) and a neck radius or other characteristic of a neck 1~%).
Therefore, the Hamiltonian of dinuclear system should depend on these dynamical
variables. The important ingredient of the Hamiltonian is an inertia tensor. There
are different approaches to calculate its value. These approaches mainly use the
cranking expression and perform calculations in different single particle basis. In
refs. 2-4) the calculations have been done using adiabatic two-center shell model
basis. The approach based on the dissipative diabatic dynamics has been realized in
78 by exploiting the diabatic two-center shell model. In refs. ®'2) the inertia tensor
has been found in the framework of the linear response theory using quasi-adiabatic
two-center basis. Inertia tensor obtained in terms of the adiabatic representation is
given in refs, 2715,

The values of mass parameters and their dependence on dynamical variables
considerably influence dynamics of the dinuclear system. For instance, in refs. !1:1%)
it was shown that the nondiagonal component of the inertia tensor describing the
motion in the R — 5 plane increases significantly with increase of mass asymmetry.
Due to the coupling of R~ and n— modes of motion the part of the kinetic energy
of 7—mode transforms into the kinetic energy of the radial motion and system
approaches to the radial potential barrier with the increase of 7. As a consequence,
the stability of the dinuclear system for large mass asymmetry decreases and the
production of light isotopes increases.

The nondiagonal component of inertia tensor plays an important role in the
evolution of the dinuclear system . However, its dependence on various dynamical
variables makes the computations very cumbersome. To obtain the results in a
simpler way, we develop in this paper a simple and mainly analytical method to find
the components of the mass tensor for a dinuclear system.

The paper is organized as follows. In sect. 2 we obtain the general form for
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inertia tensor and discuss some useful relations. In sect. 3 the definition of neck
is introduced. The simple analytical expressions are obtained to calculate mass
parameters both macroscopically and microscopically. The results of calculations

are presented in sect. 4.

2. Inertia tensor

It can be shown 617) that the nuclear Hamiltonian of the general type with the

two-body forces
K + s N
= o [ & VHHEOVHE) + [ drde wHEElr - WHERE), ()
where 1, ¢ are nucleon field operators, can be expressed in terms of current
. ih
i) = =5 (¥ (O)V(r) - V*()(r) 2)
and density
p(r) = ¥¥(r)y(r) 3)
operators as given below:
H=2 [ i) @)itr) + .. @

The omitted term depends only on p and is not necessary for the following consid-

erations. Operators p and j satisfy the commutation relation '¢)
or ik ’
[o(r),3(x)} = = —Ve(é(r — r')p(r)) (8)
and the current operator has the following functional representation

0= 29 () - ©)

Using eqs. (4)—(6) we can represent the kinetic energy part T of the total Hamilto-

nian in terms of the functional derivatives of p

T g [ (”"’6;» r)) G (”( )6p(r)) @



In what follows, we shall use the expression (7) to derive the inertia tensor for the
collective motion of two-center system. We assume that the density p depends on

some number of collective variables ¢, which are defined by the relations

9, = [ droirlgy(r), (®)

where y,(r) are functions required to derive ¢;. Then, with the expression for the

functional derivative as given below

é J
oe) z}:ﬂ;(r)a—% (9)

we obtain the kinetic energy terin as:

hZ
T = ik / dr p(r)Vg;(r)Vg;e (r)
a
*._ .—(B_l) g (10
2 g aq, " 8q, )
It is evident from (10) that the components of inverse inertia tensor are:
_ !
(B7),y = — [ dr plr] Vg,(F)Vay(r). (11)
Using the density of the dinuclear system
Ai+Az
Ar) =< 0] 3 8(r—rg)0 >,
k=1
we can rewrite the formula (11) in the following way:
_ 1
(B™)p = < 013" Vigi(rk) Vig, (ri)[0 > . (12a)
k
If the nucleon-nucleon forces are velocity independent then
_ 1
(B = 7z < Ollaj, [, ;1110 > (12b)
< al{, q;]|0 >< 0|[{f, q,][n >
12¢
h? 'g E,, . Fn ( )
=37 Z(Eo ~ E.) < nlg;|0 >< Olg;|n >, (12d)

n#£0



where |0 > and |n > are the ground and excited states of the dinuclear system with

corresponding energies £y and £,. Since

] 1 i
—=——= BislH gp} =13 By (13)
3, 7z = 11 &) k i 3595
and
> Bii(B™ Y = & (14)

e

we can obtain from (10) the well known expression for the collective kinetic energy
1 ..
T = ‘T_)_ Z B:ij"l:“lj'~
7]

Usually, the inertia tensor Bjj- is calculated with the help of cranking expression

< n|d/0g;{0 >< 0[8/3q;[n >
n#0 n

using the two-center shell model basis.

To demonstrate the equivalence of the inertia tensor in (11,12) and the crank-
ing expression (15), we insert (13) into (15) and. using (12c), obtain the following
relation

By =3_ B3 By, j(B™"),u5 (16)
nxn
which is satisfied identically because of (14).

From eq. (16) we can express matrix elements B;;s in terms of matrix elements
(B71),; and vice versa. For example, if the relative distance between the fragment
centers R and mass asymmetry parametef n are taken as the collective variables,

then, all the components of inertia tensor are:

= (B_l)nn
Pan = (B=Y)ym(B-1)ar ~ [(B~")ro?’ (17a)
= (B')rr
B = B BVhmn ~ (B I (17b)
BRn = (B‘I)Rn (17c)
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For (B~1)g, to be small, above components (17) can be expressed as:

1 1 (B g
Bap® o——, By~ ———, Bpynv———— B
RR™ (B-N)rr (B B T (B ) s(B )rr

The solution of eq. (16) as given by egs. (17), leads to the following useful relations:

Bnn(Bﬁl )vm = BRR(B_l)RR,

(B_I)Rn BRRBnn —1
Bp, =—-B =— / (B
fin AR (B1)an (B_I)RR(B_I)M\ e

RR B,
— = BprByy — — 2,
(B g O™ T (B )ra

BRo(B™" )Ry + Bun(B ™" )n = Bra(B™" )Ry + BrRr(B™" )RR = 1,

szln = BRRBﬂn -

[BrmBRR - B}inl[(B—l)'m(B—l)RR - (B—l)i?n] = ]?
B2, < BuyBrn,

(B_l)?in < (B-l)rm(B_l)RR-

3. Macroscopic and microscopic considerations

Let us firstly consider as collective variables the relative distance R between the
fragment centers and the mass asymmetry parameter 7. For well separated frag-
ments we get the usual definitions of R and 7 if we substitute in (8) the expressions

for gr and g, defined by the equations:

dor _ 0(z) _ 6(=2) (18a)

dz Al Ag !
g = 5(0(2) — 0(2)) (18b)

Here z is the axis connecting fragment centers and @ is the step function. The z =0

is the point where the densities of nuclei are equal to each other. From (182) it

ems (22959, -

Fragment mass numbers are defined by the relation as given below:

follows that:

Apy = / dr p(c)B(£2). (192)
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We generalize the definitions (18a,b) by introducing a function @ instead of @ to take
into account the mutual interpenetration of nucleons belonging to the overlapping

nuclei. This function & is defined in the following way

0(z) = % (1+ef(2)) (20)

where @ is the small interval over which the value of 8 jumps from zero to one.
(Function 0 is schematically depicted in fig.1.). In thelimit a — 0, @ — 0. Physically
interval a amounts to the diffusion of nucleon density distribution in nucleus. The

norm of @ is defined as in eq. (19a)
Ay = / dr p(r)(+z). (19b)

Substituting (18a,b) with @ instead of @ into (11) and using (19b) we obtain
1 1
-1 _
(B )RR - mA1 + TnAz

z)—0*(z f(—z) — 0¥ (—=z f(z)0(—
Ly s (0() AL G R )+20(2fﬁ,22))-<2°)

Since (#(4z) — 0%(+z)) and 0(z)0(—z) are always positive, it is obvious from (21).
that Brk decreases as the overlapping of interacting nuclei increases. For the well
separated fragments we obtain a reduced mass p = mA;A4,/A for two interacting
nuclei.

Taking into account (20), the approximate value of eq. (21) is

a1 A (A4 AN
(Bra= o (1 4A1A2/d”’ ")e"p( b2>> (222)



where §® = ra?/4 which demonstrates that valucs of b and a are close.

The integral which appears in (22a) can be interpreted as the number of particles

in the neck between two fragments Apeqx:

.2
Avects = /drp(r)exp (—L—I) . (23)
We obtain the other components of inverse inertia tensor as
1 Aneck

B Yy = —m 22b
(B™ ) = 5 e b7 A2 (22b)

1y, _ b Avek A2 — Ay
(B = m 2/xb AAA; (22¢)

and

IBRnl — I(B_I)Rnl :\/__l_ Apeck
VBrnBm  \JB)ar(B 1)V V27 AlMiAs = Aducai]4)

(A1 — Az). (22d)

Here A; > A,. Asitis seen from (22c,d) the nondiagonal component of inertia tensor
Bp, is very small for almost symmetric configurations but increases significantly if
the mass asymmetry parameter 1 increases.

It is convenient to introduce a degree of freedomn ¢ connected with the neck as
the ratio of the number of particles in the neck A, to the total number of particles

in the system A:

v= Ancck/A- (24)

In the same way as above we obtain

1 Apeck
-1 - nec .
I (25a)
- b Aueak
t — o neek D)
(B )RU m \/7_rb/11/12' (.‘Sb)
IBRU' - ﬁ AAnzck (‘)5 )
VBRRBuu L) AIAZ—AAnzck/‘l. e

Substituting in (23} an expression for p in the second quantized form and using
the resvlts of microscopic calculations for the nucleon occupation numbers %) we
can find Apecx and, therefore, the components of mass tensor microscopically. Since

we are interested in the description of the dinuclear system in the nonequilibrium
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stage we shall use as a basis the single particle wave functions of the noninteracting
nuclei i.e. projectile (1) and target (¢2). Thus, taking into account the small

oveclapping of the colliding nuclei, p can be written as

p(r) = Y wilr)er(rlefar + 3 wi(r)px(r)afay

1,1’ 2,2
+ Y (eir)ea(r)ataz + hoc.).
1.2

Assuming the chaoticity of the phases of the nondiagonal matrix elements of p and
neglecting their contribution we obtain from (26)

<0p(r)0 >= Y~ niler(r)],
k€1,2

where n; are the Fermi occupation numbers. Ultimately, eq. (23) becomes:
22
Aneck = Z nk/dr exp (_b_?) [ex(r)]? (26)
ke12

Because of the approximations used to derive the components of inverse inertia
tensor the influence of the interacting nuclei shell structure on the value of Bjj: is
only partly taken into account. This influence manifests through the microscopical
definitions of A, In the consistent microscopical calculation we should use di-
rectly the cranking expression to determine the inertia tensor. Thus, use of (17),
(22), (25) and (27) in numerical calculations allows us to obtain the smoothed parts
of the elements of inertia tensor. Hcwever, the obtained results give possibility
to elucidate the values of mass parameters and its dependences on the collective

variables.

4. Results of calculations

To illustrate the results of the previous sections we have considered the systems
58Ni+58Ni—11®Ba and 'lsPd-{-"‘sPd—’”‘U. The components of the inertia tensor
are calculated exploiting the expressions (17), (22), (25) and (27). Using the single
particle wave functions of harmonic oscillator in the cylindrical represeniation, the

matrix elements in (27) can be obtained analytically. For the frequency parameter



of the harmonic oscillator wave functions we have taken the value %) v = (0.9A4Y/3+
0.7)7! fm~? which reproduces the systematics of nuclear radii. We have used b = 0.8
fm in our calculations. The dependences of Apeck onnat R=F + Ro+d (B2 =
1.15A:(23 fm are the nuclear radii and d = —1,0, 2 fm) are presented in figs. 2 and 3.
It is seen that the nucleon number in neck decreases with increasing #. The values
of Aneck are larger at smaller R i.e. Apeck is proportional to the overlapping volume

of nuclei in contact.
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The mass parameters B;; calculated as functions of 7 for various values of the
fragment separation R are presented in figs. 4 and 5. The oscillations of the values
of mass parameters which are seen in figs. 4 and 5 are the consequences of the

nuclear shell structure. The values of By, and B,,, increase with increasing 5. In the
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asymptotic limit when R — oo, the components of inertia tensor go to: Bg, — 0,

Br, — 0, By, — 00, By, — oc and Brr — p. The influence of the intrinsic

degrees of freedom on the radial motion becomes visible with decrease of R since

Brr increases as compared to p.
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spectively.

It is seen that the values of By, and B,, are not too different. The change

of collective variables depends on the initial velocities of these modes of motion,

the values of mass parameters and the corresponding gradients of the potential

energy surface. So, there is a possibility of a small growth of a neck size during

the evolution of the dinuclear system. In this case the nuclei forming the dinuciear

system retain their individual properties 2°2!). The results obtained are important
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for the description of the nuclear fusion process because the consideration of the neck
formation is necessary to investigate the dinuclear system transition to mononucleus.
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For the symmetric configurations the coupling between R— and p— modes of
motion vanishes. However, the value of the ratio Bpg,/ \/m (figs.6,7) increases
significantly with increasing mass asymmetry 5 and can approach to 0.4 in the limit
7 — 1. This behavior of Bg, is in agreement with the results of refs. ). The
condition Bry, < y/BrrByy is not correct for strongly asymmetric dinuclear systems
and the nondiagonal components of the inertia tensor should be taken into account.
The coupling between R— and n— modes of motion can be the reason of the enhanced

yield of light particles in fusion-type 1eactions observed in the experiments 202!:24),
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The role of the coupling between R— and v—modes of motion is considerable as
well (figs.6,7). So, all components of inertia tensor are necessary to describe the .

evolution of asymmetric ainuclear system.

5. Summary

On the basis of approach suggested above the general expressions for the diagonal
and nondiagonal components of inertia tensor, describing a dinuclear system formed
in the dissipative heavy ion collisions, have been obtained. The derivation is based
on the nuclear Hamiltonian of a general form. The results obtained confirm the con-

. clusion of refs. ?!"?2) that the nondiagonal component of inertia tensor connecting
R— and 5— modes of motion is small for almost symmetric configurations but it
increases strongly if mass asymmetry increases. Thus, it is important to take into
account the nondiagonal matrix elements of the inertia tensor to consider dynamics
of the strongly asymmetric systems. However, for almost, symmetric configurations
the condition Br, < /BrrB., is justified 7). The results of this paper can be

useful in the consideration of nuclear {fusion process.
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Anamsan I''T., Awronenko H.B., IIxonoc P.B. E4-93-324
MaccoBne napaMeTph Ans ABOHHOM SAEPHOM CHCTEME

IMpennoxen MHKPOCKOMHYECKHIt METON /1S MOJYHEHHA JHATOHA/IBHEX H
HEAMArOHANHGHHX KOMIIOHEHT TEH30Pa MHEPLHY JUId ABOMHOMN SRepHOM CHCTE-
MBl. AHANN3MPYeTCd CBA3b MO ABMIXCHHS J/19 PA3JIHYHKX 3HAYEHNUH MacCoBOM
ACHMMETPHH H MEXLICHTPOBOIO paccTosHus. BBoauTcs onpeneseHne napamer-
pa meitku. Tloxasano, YTO CBS3b pagMaibHON M MACC-aCHMMETPHUHON MO
ABHXEHHS MAJIA AAA CHCTEM,0IM3KUX K CHMMETPHYHON KoH(urypanmu. 3ta
CBS3b 3H2YHTE/IBHO BO3DACTAET B CHIBHO aCHMMMETPHUYHHX KOHDHrypaunsx.

PaGora Bunonnena B JlaGopartopun Teoperrueckoit hpuzuxu OUAU.

TNpenpunt OGLEAMHEHHONO MHCTUTYTA SACPHBIX uccaegosasinit. ybua, 1993

Adamian G.G., Antonenko N.V., Jolos R.V. E4-93-324
Mass Parameters for Dinuclear System

A microscopical method is proposed to derive the diagonal and nondiagonal
components of the inertia tensor for a dinuclear system. The coupling between
different modes of motion for various configurations and fragment separations
is analyzed. The definition of a neck parameter for the dinuclear system is
proposed. It is shown that the coupling of the radial and mass asymmetry modes
is weak for almost symmeltric configuration but it enhances significantly as the
asymmetry increases.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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