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AN IMPROVED CHOICE OF OSCILLATOR BASIS FOR BANANA SHAPED NL'CLIDES
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Abstract: The question of the appropriate choice of oscillator basis

functions for studying exotic nuclear shapes is raised. Difficulties

with the conventional choice of oscillator basis states are noted for

shapes having a large banana component. A prescription for an improved

oscillator basis to study these shapes is given. It can be applied in

a more general context. New calculations with this improved basis are

presented for the banana deformation mode. The change of basis gives

results that improve the prospects of finding states in the banana

minimum for r.ar.y isotopes of 1Z. Fb and Bi.

Recently, we have found [1] that extending the deformation space used in

cranked Strutinsky calculations to include banana (Y|{0,^)) deformations, gives

new minima that are, in many cases, lower than the minima that have been

predicted [2] and found [3] for high-spin axially symmetric superdeformed

states in nuclides near A=190. Our motivation for the study of exotic

deformation modes comes from the observation [4] of superdeformsd bands in

nuclides such as i53Pb. Our calculations suggest that they should be far above

yrast at 1=40, where the superdeformed bands are being populated. There have

been predictions [5,6,7] of axially symmetric superdeformed states at 1=0 for

these nuclides and the existence of such states at 1=0 remains an interesting.

open question.
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The banana minima are characterized by shapes with moderate values of the

quadrupole deformation parameter and fairly large values of the banar.a

deformation parameter. The states in this minima; were round to have large

moments of inertia and very large quadrupole moments; ~50Z larger than the

quadrupole moments that were measured [3] for the high-spin axially symmetric

superdeformed states of this mass region. Although these large quadrupole

moments are surprising because the quadrupole term in the shape expansion is

not large, we can calculate them in two independent ways: (1) microscopically,

by summing single-particle quadrupole moments; (2) macroscopically, by

calculating a quadrupole moment from the moments <x|> of the liquid drop shape.

Specifically, we found that at the banana minimum, the quadrupole term of the

shape expansion was typically J/2=0.35, but the calculated quadrupole moment is

the same as that of a pure quadrupole shape with 1/2S0.8. This large difference

in quadrupole moments should make one wonder about the adequacy of a

conventional choice of oscillator basis functions; i.e. oscillator basis

functions having the same deformation as the quadrupole term in the shape

expansion. We have explored this point and find that, for large banana

deformations, the energies of single-particle states near the fermi level

converge slowly with increasing shell number and one must diagonalize arrays

that are "1500 X 1500 to get stable energy level differences using the

conventional choice of an oscillator basis. This is impractical for detailed

studies of energy surfaces. One might hope that a better choice of oscillator

basis would allow the use of smaller matrices to get. reliable results. As the

study of nuclear energy surfaces is extended to larger and more exotic

deformation spaces in the future, the need for a better choice of oscillator

basis functions will become a pressing issue. This need is particularly great

for Y$(0,^) deformations with cranking about the Y-axis, which is the preferred
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axis for cranking. In this case, all symmetries are broken and the matrices to

be diagonalized are not decomposable.

We denote the quadrupole deformation of the shape expansion as H'z^s a n d

that of the oscillator basis as (i^b* The deformation parameters VT. have been

defined [6] previously. Rather than increasing the basis space as discussed

above, we here investigate the choice of basis. The need to use a large basis

for large Y|(0,^) deformations is analogous to the need to use a large

spherical basis for the description of defonned quadrupole shapes. If,

however, the deformation of the basis is chosen such that {vtf^iVi:s, the size

of the basis needed for a calculation involving purely quadrupole shapes is

essentially independent of the deformation. Similarly by making systematic

variations in (l^b' f° r nuclei with large Y\{B,j) deformations, we find that

one can get large improvements in the calculated single particle spectrum. «"e

find that a near optimum choice comes from equating the sum of the three

moments <xf> of the actual shape that we are studying, to those of an

equivalent axially symmetric quadrupole shape. We then use this quadrupole

shape to define the magnitude of the basis deformation; i.e. we set

<R2>b= <R
2>S (l)

where <R2>S denotes the sum of the three moments for the shape of interest.

Using units such that <x|>=l for a spherical shape, we note that for a purely

quadrupole shape

<x?> = (Wir
2 (2)

with

= exp((4/3}*2 cos(7 + (i-l)120*)) (3)



setting i»l for the 2 direction; i*2 for the X direction; and i*3 for the Y

direction. For the more general shapes of interest here, the three moments are

obtained numerically. From these equations, we determine only the quadrupole

deformation of the basis, v^- The quantity <R2> is weakly dependent on 7, and

we set 7 equal to zero in eq. (3), for purposes of approximating (J^b-

However, in the case of the Y}(9,f} deformation, there is no cylindrical

symmetry and we can further improve the basis with a choice of 7/0. Ve

determine an effective value of 7 for each of the three directions, using eqs.

(2) and (3) with the now determined value of (V2)b> an<* t*ie v a i u e s °* <xf>s.

There is an ambiguity in the sign of 7 as calculated from eq. {3) for the Z

direction. We chcose this sign to be positive for shapes with ^Y ^ > 0 ^ ^ and

negative for <X2^ > 0?2X When the two are equal, we set fz"0. Ve then choose

(7) for the basis as the average of the values that we get for the three

directions. The procedure can be iterated for values of 75 near 60", now using

the value of 7*5, and redetermining (Ĵ Jb* TIlis prescription gives a. good

choice for 7 for several cases in which we have examined the dependence of

eigenvalues on the choice of 7. We note that 7 is fairly large {~ -15°) for

1/31*0.525 and the advantages of using a cartesian oscillator basis are

substantial. As we are using a cartesian oscillator basis, we could simply

define three independent oscillator frequencies for the three directions,

without recourse to a single value of 7. However, we find that for a given

basis size, using the average value of 7, gives better energies than the use of

three independent frequencies.

It is interesting to see if the insight that we get from banana shapes on

(l/2)b applies for conventional shapes. We have carried out energy level

calculations for a shape characterized by ^2*1 • and ^•O.l. The sun of the

moments for this shape is the same as that cf a pure quadrupole shape with
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l/2s0.75. Usii.g an extremely truncated basis set. we indeed find that the

calculated eigenvalues are minimized for (V2)b=c-75- However, using basis sets

of the size normally used in Woods-Saxon calculations, the calculated energy

levels are essentially the same for (l^b"1*0 a s ^or (J^b*0-75-

Using our prescription for the oscillator basis, we have recalculated the

shell corrections for u^i values of 0.375, 0.450 anr' 0.525. The details of the

calculation have been described [1] previously. The largest effects show up

for 1/33̂ =0.525, where the large negative shell corrections obtained previously

are reduced considerably. We can understand this as arising from the fact that

the conventional basis choice has 2 poor overlap with the eigenstates and the

level density near the fenni level calculated with this basis is too low.

Using our prescription increases (z^b by ~+0.6 relative to the conventional

choice for i/3asr0.525. The changes in the shell corrections are moderate for

^31=0.45. The major effect is that the typical banana minimum is shifted from

(i^s3*0-35 t o (^s3*0-30- F o r ^31*0.375, the changes in energy levels and

shell corrections are fairly small. For yet smaller values of 1*31. we note

that the change in (̂ b̂ relative to the standard choice depends quadratically

on V31, and the mismatch between the shape and the basis choice does not give

rise to significant effects for values of v$i of 0.3 or lower for (i^s values

near the banana minimum.

This decrease in shell corrections for 1/31=0.525 has the rather beneficial

effect of shifting the banana minimum in many isotopes of Pb and Si from

^31=0.525 to the value of v$i=Q. 45. The increase in total energy for the

largest values of 1/3̂  indicates that there is a barrier to fission going via

this mode. With the shifts in the values of the deformation parameters at the

banana minimum, the quadrupole moments and moments of inertia of bands in the

banana minimum are now calculated to be somewhat smaller than previously in the
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lighter isotopes of T£.. Pb and Bi. For a typical deformation

^31=0.45). the calculated quadrupole moments are M302 larger than those

obtained for the axially symmetric superdeformed states in this mass region;

rather than ~50Z as found previously with the conventional choice of (J^'b-

In fig. 1. we display the well depth of the banana minimum at 1*30. This

is the barrier between the banana minimum and axially symmetric shapes. Ve

also show the values of u% and v^l a t tne banana minimum. Apart from the heavy

Bi isotopes, the minimum in the energy occurs for values of l/^x less than

0.525.

In fig. 2, we show the excitation of the banana minimum relative to the

prolate axially symmetric minimum at 1=40, which is typically the angular

momentum brought: into the compound nucleus in the heavy ion reactions used to

study this region. Note that for most isotopes with neutron number N i 115,

the banana minimum is quite excited relative to the prolate minimum and it is

hard to envisage the population of such states. We also show in this figure

static moments of inertia at 1=35, calculated without pairing.

In figs. (3) and (4), we show single particle neutron and proton level

schemes as a function of rotational frequency.

In fig. (5), we show the neutron alignments <Jy> for neutron numbers

between 106 and 119; in fig. (6), we show the proton alignments for proton

numbers between 77 and 84. There are very few orbitals with alignments greater

than 1, even at 1=50. The changes in the single-particle alignments are rather

small etween 1=20 and 1=35, typically less than O.ln.

In table 1, we give the properties of those nuclides that look most

promising for experimental investigation. ABnin *s t^ie difference in energy

between the axially symmetric superdeformed minimum and the banana minimum. A

negative value means that the banana minimum is the lower of the two. We note
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that for the Hg isotopes the banana and axially symmetric super deforced minima

are rather close in energy for H > 110, and sight mix.

In searching for rotational bands associated with banana minima, it is

important to note that both the pairing correlation energy and the moments sf

inertia are larger for configurations in the banana minimus: than for those

having axially symmetric superdeformed shapes. This means that the effects of

pairing are more important in determining both the static and dyr.aiaic acmenzs

of inertia of banana shapes than for axially symmetric superdeforaed shapes.

We can estimate moments of inertia with pairing using the approach of ref. [9].

For this estimate, we have carried out a cranked Strutinsky calculation about

the Y-axis, for the deformation l>2=0*30« tV«-0.02, and ^32*3.45. For 192Hg,

this gives a static moment of 95 A2 (MeV)"1 at low spins, increasing to - 120

at 1*40. We get a dynamic moment of ~ 100 n2 (MeV)"1 at I»ID, increasing to

~140 at 1=30. Above 1*30, the dynamic moment continues to increase attaining

values of ~160 at 1=50. As the alignments of individual orbitals are small,

these estimates are relevant for neighboring nuclides having the same shape. A

more quantitative estimate of the moments of inertia requires an extension of

the variational space to include additional deformation modes and also requires

that the cranking be carried out about the Y-axis for all shapes.

There is a need to investigate the extent to which the properties of bands

in the banana minimum are modified by the inclusion of additional multipoles in

the deformation space. This task will be expedited by utilizing the choice of

oscillator basis given in this work.

It is a pleasure to thank I. Hamaaioto and S. Landowne far helpful

discussions on this problem. The calculations reported here were carried ant

on the NERSC Cray computer facility at Liveraiore. This research was supported

by the U.S. Department of Energy, Nuclear Physics Division, under contract V-

31-109-ENG-38.
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Table I

z

78 P t

79Au

B0Hg

51T£.

'2pb

N

112

110

111

112

113

108

109

110

111

112

113

114

108

109

110

111

112

113

114

108

109

110

111

112

113

114

115

116

"2

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.35

0.30

0.30

0.30

0.30

0.30

0.35

0.35

0.35

"31

0.450

0.450

0.450

0.450

0.450

0.375

0.450

0.450

0.450

0.450

0.450

0.450

0.375

0.450

0.450

0.450

0.450

0.450

0.450

0.375

0.450

0.450

0.450

0.450

0.450

0.450

0.375

0.375

(E*)40

MeV

-0.9

• 1.6

-1.4

-1.0

-0.5

-1.3

-1.1

-1.2

-0.7

-0.1

0.3

0.9

0.0

0.2

0.1

0.5

0.8

0.5

0.9

-0.4

-0.5

-0.7

-0.1

0.3

-0.2

0.1

0.7

1.1

{W.D.)30

MeV

1.3

1.7

1.5

1.6

1.5

1.4

1-6

1.8

2.1

2.0

1.6

1.3

1.9

1.8

2.3

2.2

2.5

2.3

2.0

2.4

2.4

2.7

2.6

2.9

2.7

2.1

2.1

2.0

A23!in

MeV

-0.9

-1.4

-3.9

-0.7

-0.3

-1.1

-0.9

-1.0

-0.4

-0.1

-0.2

0.1

-1.9

-1.7

-1.8

-1.5

-1.2

-1.2

-1.0

-

-

-2.5

-2.1

-1.8

-1.9

-1.5

-1.5

-1.3

< 1^35

*2(MeV,-l

133

135

138

133

141

125

135

136

139

139

143

142

125

135

137

139

139

143

143

124

132

136

139

143

147

154

147

142



-10-

"Bi 108

109

110

111

112

113

114

115

116

117

0

0

0

0

0

0

0

0

0

0

.25

.30

.30

.30

.30

.30

.35

.35

.35

.35

0.450

0.450

0.450

0.450

0.450

0.450

0.450

0.450

0.525

0.525

-1

-0

-0

0

0

-0

0

0

0

0

.0

.7

.5

.0

.4

.2

.2

.3

.2

.5

2.6

2.6

3.1

3.0

3.4

3.1

2.7

2.4

2.3

2.1

-

-

-2.7

-3.1

-2.2

-2.4

-2.4

-2.1

-1.8

-1.3

190

165

139

141

145

146

1S6

172

196

198
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FIGURE CAPTIONS

Fig. 1 Contours o£ well depth for the banana minimum at 1=30. The letters

represent the deformation parameters. For a given value of Z, all

isotopes not characterized by a deformation have the same deformation as

those with one less neutron. The symbols are: A

-30;U2i"0.375) ; C*{I/2«0.35,tf31«0.375); D = 2

.30,U2i'O.U50); F*(I/2=0.35,V31*0.450) ; G=(V2=0.35,1/^=0.525) ;

and H=(i/2=0.25;^31=0.450)

Fig. 2 Contours of the excitation energy of the banana minimum at 1=40. The

numbers give representative values of the static moments of inertia.

Fig. 3 Neutron Single-Particle Energy as a. function of rotational frequency

<Jy> for deformation parameters l/2*0.30,^4*-0.02 and f3i*D.45O.

Fig. 4 Proton Single-Particle Energy as a function of <Jy>. Deformation

parameters as in fig.(3).

Fig. 5 Neutron Alignments <Jy>; orbitals are characterized by their neutron

number. Deformation parameters as in fig. (3).

Fig. 6 Proton Alignments <Jy>; orbitals are characterized by their proton

number. Deformation Parameters as in fig. (3).
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