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AN IMPROVED CACICE OF OSCILLATOR BASIS FOR BANANA SHAPED NUCLIDES
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Abstract: The guestion of the appropriate cheice of oscillacor basis

functions for studying exotic nuclear shapes is raised. DiZZiculties

with the conventional choice of oscillator basis states are notzd for

shapes having a large banana compenent. A prescripticn for an improved

oscillator basis to s:tudy these shapes is given. It can b2 applied in

a more general context. New calculations with this improved basis are

presented for the banana deformation mode. The change of basis gives

results that improve the prospects of finding states in the banana

minimum for many isotopes of TZ, Pb and Bi.

Recently, we have found [1] that extending the deformation space used in

cranked Strutinsky calculations to include banana (Y}(B,¢)) deformations, gives

new minima that are, in
predicted [2]) and found
states in nuclides near
deformation modes ccmes

nuclides such as 193ph.

many cases, lower than the minima that have been
{3] for high-spin axially symmetric superdeformed
A=190. Our motivation for the study of exotic
from the observation [4] of superdeformed bands in

Cur calculations suggest that they should be far above

yrast at I=40, where the superdeformed bands are being populated. There have

been predictions [S5,6,7) of axially symmetric superdeformed states at I=D for

these nuclides and the existence of such states at I=0 remains an Interesting,

open question.
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The banana minima are characterized by shapes with moderate values of the
quadrupole deformaticn parameter and fairly large values of the banana
deformation parameter. The states in this minimum were found to have large
moments of inertia and very large gquadrupole mements; ~50I larger than the
quadrupole moments that were measured [3] for the high-spin axially symmetric
superdeformed states of this mass region. Although these large guadrupole
moments are surprising because the gquadrupole term in the shape expansion is
not large, we can calculate them in two independent ways: (1) microscopically,
by summing single-particle quadrupole moements; (2) macroscopicalily, by
calculating a quadrupole moment Zrom the moments <x§> of the liguid drop shape.
Specifically, we found that at the banana minimum, the quadrupole term of the
shape expansion was typically Ip=d.35, but the calculated quadrupole moment is
the same as that of a pure quadrupole shape with ¥p%0.8. This large difference
in quadrupole moments should make one wonder about the adeguacy of a
conventional choice of oscillator basis functions; i.e. oscillator basis
functions having the same deforma:tion as the quadrupole tesrm in the shape
expansion. We have explored this point and find that, for large banana
deformations, the energies of single-particle states near the fermi level
converge slowly with increasing shell number and one must diagonalize arrays
that are ~1500 X 1500 to get stable energy level differences using the
conventional choice of an oscillator basis. This is impractical for detailad
studies of energy surfaces. OCne might hope that a better choice of oscillator
basis would allow the use of smaller matrices to ger reliable rasul:ts. As the
study of nuclear energy surfaces is extended to larger and more exntic
deformation spaces in the future, the need for a better choice of oscillator
basis functions will become a prassing issue. This need is pacticularly great

for Y}(0.4) deformations with cranking about the Y-axis, which is the preferrad
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axis for cranking. In this case, all symmetries are broken and the matrices to
be diagonalized are not decomposable.

We denote the quadrupole deformation of the shape expansion as {Jplg and
that of the oscillator basis as (V3)p. The deformation parametsrs Vo have been
defined {8} previously. Rather than increasing the basis spacs as discussed
above, we here investigate the chcice of basis. The need to use a large basis
for large Y}(6,§) deformations is analogous to the need to use a large
spherical basis for the description of deformed quadrupole shapes. IZ,
however, the deformation of the basis is chosen such that (¥)yp={(¥p.g, the size
of the basis needed for a calculation involving purely quadrupcle shapes is
essentially independent of the deformation. Similarly by making systematic
variations in (¥p)p, for nuclei with large Y3(#,$) deformations, we find tha:
one can get large improvements in the calculated single particle spectrum. We
find that 2 near optimum choice comes from equating the sum of the three
moments <x§> of the actual shape that we are studying, to those of an

equivalent axially symmetric quadrupole shape. We then use this gquadrupocle

shape to define the magnitude of the basis deformation; i.e. we set
2\ _ 2
Rop= RO (1)

where <RZ>g denotes the sum of the three moments for the shape of interest.

Using units such that <x§>=1 for a spherical shape, we note that for a purzly
quadrupole shape
&&= )2 2)

with

;)2 = exp((4/3)w, cosly + (i-1)120°)) (3)



setting i=1 for the Z direction; i=2 for the X direction; and i=3 for the Y
direction. For the more general shapes of interest here, the three moments are
obtained numerically. From these equations, we determine only the quadrupole
deformation of the basis, ¥p. The quantity <R2> is weakly dependent on 7, and
we set 7 equal td zerd in eq. (3), for purposes of approximacting {¥2)y.
However, in the case of the Y}(4,$) deformation, there is no cylindrical
symmetry and we can further improve the basis with a choice of 7#0. We
determine an effective value of 7 for each of the three directions, using egs.
(2) and (3) with the now determined value of (¥2)y, and the values of <X§>s.
There is an ambigulty in the sign of 7 as calculated from eg. (3) for the Z
direction. We chcose this sign to be positive for shapes with <{¥2> > {X2> and
negative for <¥2)> > {¥2)>. When the two are equal, we set 7,=0. We then choose
(7) for the basis as the average of the values that we get for the three
directions. The procedure can be iterated for values of 7, near 60°, now using
the value of 7y, and redetermining (V2)p. This prescription gives a good
choice for 7 for several cases in which we have examined the dependence of
eigenvalues on the choice of 7. We note that § is fairly large {~ -15°) for
V21>=0.525 and the advantages of using a cartesian oscillator basis are
substantial. As we are using a cartesian oscillator basis, we could simply
define three independent oscillator frequencies for the three directicms,
without recourse to a single value of 7. However, we find that for a given
basis size, using the average value of 7, gives better energies than the use of
three independant frequencies.

It is intaresting to see if the insight that we get from banana shapes on
(¥2)y applies for conventional shapes. We have carried cut energy level
calculations for a shape ;haracterized by ¥3=1. and ¥y=0.1. The sum of the

moments for this shape is the same as that of a pure quadrupole shape with
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Vy20.75. Using an extremely truncated basis set, we indeed Zind that the
calculated eigenvalues are minimized for (V)p20.75. However, using basis sets
of the size normally used in Woods-Saxon calculations, the calcularad energy
levels are essentially the same for (V3)p=1.0 as for {(¥p)p=D.7S.

Using our prescription for the oscillator basis, we have reacalculated the
shell corrections for I3; values of 0.375, 0.450 anc 0.525. The details of the
calculation have been described [1] previously. The largest efiects show up
for 1v41=0.525, where the large negative shell corrections obtained previously
are reduced considerably. We can understand this as arising from the fact that
the conventional basis choice has z poor overlap with the eigenstatas and the
level density near the fermi level calculated with this basis is too low.

Using our prescription increases (¥p)p by ~+0.6 relative to the conventional
choice for r31=0.525. The changes in the shell corrections are mecderate for
V31=0.45. The major effect is that the typical banana minimum is shifted from
(¥2)5=0.35 to (¥#2)g=0.30. For r31=0.375, the changes in energy levels and
shell corrections are fairly small. For yet smaller values of r3;, we note
that the change in (¥p)y relative to the standard choice depends guadratically
on V31, and the mismatch between the shape and the basis choice does not give
rise to significant effects for values of V33 of 0.3 or lower for (¥p)g values
near the banana minimum.

This decrease in shell corrections for ¥3;=0.525 has the rather beneficial
effect of shifting the banana minimum in many isctopes of Pb and 3i frem
#31=0.525 to the value of Y33=0.45. The increase in total energy for the
largest values of V33 indicates that there is a barrier to fission going via
this mode. With the shifts in the wvalues of the deformation parameters at the
banana minimum, the guadrupole moments and moments of inertia of bands in the

banana minimum are now calculated to be somewhat smaller than previously in the



lighter isotopes of TR, Pb and Bi. For a typical deformartion (¥p=0.30,
¥31=0.45). the calculated quadrupole moments are ~30% larger than those
obtained for the axially symmetric superdeformed states in this mass region;
rather than ~50% as found previously with the conventional choice of (¥p)n.

In fig. 1, we display the well depth of the banana minimum at i=30. This
is the barrier between the banana minimum and axially symmetric shapes. We
also show the values of ¥y and V37 at the banana minimum. Apart fzom the heavy
Bi isotopes, the minimum in the energy occurs for values of V33 less than
0.525.

In fig. 2, we show the excitation of the banana minimum relative to the
prolate axially symmetric minimum at I=40, which is typically the angular
momentum brought into the compound nucleus in the heavy ion reactions used to
study this region. Note that for most isotopes with neutron number N 2 115,
the banana minimum is quite excited relative tu the prolate minimum and it is
hard to envisage the population of such states. We also show in this Figure
static moments of inertia at I=35, calculated without pairing.

In figs. (3) and (4), we show single particle neatron and proton level
schemes as a function of rotational frequency.

In fig. (5), we show the neutron alignments <Jy> for neutron numbers
between 106 and 119; in fig. (6), we show the proton alignments for proton
numbers between 77 and 84. There are very few orbitals with alignments greater
than 1, even at I=50. The changes in the single-particle alignments are rather
small “etween I=20 and I=35, typically less than 0.1%.

In table 1, we give the properties of those nuclides that look most
promising for experimental investigation. AEnj; is the difference in energy
A

between the axially symmetric superdeformed minimum and the banana minimum.

negative value means that the banana minimum is the lower of the two. We note
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that for the Hg isctopes the banana and axially symmetric sucerzdeformed minima
are rather close in energy for N > 110, and amight mix.

In searching for rotational bands asscciated with banana =minima, it is
important to note that both the pairing correlation energy and the moments of
inertia are larger for configurations in the banana miaimum tkan for thoese
having axially symmetric superdeformed shapes. This means tha:t the effzc:s of
pairing are more important in determining both the static and dynamic moments
of inertia of banana shapes than for axially symmetric superdeformed shapes.
We can estimate moments of inertia with pairing using the approach of ref. [9].
For this estimate, we have carried out a cranked Strutinsky calculaticn abcut
the Y-axis, for the deformation Vy=0.30, V4=-0.02, and V31=2.45. For 192ag,
this gives a static moment of 95 A2 (Mev)-l at low spins, increasing to ~ 120
at I=40. We get a dynamic moment of ~ 100 #2 (MeV)~1 at I=iD, increasing to
~140 at I=30. Above I=30, the dynamic moment continues to increase attaining
values of ~160 at I=50. As the alignments of individual orbitals are small,
these estimates arz relevant for neighboring nuclides having the same shape. A
more quantitative estimate of the moments of inertia reguirass an extension of
the variational space to include additicnal deformation modes and also reguires
that the cranking be carried out about the Y-axis for all shapes.

There is a need to investigate the extent to which the properties of bands
in the banana minimum are modified by the inclusion of addirional multipoles in
the deformation space. This task will be expa2dited by utilizing the choice of
oscillator basis given in this work.

It is a pleasure to thank I. Hamamoto and S§. Landowne for helpful
discussions on this problem. The calculations reported here wera carried ont

on the NERSC Cray computer facility at Livermore. This research was supportad
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Table I
pA N vy iy (E*)40 (W.D.)30 AZmip { 1235
MeV MeV MeV Ay (Mev) -1
78pe 112 0.30 0.450 -0.9 1.3 -0.3 133
79u 110 0.30 0.450 -1.6 1.7 -1.4 135
111 0.30 0.450 -1.4 1.5 -3.3 128
112 0.30 0.450 -1.0 1.6 -0.7 138
113 0.30 0.450 -0.5 1.5 -0.3 141
80gg 108 0.30 0.375 -1.3 1.4 -1 125
109 0.30 0.450 -1.1 1.6 -0.9 135S
110 0.30 0.450 -1.2 1.8 -1.0 126
111 0.30 0.450 -0.7 2.1 -0.4 139
112 0.30 0.450 -0.1 2.0 -0.1 139
113 0.30 0.450 0.3 1.6 -0.2 143
114 0.30 0.450 0.9 1.3 0.1 142
81l1e, 108 0.30 0.375 0.0 1.9 -1.9 125
109 0.30 0.450 0.2 1.8 -1.7 135
110 0.30 0.450 0.1 2.3 -1.8 137
111 0.30 0.450 0.5 2.2 -1.5 139
112 0.30 0.450 0.8 2.5 -1.2 139
113 0.30 0.450 0.5 2.3 -1.2 143
114 0.30 0.450 0.9 2.0 -1.0 143
82pp 108 0.35 0.375 -0.4 2.4 - 124
105 0.30 0.450 -0.5 2.4 - 132
110 0.30 0.450 -0.7 2.7 -2.5 136
111 0.30 0.450 -0.1 2.6 -2.1 139
112 0.30 0.450 0.3 2.9 -1.8 143
113 0.30 0.450 -0.2 2.7 -1.9 147
114 0.35 0.450 0.1 2.1 -1.5 153
115 0.35 0.375 0.7 2.1 -1.5 147
116 0.35 0.375 1.1 2.0 -1.3 142
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FIGURE CAPTIONS

Fig. 1 Contours of well depth for the banana minimum at I=30. The letters
represent the deformation parameters. For a given value of 2, all
isotopes not characterized by a deformation have the same deformation as
those with one less neutron. The symbols are: A=(y3=0.25;V41=0.375);
B=(3=0.30;41=0.375); C=(Vp=0.35,031=0.375); D=(V2=0.40,V37=0.375);
E=(Vp=0.30,031=0.450); F=(V=0.35,031=0.450); G=(¥p=0.35,131=0.525);
and H=(V;=0.25;/31=0.450)

Fig. 2 Contours of the excitation energy of the banana minimum at I=40. The
numbers give representative values of the static moments of inertia.

Fig. 3 Neutron Single-Particle Energy as a function of rotational frequency
<Jy> for deformation parameters ¥p=0.30,y;=-0.02 and p31=0.450.

Fig. 4 Proton Single-Particle Energy as a function of <Jy>. Deformation
parameters as in fig.{3).

Fig. 5 Neutron Alignments <Jy>; orbitals are characterized by their neutron
number. Deformation parameters as in fig. (3).

Fig. 6 Proton Alignments <Jy>; orbitals are characterized by their proton

number. Deformation Parameters as in fig. (3).
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