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Much attention has been paid last tiine to giant resonances (GR) in
metal clusters (MC)andtheir  comparison with GR in nuclel (see reviews
[1-3] and refs. thercin). The vibrating potential model (VPM) seems
to be very appropriate for investigation of GR in both these systemns [6-
10].This mode! is convenient for gualitative analysis and simultaneously
provides the RPA accuracy of numerical calculations. The VPM is widely
used in nuclear pliysics [7-10] and has recently been modified for MC [6)].

Investigation of GR is rather complicated for defermed systems. In
nuclear physics the (doubly) stretched coordinate method is used to sim-
plify the task i the case of quadrupole deformation (see. for example,
[10]). But this method is rather complicated for MC (due to adding the
Coulomb term) {11] and is noi. practically, derived for systetns with other
kinds of deformation. In this paper. by using the multipole expansion of
the single-particle potential and electron density we obtain equations of
the VPAI for systems with any kind of deformation.

The VPM equations coincide with equations of the schematic RPA
with separable forces. The strength constant of residual forces is deter-
mined from the self-consistency condition. For the most simple external
field f(r) = r"Y,\,, which corresponds to a divergency free and irrota-
tional (rot7f(r) = divyf(r) = 0) flow we have the secular (dispersion)
equation [6]:
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is the inverse strength constant and
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is the operator of residual interaction. Here, | ¥ > and €, are the single-
particle eigenstate and eigenenergy of the static hamiltonian with a single-
particle potential Vy(r), w; is a root of the equation (1), ng is a static
ground state density. If the second (Coulomb) term is neglected in (3),
we obtain the version of the VPM used for description of isoscalar GR
in nuclei. Thus, equations (1)-(3) can be used to study GR in both MC
and nuclei.

Equations {1)-(3) take place for both spherical and deformed systems.
But in the deformed case they are too general to be convenient for es-
timations and numerical calculations. One can get more appropriate

equations using the multipole expansion of single-particle potential

Vo(r) = Z Z Vim () Yim(D), (4)
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and ground state density

!
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where Y2,(Q) = Yi(Q) +d - YJ"(Q) and the external field is written as
Fiu(r) = r'YL(Q). (6)

If d = +1 and -1, the functions (4)-(6) are hermitian and antihermitian,
respectively. As a result, the hermiticity of the Hamiltonian is assured.
It is clear that any single-particle potential and density distribution are
covered by expressions (4)-(5). So, the generality of the model is not lost.

Omitting tedious mathematical transformations we preseht the final
expressions for the operator (3) and strength constant (2) (for ion distri-

bution the jellium approximation is used):
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Here C,’;,',‘A’“ is the Clebsch-Gordan coefficient. expressions for .\Ii'.,‘), are
given in the Appendix. In the atomic nuclei case only term (8) should be
considered.

In principle, the strength constant H;Ifd can be calculated within meth-
ods of numerical integrating by using expressions (2). (4)-(9). But for
qualitative estimations the analvtical expression for h;“l , can be useful.
This expression has the form
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The coefficients L{),, are given in the Appendix.
For the spherical case (I = m = 0, L = )), expressions (7) and (10)
are very simplified:
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and
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For systems with a large number of particles the direct solving of the

RPA equations takes a considerable computer time. This is especially

true for deformed systems. For investigation of GR in such systems the

strength function method is very useful. Within this method we can

avoid finding roots of the secular equation (1) and get information about
GR through the strength function [12]

b(EAp,w) =Y B(EAp,gr — w)p(w — wi) . (15)
t

with the weight function
1 A
plw —wy) = o (w—w)?+ (Af2)%
Here, B(EMp,gr — wy) is the reduced probability of FAp transition
from the ground state to the one-phonon state with excitation enzrgy wy,
determined from the secular equation (1). The quantity A is an averaging
parameter. Following the prescription [12], where the strength function

(16)

for atomic nuclei is considered in detail, for MC we obtain
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and ptf, is the single-particle element for the operator of EX transition.
If all collective strength is assumed to be concentrated in one peak

(one-pole approximation), we can get the estimation
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where wy, and w( ) are the energy of the collective peak and its unper-
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turbed value, respectlvely Using a spherical jellium approximation for

electron density, the oscillator form for single-particle potential
olr)y=1/2- wir? (20)

and the estimation w( ) = Awp for unperturbed energy, we obtain the

simple expression for excitation energy of EX GR in spherical MC:

-
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where w, is the plasma frequency. This expression exactly reproduces the
estimations for frequencies of E1 and E2 GR, obtained within the sum
rule approach [6,13],.but the A dependence in the second term of (21) is in
contradiction with the ~ (2A+1){A—1) dependence in [13,14] (in {13] also
the spherical jellium approximation for electron density was used). This
discrepancy could be caused by the use for the static potential in (21) of
the oscillator form which is not consistent with the ground state electron
density distribution. This could mean that the oscillator potential can
notbe appropriate for description of GR with large multipolarity.

2A(A-1). (21)




Within the same approxiinations the estimation [6] for the splitting of
E1 GR in spheroidal MC with a quadrupole deformation & is reproduced:

2
Wiar = wp/ V3 (1~ 28), (22)
Wi =wp/V3-(1+4 %6). (23)

Finally, the equations of the VPM [6] are derived to make them suit-
able for description of GR in systems (MC and atomic nuclei) with any
deformation. Any single-particle potentials and electron (nucleon) densi-
ties for which the coefficients of the mudtipole expansion are known can
be used within this model. The RPA calculations within this version of

the VPM are now in progress.
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Appendix

The coeflicients used above have the following formn:
M{},=Ayu-B
ALL = ALt ALl

M3 =1. A4, —(1+1) B,
MY =(+r+L+1)- Au+I-2-L) By,
MO =(+A-L)- A+ =A+L+1)-Byy

where
I+1 X-1 L

Ay = /(14 1)(20 + 3) ( ) ; 1 ) -Cloa-100
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Further,
Litw = Mgy Mypy,
Ly = My - M — M3, - My,
L = ((2A = DML, + MT,) - M),
L(4£11' = (L - ’\)AI,(;,)I’ 4,3,)1') A ﬁ,)l’
LG = (A + L+ )My, + M{D,) - M3,
LGy = My, - (M3 - M)
For spherical systems we have | = m =0, L = A and
Boa = ML) = ML)
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Hecrepenxo B.O. E4-93-338
Monens BHOPHPYIOMEro MOTEHIMAA A1 ONACAHAS FHTAHTCKAX

PE30HAHCOB B RehOPMHPOBAHHHX METAIHUECKHAX KAACTEpax 4

ATOMHEKIX SAPAX

B pamkax Moaead BuSpapyomero NOTEHIMANA NOJYYCHN YPaBHEHAY IS
ONACAHMUSA 'HTAHTCKHX PC3OHAHCOB B METAUVIHYECKHX KJIACTEPAX H 3aTOMHHEX
4pax ¢ npou3BoabHoi aedopManueit (Bmouad caydai opeprueckoit GopMu
cucremnl) . B Mogesn MoryT 6HTh HCNONB30BAHK JHOOKE OAHOYACTHYHEIE NOTEH-
IHAJIH M IVIOTHOCTH 3/IEKTPOHOB (HYKJIOHOB) , I KOTOPHX H3BECTHH KOXpdu-
LHECHTH MYABTHIOABHOIO PA3/IOXEHHS.

Pabora sunonuena B Jlaboparopun reoperaueckoit husnxn OUSH.

Tipenpuut OfbERHHEHHONO MHCTHTYTa SAEPHBIX Mccacosanmii. yGua, 1993

Nesterenko V.0. E4-93-338
Vibrating Potential Model for Giant Resonances in Deformed
Metal Clusters and Nuclei

The equations of the vibrating potential model are derived for description
of giant resonances in metal clusters and atomic auclei with any deformation
(including the spherical form of a system). Any single-particle potentials and
electron (nucleon) densities for which the coefficients of the multipole
expansion are known can be used within this model.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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