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ABSTRACT

We propose the Markovian random walk approach for calculation of the depolarization
function of the polarized neutron beam transmitted through a magnetic medium. This
approach allows one to obtain exact analytical results for the depolarisation function P(A)
which is valid for any wavelength A. Two magnetic configurations were considered in the
present work: random ferromagnetic domains, and staggered ferromagnetic domains.
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1 Introduction

The last 40-50 years in condensed matter physics are characterized by the more in-
creased role of nuclear physics methods as an instrument for scientific investigations.
Together with the nuclear magnetic resonance (NMR)/1/ and the positive muon spin ro-
tation ( / J + SR)/ 2 / , the method of neutron depolarization stood as an attractive tool for
exploring the internal structure of ferro- and antiferromagnetics as well as disordered spin
systems. A base for interpretation of experimental data during long period was served by
the theory of Halpern and Holstein Z3/ developed when there were no sources of polarized
neutrons at all.

Nowadays in the world there are about a dozen of such sources, and the Time-Of-
Flight spectrometers (e.g. in KEK (Japan) IAI and at JINR (Dubna, Russia)^5/) give the
possibility to obtain the spectral dependence in the wavelength window. An actual task
now is to find more refined approaches to calculate the neutron depolarization function
in a magnetically disordered medium for understanding of the interconnection between
the internal magnetic structures of such systems and the various kind of the experimental
depolarization functions. The remarkable steps in this way were several papers using clas-
sical approach^617/, quantum mechanical calculations of the neutron scattering process^8/,
and Gaussian two- momentum approximation/9/.

Let us introduce briefly the neutron depolarization process in magnetic materials. The
neutron is a particle possessing magnetic moment. When polarized neutron beam goes
through magnetic material it changes its initial polarization due to magnetic interactions.
This interaction can be treated in classical way for cold neutrons with typical wavelengths
of the order 1 — lOA, passing through magnetic regions with typical sizes > 104A. This is
the case of polydomain ferromagnetics. To get an information about fields in the domains,
their mutual orientation, sizes, etc. one has to analyze the wavelength dependence of
the neutron polarization. Varying the wavelength actually corresponds to the change in
dynamics of the magnetic fields seen by the neutron, leading to different regimes of the
depolarization process. One can distinguish two important cases: (i) fast dynamics of
the magnetic fields corresponding to the small wavelengths X{6) H <C C, where (6) is
the mean domain size and H is the RMS value of the magnetic field on the neutron, C
- is a physical constant; and (ii) slow dynamics corresponding to the large wavelengths
\{6) H ;» C. Another important parameter is the average number of domains N = Lj (8)
along the neutron beam. The form of the depolarization function strongly depends on
the above mentioned conditions and, in addition, it is affected by the mutual domain
orientation and distribution of the magnetization over the sample. The asymptotic values
of the depolarization function were calculated only for a few magnetic configurations in
these extreme cases - fast or slow dynamics, large or small N. The problem is how to
conduct the correct time and configuration average of the neutron moment evolution. The
situation becomes worse when there is some correlation in domain orientation.

We propose the "strong collision" or Markovian random-walk^10/ approach for calcu-
lation of the neutron depolarization, which is widely used in various application of such
experimental techniques as NMR and fiSR. The probe particle's depolarization processes
in all these methods have many similarities. Thus, the positive muon is localized in some
site in the crystal lattice. The evolution of the muon spin in the sample is determined
by the local internal magnetic fields. These fields can be either static or dynamic. The
latter is realized for the muon diffusion or fluctuating magnetic fields on the muon. For



these cases the analytical approaches to were developed to calculate the muon relaxation
function. Notice, that the mechanism of the depolarization of the neutron beam passing
through polydomain sample with static domain magnetic field distribution is very similar
to muon spin depolarization by fluctuating fields. In the neutron frame its moment is af-
fected by the abrupt change of the magnetic field when it goes from one to another domain.
This analogy allows to apply the methods of the calculation of the muon depolarization
functions to the process of neutron beam depolarization.

2 Neutron Depolarization Function in Strong Col-
lision Model

When the neutron beam is passing through the single magnetic domain it is affected by
the static magnetic field. The evolution of its magnetic moment in the field H is given
by the Larmor equation

— = 7nm x H, (1)
at

where 7n is the gyromagnetic ratio of the neutron. It is convenient to write the solution
of (1) in terms of evolution matrix M:

(0), (2)

Ma0 = ^ + {5a0 - ^ ) c o s ( ^ t ) + e ^ s i n ^ t ) , (3)

where u= 7«H. The polarization of the ensemble of neutrons in the magnetic fields with
spectral distribution W(H) is given by the averaged matrix:

gQp{t) = (Ma0) = I MQ0(U, t)W(H)dH. (4)

The neutron polarization given by the matrix ga&{t) corresponds to the case of static
fields on the neutron. In principle, one could imagine this situation for a thin sample
which contains on an average one domain along the beam and many domains in the
perpendicular plane. In reality there are many domains on the neutron path and to get
the depolarization one should perform time averaging of the static depolarization matrix
9a0(t). When the neutron is passing from domain to domain the magnetic field on the
neutron is changed. We will suppose that the field alternations are abrupt and that they
occur like Markovian process. In the considered model the evolution of the magnetic
moment in the domain is taken in the averaged form given by the matrix git). In general,
one can suppose several types of domains configured in such way that the time averaging
of polarization can not be performed independently. Let us assume that there are M
types of domains, and divide the neutron beam over the M subbeams each of them is
ended in the corresponding domains. The total polarization of the beem P(t) will be the
sum of partial subbeam polarizations:

M

(0. (5)

In framework of Markovian random-walk model the partial polarizations Pi(£) are given
by the set of integral equations^10/;



Pi(O = e^ftWAiPCO) + j > * / e"^(|-T)ft(t - r)P*(T)dTt (6)
fc=i °

where ^(t) - is the evolution matrix for ith-type domain, P(0) - is the initial polarization
of the neutron beam, Ai - is a weighted number of zth domain, i/^ - is the rate of
transitions from domain of fc-type to t-type, 14 = DiJLi vki - the full rate of leaving the ith
domain. The matrix t^ is determined by the domains configuration along the neutron
beam and by the average sizes of domains. With help of Laplace transformation the set
of equations (6) is reduced to the algebraic set of linear equations:

M

Pi(s) = 9i(s + Vi)AiP(Q) + £ i/iJfcft(s + Vi)Pk(s), (7)
J f c = l

Solving (7) and performing the inverse Laplace transformation we will get the polarization
at the time t. The final polarization is obtained for the time t = L/v [L - the sample length
along the beam, v - the neutron velocity). The dependence on the neutron wavelength
comes to P(t) via vik matrix. If we assume the domains to be of the same type and the
absence of correlations between them, then the set of equations (7) is reduced to a single
equation and the transition rate v is given by the average domain size {6} and neutron
wavelength A according to the relation v = ^ w > where m - is the mass of the neutron,
h - the Plank constant.

Further we will consider the examples of two different cases : (i) the magnetic field is
changed to a new value which has no correlation with previous one; (ii) there is a strong
correlation between the fields in neighbouring domains.

3 Depolarization Formulas for some Magnetic Con-
figurations

3.1 Random Ferromagnetic Domains

The sample is considered as a set of uncorrelated ferromagnetic domains each of them has
the same module of magnetization with random isotropic directions of magnetization. Let
the initial polarization P(0) is directed along -j-axis. The evolution of the ^-component
of polarization in the domain is given by (^(ij-component of the matrix (4).

1 2
9zz(t)=- + -cos{wt), (8)

where u = 7n / / , and H is the module of the magnetic field in the domains. Since
the magnetization of domains are not correlated, the transition matrix vik is just the
number v = ̂  jkr and (7) is represented by one equation. Having performed the Laplace
transform of (8) and substituting the result into the equation (7) we have the following
^-component of Laplace form of the polarization:

Denominator

P (S) =



Performing the inverse Laplace transformation and expressing the result in term of wave-
lengths, we obtain the depolarization formula:

N(v,-vs + 2) N(Vl -ve-4) [ 2
) + e x p ( ) (

N(Vl -ve-4) [ 2 ]
)+exp( ) (- - Ci)cosa + C2sina| ,

()(10)
where the coefficients are:

v2 = \/l + 3

+3>/Clv(vt + vt) - (l - 2 / V (2 -3 /V)) (vs-

((l - 3/V) Vl vs-

a = 6

with / = A)m\, and /V = ^ - which is the average number of domains along the neutrons
path. The plot of the depolarization formula (10) for several values of ./V is presented in
figure 1.

Usually the limits of a depolarization formula are used. They can be easily obtained
for the polarization P(X) (10) for small wavelength lu —• 0 and it has the following form:

P(X) = exp (-^

In the limit of large wavelengths lu -+ oo the polarization reads:

P(X) = e x p ( - | i V ) ( i + |(cos(Io;A/(Vm))

3.2 Opposite Orientations of the Magnetization in Neighbour-
ing Ferromagnetic Domains

Now we consider the case of strong time correlation of the magnetic fields on the neutron.
Let the sample consist of the domains with the magnetization directed along and against
the x axis in the neighbouring domains along the neutron beam. The initial neutron
polarization P(0) is again along 2-axis. The correlation between the domains is given by
the transition matrix i/i* which has the antisymmetric form:

0



The evolution matrices gi(t) and gi(t) are simply equal to (3) with substitutions OJ=
(±7n//, 0,0), where H is the module of the magnetic field in the domains.

After substitution some transformations and substituting gi(s), g2(s) and vik in (7),
and some transformations we have the following set of linear equations:

/ [I - v2g\{s)g2{s)]Py{s) = ^gi(s)(z + vg2{s)z),

Note that the correlations between domains orientations are clearly seen in noncommu-
tative multiplications of the evolution matrices. Solving the equation (11) we get the
following formula for the Laplace transform of the depolarization function:

And finally after performing the inverse Laplace transform of Pz{s) we have the formula
for the wavelength dependence of the neutron depolarization:

e~N ( ( V ) + ( W w )Vvl l)

where the meaning of the parameter I is the same as in previous section. The limit cases
of formula (13) are

= exp(-^Nu2\262/{h/m)A for Zw — 0,

for lu —> oo.P{X) = exp(-iV) (cos{Lu\/(h/m)) -\

4 Conclusion

The main advantage of this approach, in our opinion, is that in many interesting cases it
gives exact analytical results for the neutron depolarization P(X) which is valid for any
Wavelength. Even when there is no analytical form of P(A), it can be obtained with the
help of well developed numerical procedures for the Laplace transformation which are not
CPU-time-consuming. A relative simplicity of getting the resulting formulas is due to
the definite assumption about domain size distribution. Namely, if one supposes that the
strong collisions take place as the Markovian process then the domain size distribution is
actually chosen in the exponential form. However, taking into account that the domain
size distribution is not usually known we tentatively suggest this method as a quite simple
way to get at least qualitative picture of the internal magnetic field structures.

The calculations of the depolarization functions within the framework of present ap-
proach for more realistic models are in progress.
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Figure Caption

Figure 1. The depolarization of the neutron beam as a function of / = ,jj\ for u = 1.
TV - is the average number of domains along the neutrons path. Solid lines - random
oriented ferromagnetic domains, dashed lines - opposite orientations of the magnetization
in neighbouring ferromagnetic domains.
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