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ABSTRACT

The nonlinear propagation of circularly polarized electromagnetic (CPEM) waves with
relativistically strong amplitude in an unmagnetized cold electron-positron ion plasma is
investigated. The possibility of rinding soliton solutions in such a plasma is explored. In
one- and two-dimensions it is shown that the presence of a small fraction of massive ions
in the plasma leads to stable localized solutions.
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Recently, the nonlinear propagation of electromagnetic waves in electron-positron (e-p)

plasma has attracted considerable attention [lj. These plasmas, found {for example) near

the polar caps of pulsars, in the active galactic nuclei, in the early universe, will always

be created in system whose temperature exceeds twice the electron rest mass (~ 1.2 MeV)

[2]. Propagation of intense short laser pulses in a plasma can also lead to pair production

resulting in a three-component electron-positron-ion (e-p-i) plasma [3j. In fact such three-

component plasmas have been seen in laboratory experiments [4-5] intending to use positrons

as probes to study transport in tokamaks. In addition to several other applications jlike the

pulsar magnetosphere modeling [6]], an investigation of the e-p/e-p-i plasmas is likely to

further our understanding of the early universe [7-8], in particular, of the MeV epoch in

the evolution of the universe; it may, indeed, be possible that a deeper insight into the

behavior of an interacting plasma fluid in this era may provide valuable clues to its later

evolution. A stable localized solution with density excess may, coupled with gravity, create

templates for confining matter and creating inhomogeneities necessary to understand the

observed structure of the visible universe.

The importance of the three-component admixture plasma has ted to several theoretical

investigations. Rizzato [9] studied the localization of weakly nonlinear circularly polarized

electromagnetic [CPEM] waves in a cold plasma made up of electrons, positrons, and ions.

In Ref. [10] the propagation of intense electromagnetic radiation in an admixture of un-

magnetized three-component plasma is investigated analytically, and it is found that such a

plasma may be localized with the generation of a humped ambipolar electrostatic potential,

and that this potential could be used to accelerate charged particles. It is also noted in [10],

that the procedure of series expansion, is not valid for the case when a <?: 1, where a is the

ratio of the unperturbed ion to electron densities.

In this paper we abandon the small amplitude approximation, and study the nonlinear
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propagation of ultrarelativistic intense electromagnetic (EM) waves in a plasma of unmag-

netized electrons, positrons, and massive ions, we aim to find localized stable structures

sustained by this plasma.

The equilibrium state of the three-component system is characterized by an overall charge

neutrality n~ = n* + JV0;, where n~, n+ and JV -̂ are the unperturbed number densities of

the electrons, positrons, and ions, respectively. Due to their relatively large inertia, the

ions do not respond to the dynamics under consideration and just provide a neutralizing

background.

To describe the propagation of electromagnetic waves in such a plasma, we start with

Maxwell equations expressed in terms of the vector (A) , and the scalar (<j>) potentials:

density. In terms of P , the dimensionless quiver velocity is given by

- (1 - a) n
+ V + ) = 0 (1)

and

Atf. = ( n - - (1 - cr) n + - a) . (2)

The system is closed by invoking the hydrodynamic equations consisting of the equation

of motion

(3)

and the continuity equation:

(4)

for each of the mobile components, Equations ( l ) - (4) , written in the gauge V • A = 0, are

ditnensionless with the following normalizations: The time and space variables are measured

in units of the electron plasma frequency uit (= (47rn~e3/me)1 ' '1), and the collisionless skin

depth ( c / u , ) , the vector and scalar potentials are normalized to me<?jt, the relativistic

momentum P to m^c, and n' and n + to their respective equilibrium densities n~ and n+.

The coefficient a = Noi/n~ is the ratio of ion equilibrium density to electron equilibrium

For the one-dimensional propagation [djdz ^ 0, djdx = 0 = d/dy) of a CPEM wave with

a mean frequency wo and a mean wavenumber ka along the i-axis, the vector potential can

be represented as:

A = - (x + iy}A(z,t)exp {ikoz — iu0/} +c.c. (6)

and can be readily shown [through Eq. (3)] to be proportional to the transverse momentum

P± = * A . (7)

Notice that A(z, t) is a slowly varying function of z and (. The longitudinal motion of plasma

is determined by

< £ + | < i + W . + (*,')"• = * £ , (8)
the jr-components of the equations of motion, and the continuity equations rewritten as:

= 0 (9)

where Eq. (7) has been used to eliminate Pf.

It is now convenient to introduce new variables, ( = z~v3t , and T — t , where vg = ka/ui0

is the group velocity of the electromagnetic wave packet, and v9d/d£ > d/dr. The wave

frequency ui0 satisfies the dispersion relation: ŵ  = fc* + (2 - a) implying vg £ 1 for a

transparent plasma for which uia 3> 1 (w0 ~> u>e in the dimensional form). Equations (8)

and (9) are easily integrated to obtain P* and n* assuming that the vector potential tends

to zero at infinity. Substituting the obtained values of P* and n* together with Eq. (6)

into Eqs. (1) and (2), and assuming that w, 3> (1 + |4|2)'/2 [placing an upper limit on the

allowed wave amplitude], we obtain:

("»



and

a y _ i f(i + h
d£2 ~ 2 \ (1 + .

- a)
(11)

Equations (10)—(11) constitute a closed set describing the nonlinear propagation of power-

ful CPEM waves of arbitrary [as long as |A| < uia] amplitude in an unmagnetized, transparent

cold electron-positron-ion plasma. It was shown in Ref. {11] that a pure electron-positron

plasma (a = 0) cannot sustain an electrostatic field 4>. As a result the CPEM waves cannot

be localized in a pure e-p plasma. An investigation of Eq. (11) [12] for a fixed |J4|, however,

reveals that it is possible to create wakefields by a coherent, short electromagnetic wave

packet moving in unmagnetized three component plasmas.

In this paper, we seek a localized solution of the system of Eqs. (10) and (11). We

are interested in the case of small but nonzero a so that we can have a finite 4>- H t n e

characteristic length (L) of the wave satisfies the condition L > (1 + |A|J)~1/2, then from

(11) it follows that

(12)
" - 2 ( 2 - 0

explicitly displaying that ^ is proportional to a, i.e., (j> < 1 for a < 1.

Substituting (12) into (10) and neglecting terms of <t>3 and higher orders, we obtain:

8A (2-a)flM 2 f 1 1 _ 0 (13)
Iiwo -5— + jjTT- + p A 1 — , . . — U , (16)

OT uil at? [ (1 + l-̂ l ) J

where 0 = .5a/(2 — cr)''2 <£ 1. For stationary solitons, the ansatz (A is a constant corre-

sponding to a nonlinear frequency shift)

(14)

reduces Eq. (13) to

with 7 = [wo/3/(2 — a}1/2]^, and fi = X/0. Invoking the boundary conditions appropriate to

a localized solution, i.e., A = 0 = dA/di) as |TJ| —> oo, Eq. (15) can be readily integrated and

allows soliton-like solutions for Hs < 1. There are several ways in which the exact implicit

solution of Eq. (15) can be displayed. The most revealing perhaps, is the form

\v\ = ~ _

For all values of fi2, Eq. (16) can be satisfied at |rj| = 0 if (1 - fis)(l + A(0)2) = 1 leading

to A2(Q) = A^ = fiJ/l — fi2, where the amplitude Am is the maximum value A can attain.

Clearly Am —* 0 as fi —» 0 and Am becomes large as fi —» 1. Remembering that A is

exactly equal to the particle momentum measured in mcc, a large Am corresponds to a.

highly relativistic plasma, the principal regime of interest for this paper.

Let us begin the analysis of Eq. (16) by determining the asymptotic behavior of A, As

long as fi is not extremely close to unity, it is only the second term which can provide the

balance as |^| —» 00. Thus for sufficiently large |IJ|, Eq. (16) leads to the exponentially

decaying solution [for all fi]

(17)

Having demonstrated that we have indeed found localized solutions for all fi, we shall now

derive approximate formulas to describe the main (not the asymptotic) part of the soliton.

Structure of Eq. (16) clearly suggests that in the two limiting cases of interest: fi —• 0

(nonrelativistic) and fi —» 1 (high relativistic), the right-hand side is dominated by the

second and the first-term respectively. Naturally in the nonrelativistic limit, the asymptotic

shape (17), which is the usual soliton solution of the nonlinear Schrodinger equation pertains

for all |IJ|.

The highly retativistic large amplitude wave (fi —> 1, Am 3> 1), is new and considerably

more interesting. Barring the exponentially decaying tail, the main body of the soiiton is

well approximated by

A = Am cos ( £ ) (18)
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and will be termed a 'cosine' soliton. The general shape of the large amplitude soliton

(obtained numerically) is displayed in Fig. 1, and is barely distinguishable from (18) in the

nonasymptotic region. In Fig. 2, we plot the soliton width Lm as a function of Am and find

that, for Am > 1, Lm is linearly .proportional to Am as predicted by (18).

The total plasma density variation associated with the soliton,

6N = Sn+ (19)

is large for A2 » 1; the soli tons with ultrarelativistic amplitudes create large concentrations

of plasma density.

The stability of the soliton solution can be investigated using the well-known stability

criterion of Vakhitov and Kolokolov [13]. According to this criterion the soliton is stable if

dJ
(20)

(21)

(22)

and it is trivial to see that dl/dQ2 = {dl/dA^dA^/ffi2 = (1 -iPydl/dA^ > 0, proving

the stability of the one-dimensional soliton for all ft.

We conclude that it is possible to obtain a large amplitude soliton solution in an unmag-

netized cold plasma consisting of electrons, positrons, and a small fraction of massive ions.

We assert the fact that the presence of even a very small fraction of massive ions is crucial

to the soliton formation; a pure electron-positron plasma cannot sustain this disturbance.

The electromagnetic wave putse with arbitrary amplitude, under certain given conditions,

>0 ,

where I represents the "number of photons"

/ = fdr, A1 .

From a direct integration of the defining equations, one finds

v m / 2

Li/an2 = ( i - s

will always be spread out in a pure electron-positron plasma [11]. The addition of a small

fraction of massive ions, stops the pulses from spreading out; the solitons will emerge from

the modulational interactions of these pulses. We note in passing that such soliton potentials

propagating with vg ~ c, could readily cause acceleration of resonant particles [14].

We now generalize our results by allowing a transverse variation of the fields. If we as-

sume that A depends weakly on the transverse coordinates [A = A(£, x, y,t)], i.e., {3A/d£) ;»

V±A, Eq. (13) can be rewritten with an additional term AL A. Assuming A± A 3> a>~2(d2,4/d£2),

Eq. (13) modifies to

which, with the substitution (14), yields

= 0

(23)

(24)

for the cylindrically symmetric configuration.

We will concentrate on the so-called "ground state solution" [13] of Eq. (25). This solution

is positive, radially symmetric, is monotonically decreasing with increasing r, and satisfies

the boundary conditions {dAjdr), = 0, A(ao) — 0,. It is easy to see that such a solution

exists only if SI2 < 1.

We solve this nonlinear eigenvalue problem numerically. A typical result of numerical

calculations is displayed in Fig. 3, where A is plotted as a function of r. In this example the

eigenvalue t!2 = 0.2881 (-4(0) = Am w 1). In Fig. 4 we present the dependence of ft2 on Am,

the amplitude of the localized solution. The relationship fl2 = Sl2(Am) can be considered as

a type of "nonlinear" dispersion relation. We see that for the ultrarelativistically strong EM

waves (i.e. Am 3> 1), fla -+ 1.

For the ultrarelativistic case, it is also possible to find a nearly analytic solution of

Eq. (24). Indeed, for the region where Am ~> A » 1, the solution of Eq. (24) is simply the



zeroth-order Bessel function:

A = Am-J0(kr) (25)

where k = {1 - f22)1/2. In the asymptotic region, the solution must decay, and Eq. (25) is

solved by the modified Bessel function

•exp(-fir) , (26)

revealing the characteristic exponential decay. The numerical solution of Eq. (25) (solid line)

along with the analytical expression (26) (dashed tine) is displayed in Fig. 5. One can see

that the main part of the solution (which contains most of the EM wave energy) is well

described by the Bessel solution (26), the two-dimensional analog of the "cosine" soliton

[Eq. (18)]. Note that, as in the one-dimensional case, the soliton width (d ~ k'1) is an

increasing function of the amplitude Am > 1.

The stability of two dimensional solution can be determined by using the condition (20).

For the cylindrical symmetric case,

/= I" drr A\ (27)
Jo

which, for the large amplitude case (Am 3> 1), will be dominated by contributions from the

region in which the Bessel function solution holds. Simple algebra leads us to

/ = <7i & , (28)

r, = / dxx Jl{x) > o
Jo

where Ci is a constant of order unity. From (28), and from the condition dAm/dti > 0

[see Fig. 4] we get that dl/dil2 > 0. This proof is clearly not formal, but we believe that

it is quite adequate for the large amplitude solitons. Using detailed computer simulations,

we found that the stability criterion dl/dQ2 > 0 is satisfied for arbitrary amplitude soliton

solutions.

The stability of the localized structures in the electron-positron-ion plasmas distinguishes

them fundamentally from the inherently unstable solitonic solutions obtained for pure e-p

plasmas. Since unstable nonlinear solutions are, generally, not accessible, it would seem that

the stable e-p-i solitons are more likely to lead to observable physical consequences.

In conclusion, we have shown that in electron positron plasmas with a small fraction of

ions, it is possible to have localized stable structures with relativistically strong amplitudes

of EM radiation and with large density bunching. Asttophysical objects, like radio galaxies,

quasars or radio pulsars couid radiate ultrarelativiatic EM waves, which, in the ever present

e-p-i plasmas in their vicinity may lead to the formation of stable solitons. As emphasized

earlier, it is these stable solutions which should be preferentially used to explain, for example,

the "micropulsations" in pulsar radiation [15].

We also believe that these stable localized structures as sources of large density inho-

mogeneities may provide templates for structure formation in the early universe. Detailed

applications of this theory to cosmological, as well as laboratory plasmas, is left for future

publications.
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Figure Captions

Fig.l. A typical large amplitude structure; A versus r). Barring the exponentially decay-

ing tail (|jy| > 10), the rest of the soliton is very well approximated by the 'Cosine' formula

ofEq. 18.

Fig.2. The soliton width Lm as a function of the amplitude Am. For Am > 1, the

relationship is linear as predicted by Eq. 18.

Fig.3. A moderate amplitude 2D soliton; A versus r, the radial coordinate.

Fig.4. The nonlinear dispersion relation, the effective eigenvalue (I2 as a function of Am,

the amplitude. As Am goes to infinity, flJ approaches unity.

Fig.5. A comparison of the numerical 2D solution with the Bessel function approximation

(Eq- 25). Again there exists excellent agreement in for the bulk of the structure.
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