
IC/93/354

INTERNATIONAL CENTRE FOR

THEORETICAL PHYSICS

FERMION-SPIN TRANSFORMATION
TO IMPLEMENT THE CHARGE-SPIN SEPARATION

INTERNATIONAL
ATOMIC ENERGY

AGENCY

UNITED NATIONS
EDUCATIONAL,

SCIENTIFIC
AND CULTURAL
ORGANIZATION

Shiping Feng

Z.B. Su

and

L. Yu

MIRAMARE-TRIESTE





IC/93/354

Internationa! Atomic Energy Agency
and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

FERMION-SPIN TRANSFORMATION
TO IMPLEMENT THE CHARGE-SPIN SEPARATION

Shiping Feng
International Centre for Theoretical Physics, Trieste, Italy

and
Department of Physics, Beijing Normal University,

Beijing 100875, People's Republic of China,

Z.B. Su
International Centre for Theoretical Physics, Trieste, Italy

and
Institute of Theoretical Physics, Chinese Academy of Sciences,

Beijing 100080, People's Republic of China

and

L.Yu
International Centre for Theoretical Physics, Trieste, Italy

and
Institute of Theoretical Physics, Chinese Academy of Sciences,

Beijing 100080, People's Republic of Clsina.

ABSTRACT

A novel approach, the fermion-spin transformation to implement the charge-spin sep-

aration, is developed to study the low-dimensional t - J model. In this approach, the

charge and spin degrees of freedom of the physical electron are separated, and the charge

degree of freedom is represented by a spinless fermion while the spin degree of freedom

is represented by a hard-core boson. The on-site local constraint for single occupancy is

satisfied even in the mean-field approximation and the sum rule for the physical electron

is obeyed. This approach can be applied to both one and two-dimensional systems. Fn

the one-dimensional case, the spinon as well as the physical electron behaves like Lut-

tinger liquids. We have obtained a gapless charge and spin excitation spectrum, a good

ground state energy, and a reasonable electron-momentum distribution within the mean-

field approximation. The correct exponents of the correlation functions and momentum

distribution are also obtained if the squeezing effect and rearrangement of the spin con-

figurations are taken into account. In the two-dimensional case, within the mean-field

approximation the magnetized flu.x state with a gap in the spinon spectrum has the lowest

energy at half-filling. The antiferromagnetic long-range order is destroyed by hole doping

of the order ~ 10 —15% for t — J = 3 4-5 and a disordered flux state with gapless spinon

spectrum becomes stable. The calculated specific heat is roughly consistent with observed

results on copper oxide superconductors. The possible phase separation is also discussed

at the mean-field level.
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I. INTRODUCTION

The large U Hubbard model and its equivalent, the t - J model are prototypes to study

the strong correlation effects in solids, especially in connection with the high Tc supercon-

ductivity [1-3]. The central issue under debate is whether the non-Fermi liquid behavior,

showing up as charge-spin separation and vanishing of the quasi-particle residue, inherent

to the one-dimensional (ID) Hubbard model is also true for two-dimensional (2D) models,

as conjectured by Anderson [4].

In ID, the exact Bethe-ansatz solutions [5,6] are available for the t-J model in the limit

J/t -> 0 and J/t = 2. The Hubbard model and the t-J model in the small J limit scale

to the Luttinger model [5,7,8], Using Lieb-Wu's exact wave function, Ogata and Shiba [5]

have shown the existence of an electron Fermi surface as well as a singular behavior at

k ~ kp and k ~ 3kp in the electron-momentum distribution function. Moreover, Yokoyama

and Ogata [9], and Assaad arid Wurtz [10] have studied the ID t-J model using the exact

diagonalization of small systems and quantum Monte Carlo methods, respectively, and their

results show that the t-J model behaves like Luttinger liquids for low values of J/t, and

undergoes phase separation at large values of J/t. Heltberg and Mele [11] came to the same

conclusion by using the Jastrow variational wave function. Thus the typical behavior of the

Luttinger liquid [12] in ID, i.e., the absence of quasi-particle propagation and charge-spir

separation, has been demonstrated explicitly for the t-J model in the small J limit.

There are no exact solutions available in 2D. The variational calculations [13] seems tc

support Anderson's conjecture. The quantum Monte Carlo simulations gave some hint ai

vanishing of the quasi-particle residue in the thermodynamic limit [14], However, this resul'

is not conclusive because of the " fermion minus sign" problem in the Monte Carlo techniqui

and contrary results in exact diagonalization of clusters [15] as well as analytic treatment:

of the single-hole problem [16].

The crucial requirement [17] for the t-J model (and the large U Hubbard model) is t<

impose the single occupancy constraint £ „ C^C;, < 1. An intuitively appealing approac!

to implement this constraint and the charge-spin separation scheme is tiie slave parlicle

formalism [18,3], where the electron operator is decomposed as Cur=a,/iff with a, as the

slave boson and /,„ as fermion and the local constraint £ a //„/;„ -I- a]ai = 1, or vice versa,

i.e., a] as fermion and /,„ as boson. Due to the constraint, these particles are also coupled

by a strong gauge field [19], allowed by this slave-particle representation. In the mean field

approximation (MFA) the spin (spinons) and charge (holons) degrees of freedom are fully

separated. However, there are a number of difficulties in this approach. First1 of all, in

the slave boson version, the antiferromagnetic correlation is absent for zero doping, so the

ground state energy in the 2D case is high compared with the numerical estimate for small

clusters, and the Marshall sign rule [20] is not obeyed [21,22]. Alternatively, in the slave

fermion approach, the ground state is antiferromagnetic for the undoped case and persists

until very high doping (~ 60 %) [23]. The large Fermi surface of spinons, present in the slave

boson approach is absent there. Moreover, if we, following the common practice, let } i c keep

track of the spin, while a; keep track of the charge, satisfying the sum rules: S = < aja; >

and 1 - 8 = £ „ < /,l/i<r >, where S is the hole doping concentration, we find [24] that the

sum rule for the physical electron £ff < C\ada > = 1 — ^ is not satisfied for both versions.

This expectation value is (1 — S)2 in the slave fermion representation, and 1 — 62 in the slave

boson version. Since the total number of particles does not depend on the interactions, this

difficulty will persist even beyond the MFA, so long as the spinon and holon expectation

value decoupling is assumed. Furthermore, we have also shown [24] that the overall electron

distribution does not have the appropriate Fermi surface within this scheme even for the ID

case. These are intrinsic difficulties of this decoupling scheme.

In this paper we develop a new scheme, the fermion-spin transformation, to implement

the local constraint and the charge-spin separation. In this scheme the charge degree of

freedom is represented by a spinless fermion, while the spin degree of freedom is represented

by a hard-core boson in terms of Pauli operators (with a projection operator to be specified

later). Using this representation the local constraint is satisfied in the decoupling scheme in

contrast with the existing slave particle approach [18,3], where the local constraint is replaced



by a global one. As a consequence, the sum rule for the physical electron is obeyed. Moreover,

the hard-core bosons can be expressed in terms of spinless fermions via the Jordan-Wigner

transformation in ID [25) and its generalization in 2D [26], This is an efficient calculation

scheme which can provide very good results even at the mean-field level.

Here we summarize our main results. In ID we can integrate out the spinless charge field

(holona) and obtain an effective Hamiltonian for an interacting spinon field which behaves

like a Luttinger liquid. Hence the physical electron, as a convolution of spinon and holon,

also behaves like a Luttinger liquid in consistency with the exact, solution [5]. Moreover, we

obtain a gapless spectrum for both holons and spinons at the mean-field level which is not

true in the slave fermion approach. The ground state energy at and away from baH-filling is

in good agreement with exact results. By going beyond the MFA to include the " squeezing

effect and rearrangement of the spin configurations due to the hole presence, we obtain not

only correct exponents of correlation functions and momentum distribution at the Fermi

surface but also a reasonable global distribution function. In 2D we have considered various

phases at and away from half-filling in the MFA. The magnetized flux state with a gap in

the spinon spectrum has the lowest energy at half-filling. The antiferromagnetic long-range

order (AFLRO) fades away by hole doping of the order 10-r 15% for tj J — 3-r5 in contrast to

the Schwinger boson approach where the AFLRO is destroyed at 62% doping [23], Beyond

the critical concentration, a disordered flux phase with gapless spectrum becomes stable.

We have also calculated the specific heat and considered the phase separation issue. The

results are consistent with experiments and numerical simulations, respectively.

The rest of the paper is organized as follows: In Sec. II, we explain in detail the fermion-

spin transformation which is exact in the single occupancy Hilbert space, if a projection

operator is introduced to remove the extra degrees of freedom. We also estimate the errors

introduced by the MFA. In Sec. Ill we apply the proposed scheme to ID t-J model within

the MFA. The main results obtained have been mentioned above. In Sec. IV we calculate

the correlation functions and momentum distribution by introducing two "string" operators

which take care of the "sqtieeztnjf effect and rearrangement of the spin configurations. The
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exponents thus obtained agree with the exact results. The applications to 2D at the mean-

field level are described in Sec. V. Finally, in the concluding Section we make some further

remarks to explain our current understanding why this simple transformation works so well

and outline some open problems.

II. FERMION-SPIN TRANSFORMATION TO IMPLEMENT THE

CHARGE-SPIN SEPARATION

A. Model, Constraints and Sum Rules

We start from the t-J model which can be written as

clcls + h.c.) - ,. • s,-, (i)

where C,a (C^) are the electron creation (annihilation) operators, S, = C'JcrCi/2 spin op-

erators with a as Pauli matrices, fi the chemical potential. The summation (ij) is carried

over nearest neighbour nonrepeated bonds.

The Hamiltonian (1) is defined in a restricted Hitbert space without double electron

occupancy. There are two ways to implement this requirement: either to solve (1) com-

bined with a nonholonomic constraint £„ C/ff C;,, < 1 or to introduce constrained fermion

operators [27], replacing Cia by C,, = Ci<r(l - nit), where nio. = C\,CiB. We will use both

representations in this article.

The constrained operators C^ satisfy the following relations

2^ ^ia^i" = 2-, CfrCisyl — nie), {22 CiaCiv) = 1 — 8, (2) .

where the latter equation is a sum rule for the electron at the hole doping concentration

S, and (• • •) means thermodynamical average. The on-site anticommutation relation of the

constrained electron operator <?;„ is

.•„ cl) = 2 - = i + 6, (3)



which gives rise to a sum rule for the spectral function Aca(k, w)

dw

?£&••*•>- (4)

Of course, this value is less than 2 since 1—6 states are pushed to infinity as U —t oo in

deriving the t-J model. Hence the electron spectral function Ac<r(k, w) describes only the

lower Hubbard band. Eqs. (2) and (4) are exact sum rules for the t-J model, and they must

be preserved in adequate treatments.

B. CP1 Hard-Core Boson

The decoupling of the charge and spin degrees of freedom for the physical electron is

undoubtedly correct in the ID t-J model [5], but the situation is still not clear in 2D. In this

paper, we presume that the decoupling of charge and spin degrees of freedom for physical

electron is also valid for the 2D t-J model, and propose a new scheme to decouple the charge

and spin degrees of freedom.

To motivate this transformation, we start from the no-double occupancy local constraint

HvCleCio < 1. Suppose <7iff = h]bu, with the spinless fermion operator hi keeping track

of the charge (holon) while the operator b^ keeping track of the spin (spinon), then this

on-site local constraint can be rewritten as £ „ hih\bl,bir < 1. Since the electron obeys the

Fermi statistics, the operator b^ must be a boson when the operator ft; has been assigned a

fermion character in this electron decoupling scheme. If bosons are subject to the condition

!Ctr L̂&io = 1> t n e on-site electron local constraint

nc = £ Cld, = h,h\ = 1 - kihi < 1 (5)
(T

is exactly satisfied, where nj, = k]hi is the spinless holon number at site i, equal to 1 or 0.

This way the nonholonomic on-site electron constraint is converted into a holonomic boson

constraint.

We should note that so long as fcjft; = 1, £„ C^Ci, = 0, no matter what is the value

w- However, the choice nj = 1 is convenient, because it also guarantees the
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condition nc = 1, when nh = 0. This decoupling scheme, so called CP1 representation was

proposed by Wiegmann [28] and was used in Ref. 29. The constraint nc = 1 means the

presence of one boson (spin-up or -down) on each site, i.e., we assign a "spin" even to an

empty site. This will not affect the physical expectation values, because the hole number

expectation (ft/,) will remove the spurious effects. Nevertheless, the extra degrees of freedom

will affect the partition function and thermodynamical quantities. In the next subsection we

will define a projection operator to cure this defect. As a result, the commutation relations

and sum rules (2)-(4) will be satisfied exactly.

Now we explore further the properties of the CP1 bosons. First note if we restrict the

boson occupation number to 0 or 1, the infinite-dimensional Fock space for bosons become

two-dimensional, where we can choose the following representation

'0 0 \ {0 1

0 / \ 0 0

which are nothing but spin-lowering,?" and spin-raising S+ operators for 5 = 1 / 2 and satisfy

the hard-core constraints bb = b^b^ = 0.

Moreover, if .ve request that T and J, hard-core bosons satisfy the CP1 condition rtb = 1,
'CO

the 2 x 2 representation space becomes two-dimensional. Assume [ ) , | | are singly

b,= (6)

direct

If)
straint b\^b^

m m /o\ /o
products, only two, namely I I I 1 , and I I I

W, Wj w , Vi

/ (\
o c c u p i e d a n d e m p t y s p i n - u p , w h i l e I 1 , 1 1 a r e s i n g l y o c c u p i e d a n d e m p t y s p i n - d o w n

W W
states, respectively. Due to the constraint b^b^ + b\^bn = 1, out of 4 possible states as

are allowed. Thus we

can ignore the spin label in the state and represent bt as I I, and fci as
\ 1 0) \0 0,

in the reduced two-dimensional representation space. Of course, all the hard-core boson

conditions, i.e., b^b], + b^b^ = 1, b\b\a = tata = 0, (without summation over a), are

satisfied. As a result, 6T and ij are identified with the spin lowering 5" and raising 5 +

operators, respectively, while the boson occupation space is identified with the spin 1/2

representation space.
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To sum up, as solutions of the single occupancy constraint C C\,d, < 1 under CP1

convention 52, &!„£>;* = 1, we find the following fermion-spin transformation

(7)

in terms of which the t-J Hamiltonian (1) can-be rewritten as

H = -t £ kik]{S?Sj + 5-5+) + k.c.

(8)
(v)

uiftere S; w tfte pseudo-spin operator at site t which can be expressed as CP1 hard-core

bosons and is different from the electron spin operator in Eq. (1). We would emphasize

that the present CP1 hard-core boson representation of spin operators is different from the

CP' boson representation of spin operator used before [28,29]. In their approach, the spin

degree of freedom is represented by ordinary boson operators, while, in the present scheme,

the kard-core boson operator bia behaves as a fermion on the same site, and as a boson on

different sites.

C. Projection Operator

In the local representation the restricted Hilbert space of no-double occupancy consists

of three states, |0), j | ) , | J.), while in the fermion-spin transformation presented in the

previous Subsection there are four states \kole) ® |apm), namely |1,T), |1,J.), |0,t), and

|0, {), where 1 or 0 means hole occupation. We can introduce a projection operator P to

remove the extra degrees of freedom. The matrix elements of this operator can be defined

as

P « s | i c ) H , (9)

where \K) is one of the bases of the physical states, while |a) is one of the bases in the space

\hole) ® \spin). Since the space dimensions of |K) and |Q) are different, the usual relations

for the projection operator P1 — P — P* are not satisfied. Using this operator, one can

define the electron operators in the constrained space as

{10)

Cit = P<h\S~Pl 6n = Pih\StPl

C,\ = PihiS? Pi, Cl = Pi hi S~ P},

where Pi is the projection operator for the site i, P} is the hermitian conjugate of P;. Making
/0 l\ (0 0\

use of the matrix representation of the holon operator k] = \ I, A; = I , we can
\o o/ \i a)

write down explicitly all these operators in matrix form (see Appendix). In particular, the

constrained electron operators in the basis of the physical states |0), j T), | J.) can be written

'0 1 0 \

C,T = | 0 0 0

0 0 0 /
/0 0 1\

0 0 0

\0 0 0

which are nothing but the Hubbard X operators X0],.

to check that

0

\ i

0
0

0

0

0 /
0 \

0 (1!)

i, etc. [30]. It is then straightforward

(12)

(13)

/ I 0

where n^ = 0 0 0 I is the hole number operator. Taking expectation values of Eqs.

\ 0 0 0;
(12) and (13), one sees immediately that the sum rules (2) and (4) are exactly satisfied. Thus

we have shown that the fermion-spin transformation defined with an additional projection

operator P satisfies exactly the no-double occupancy constraint and all sum rules,«.e., they

are an exact mapping.
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However, the projection operator P is cumbersome to handle and in many cases, for

example in the mean-field treatment of Sections IIJ-V, we will drop it. Now let us see

which of these properties are still preserved and what kind of errors we are committing in

such approximate treatments. First of all, the local constraints are exactly obeyed even

in the MFA. Secondly, those expectation values of electron operators, including spin-spin

correlation functions, which should vanish, actually do not appear due to the presence of

the holon number operator n^ = h.\h{. Furthermore, as we will see later, the sum rules for

the physical electron are also satisfied in MFA. By adding an extra spin degree of freedom

to an empty site we are making errors of the order S in counting the number of states,

which is negligible if 6 —> 0. For comparison we should note that in the usual slave-particle

approach [18], the local constraint is explicitly replaced by a global constraint in MFA,

and therefore the representation space is much larger than the representation space for the

physical electron, which leads to some unphysical results [17,24], From this point of view,

our treatment of constraints for the physical electron is much better than the slave-particle

approach, and therefore we believe the mean-field result based on the fermion-spin approach

even without projection operator should be better than those obtained by using the slave-

particle mean-field theory. This is indeed confirmed by the mean-field calculations presented

in the following Sections.

We note that a similar transformation has been discussed in Ref. 31, but these authors

did not stick to the single-occupancy constraints in their actual calculations.

III. THE MEAN FIELD THEORY IN ID WITHIN THE FERMION-SPIN

APPROACH

Since an exact solution [32] for the Hubbard model (hence for the J/t —» 0 limit of

the t-J model) is available in ID, it is important to confront any approximate treatment

with this solution. In this Section we consider the ID t-J model, using the fermion-spin

transformation described in the previous Section at the mean-field level, neglecting the effects

11

of the projection operator P. As mentioned in Introduction, the ID t-J model exhibits a

Luttinger liquid behavior, including charge-spin separation, vanishing of the quasi-particte-

residue, etc. We should also mention that both spin and charge excitations are gapless in

ID [5], In the standard slave-particle approach, many of these properties are not preserved.

For example, in the slave-boson case [33] there is a Bose condensation at the mean-field

level which leads to a Fermi-liquid behavior. On the other hand, there is a gap in the spin

excitation spectrum in ID within the slave-fermion framework, even at half-filling [23]. Now

consider the mean-field results in the fermion-spin approach.

A. Luttinger liquid behavior

In the fermion-spin representation, the ID t-J mode! may be written as

where, for the convenience of the following discussion, we have introduced the particle op-

erators a; and a] defined as

a, = h\, at = ht. (15)

In the ID case, the hard-core bosons Sf and 5, can be mapped exactly onto spintess fermions

using the Jordan-Wigner [25] transformation

5,+= //e'* £.<•''>', (16)

Sz - f"1 f - - (18)

where /; is the spinless fermion operator. Substituting Eqs. (16)-(18) into Eq. (14), the t-J

Hamiltonian (14) can be expressed as

12



H = -*

W)
(19)

We can now employ the path-integral representation in which the Lagrangian L and the

partition function Z of the t-J model in the imaginary time r can be expressed as

• + H, (20)

Z= (21)

Integrating out the spinless charge field a, of the t-J model, we obtain an interacting spinon

system, which like any interacting fermion systems in ID, is described by a Luttinger liquid

theory [12,34]. Moreover, the physical electron as a convolution of spinon and holon also

behaves like a Luttinger liquid, which means that the electron wave function renormalization

constant Z = 0 in the ID t-J model.

In the path-integral representation, one can introduce a S(/(2)-invariant Hubbard-

Stratonovich transformation to decouple the Lagrangian (20) by using the following auxiliary

fields

(22)

>,,;+„ = ata j + , , (23)

where TJ = ±1. Note the auxiliary field Xij+v is a boson type field. MFA to the t-J model

(19) is just the saddle point solution of the Lagrangian (20), i.e., the auxiliary fields Xij+v

and &,,+„ are replaced by their mean-field values Xij+v = x and faii+v = tj>, respectively, and

the Hamiltonian (19) can be diagonalized as

k k

where N is the number of sites, and

+ WtX<k + 2JVJ[(1 - 6f -

13

(24)

(25)

i-K(i-t)"-, -M-S (26)

while the self-consistent equations for the order parameters x and $ can be obtained by

minimizing the free energy. We can now proceed to a brief discussion of the results in MFA.

B. Groud-State Properties at Half-Filling

At half-filling, there are no charge degrees of freedom, and the t-J model (24) reduces to

the antiferromagnetic Heisenberg model in the fermion representation

In this case the order parameter x can be evaluated to be x — — 1/*, an<^ w e obtain a gapless

spinon spectrum,

= (1 + ^)(27)cos(fc), (28)

which is rather close to the exact result of the Heisenberg chain obtained by using the Bethe-

ansatz method [35] u>o(k) = (ir/2)(2 7)cos(fc). Correspondingly, the spinon spectrum near the

spinon Fermi surface (fc = ±x/2) is linear with velocity v, = (1 + 2/?r)(27) = 1.6366(27),

which is also very close to the exact result of the Heisenberg chain obtained by Haldane

[36] v, = (JT/2)(27) = 1.5708(27). The ground state energy of the Heisenberg model at

temperature T = 0 is Ea = -0.4196(27) which is only 5.3 percent higher than the exact

Bethe-ansatz value [35] of Eo = -(1/4 - ln2)(2J) = -0.4431(27).

Thus in the half-filled case, the spinon has a gapless spectrum, and the spinon ground

state energy can be described adequately by the Jordan-Wigner transformation within MFA.

This case has already been considered earlier [29,37],

14
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C. Ground-State Energy away from Half-Filling

Away from half-filling, a gapless holon spectrum is obtained

e{k) = -2r-cos(Jt),

from which the holon Fermi velocity is given by

vh = 2«-B (-8in

and the holon ground state energy at temperature T = 0 is obtained as

Eh = -(-)(-)sin{^).

(29)

(30)

(31)

All these quantities differ from the corresponding exact values [5] of the ID large U limit

Hubbard model e(k) = — 2tcos(k), vi, = 2tsin(67r), and Es. = —(^)sin(6ir), only by a factor

2/*.

At the same time, the gapless spinon spectrum at finite dopings becomes

'(*), (32)

with the spinon ground state energy

(33)

which is again very close to the exact result of the spinon ground state energy [5] of the

ID large U limit Hubbard model over the entire doping range. Here E$ is the ground state

energy at half-filling. Therefore the total ground state energy of the ID t-J model in the

fermion-spin approach within MFA can be expressed as

Eg = Ek + E,

(34)

The ground state energy and thermodynamical quantities for the ID Hubbard model in the

atomic limit have been calculated long time back [38]. Our result for the ground state energy

is rather close to theirs.

15
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D. Momentum Distribution

Now we turn to discuss the global features of the electron momentum distribution within

MFA. This distribution for physical electron is denned as

05)

In the present fermion-spin approach, neglecting the effects due to the projection operator

defined in Sec. II C, this distribution function can be rewritten as

+ 5,-5+)).

Using the Jordan-Wigner transformation (16)-(18), n(k) can be further expressed as

(36)

Since e*"^^ = 1 - 2 / / / f , in MFA, we obtain

n(k) = I - 6 +
, stn(mfor)

•cos(mfc),

( 3 7 )

(38)

which is plotted (solid line) in figure 1 for doping* = 0.5. For comparison, the corresponding

curves for the slave-boson (dashed line) and the slave-fermion (dot-dashed line) cases are also

given. It is obvious that n* > 1 — 6 in the slave-boson case and < 1 — S in the slave-fermion

case, which is very far from a should-be electron momentum distribution. The integrated

area under the curve is equal to (1 — P) in the slave-boson case and is (1 — 6)2 in the slave-

fermion case, while the correct value should be 1 — 6 [24], The solid curve corresponding to

our transformation, is closer to the exact result [5]. The integrated area is correct and the

shape looks like a reasonable momentum distribution, i.e., in some part the distribution is

greater, while in other part it is less than 1 — S. To get a more accurate result (including

the correct location of the Fermi surface and a correct slope at it) one should go beyond the

MFA to include the spinon-holon interactions as discussed in the next Section.
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Thus away from half-filling, the spinons and holons are decoupled completely, with the

holon behaving like a spinless fermion, while the spinon has the Jordan-Wigner [25] form in

ID. The gapless spectra for both holons and spinons, as well as the ground state energy can

be described adequately within the fermion-apin approach even in MFA.

IV. THE ASYMPTOTIC BEHAVIOR OF CORRELATION FUNCTIONS IN THE

ID CASE

A. Motivation

Interacting ID electron systems generally behave like Luttinger liquids [12] where the

electron correlation functions show a power-law decay with unusual exponents. These sys-

tems exhibit an electron Fermi surface with a correct Luttinger volume but the momentum

distribution function is singular at the Fermi surface, also with unusual exponents [5]. These

exponents depend on the interaction strength. Haldane [12] has shown that the character-

istics of Luttinger liquids can be calculated using the bosonization techniques. To get more

insight into the problem let us consider the Bethe ansatz wave function for the Hubbard

model in the large U limit (hence for the t-J model in the small J limit), derived by Ogata

and Shiba [5]

*J(:ti, • • -fif/} = det[exp(ikjXQl)]1f{yi, • - •, ynt), (39)

where the determinant depends only on the coordinates XQS of particles, but not on their

spins, while $(s/i,- - -,1/M) is the Bethe ansatz wave function for an AF Heisenberg chain

with ylt • • •, ym as coordinates of down spins [35]. This asymptotic form can be interpreted

as a complete separation of charge and spin degrees of freedom in some sense. In fact, the

determinant describes spinless fermions (holons), whereas * is the " spinon " wave function.

Our fermion-spin transformation is, to some extent, an approximate second quantized version

of this solution, with holon being represented by a spinless fermion and spin represented by

a hard-core boson.
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However, there is an important "detail" in the wave function (39), namely, the spin wave

function * is for a "squeezed" Heisenberg chain, (.e.,<all holes should be removed. This will

lead to rearrangement of spin configurations and far-reaching nonlocal effects. Therefore,

spinons and holons are not completely independent, but interacting with each other rather

strongly. As shown in Ref. 5, the correct exponents of correlation functions and an adequate

description of the momentum distribution function (Fermi surface at kF, rather than 2kF

with appropriate singular behavior) can be obtained only if these interaction effects are

properly taken into account. Weng et al. [29] have shown that the effects due to squeezing

and rearrangement of spin configurations can be included by introducing a nonlocal " string"

field. After doing that correct results for the correlation function exponents, etc., can be

obtained for a ID t-J chain. In this Section we calculate these exponents within our fermion-

spin approach, following their technique with some modifications. The nonlocal effects due

to spinon-holon and spinon-spinon interactions will be included by introducing two string

fields. After squeezing, there are no holes in the chain, so the additional degrees of freedom

due to assigning "spin" to a hole site disappear, hence the projection operator introduced

in Sec. II C is not needed for our purpose.

B. String Operators

Let us consider the the t-term in the t-J Hamiltonian within the fermion-spin repre-

sentation. Following Ref. 29, the largest holon kinetic energy may be obtained if the spin

configurations are squeezed as

for all sites i where a holon is present. However, after'such squeezing, the spin configurations

are not optimal to favor the spinon energy. Thus at the same time spin configurations must

be rearranged into optimum configurations to provide the lowest spinon energy. These

optimum spin configurations can be obtained by reversing the original spin polarization
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for all sites on the left-hand side of site i. These processes of first squeezing the t - J

chain and then rearranging the spin configurations, are shown schematically in figure 2.

These nonlocal processes cannot be described by any formal perturbation theory, but can

be taken into account approximately by introducing the string fields [29,24], In our case,

we introduce two string fields to describe the above,physical processes, so the constrained

electron operator C,-, can be expressed within the fermion-spin approach as

Cn = (e"<<N+5:<>.'''a<)ai)(e
iT'E'«a>>S+),

(41)

(42)

which means that the spinless fermion a, and the hard-core boson Sf are replaced by cor-

responding string operators as

^ \ (43)

5* _» sfe^^K-"1", (44)

where e±'"5-'i<i "i"1 is the string field for the spinon due to the presence of holons, describing

the effects of rearrangements of spin configurations from -co to site i when an electron is

removed or added at site z. For the ( — J chain, holons on the right-hand side of site i can

feel some indirect effects of holons on the left-hand side of site t due to the rearrangements

of spin configurations from -00 to site i when one electron was removed or added at site i.

These indirect effects can be described by the string field e"tJV±Ei>il>i'>|) for the holon. One

can check easily that the anticommutation relations for the physical electron are preserved

exactly in our case.

C. Energy Spectrum for a Squeezed Chain

After squeezing and rearranging the spin configurations, the t-J model can be written as
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+ h.c.) - (45)

to)
where we have approximated the probability of the spin exchange process of the Heisenberg

term as ajajajdj « (aja;)(a}a;) - {ajoj)(o]o,) = (1 — 6)2 - <t>2, and the lattice constant

of the squeezed spin chain has become o/(l — <5), where a is the original lattice constant.

Therefore the Fermi points of spinons are shifted from kp = ±JT/2 of the half-filled case to

kp = ±rr(l — S)/2 for the doped case.

For the squeezed chain, the gapless holon spectrum, the holon Fermi velocity, and the

hoion ground state energy are

e(k) = -2(cos{Jt), (46)

It
Et = sin(ijr),

(47)

(48)

respectively, which are in full agreement with the corresponding exact values of the ID large

U Hubbard mode! [5], At the same time, the gapless spinon spectrum, spinon Fermi velocity,

and the spinon ground state energy are given by

= [(1 - if -• i](2J)cos(fc), (49)

v, = [(1 - Sf - (50)

respectively, which are very close to the corresponding exact values of the ID large U limit

Hubbard model [5]. Here Eo is the ground state energy at half-filling. Therefore, the total

energy of the t-J model Eg = Et + Ej agrees quantitatively with the exact value of the

ID large U limit Hubbard model in the entire doping range. It fully agrees with the ID

results for the Hubbard model obtained earlier in the atomic limit [38]. The gapless spinon
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and holon spectra, and the ground state energy axe all better than the mean-field results

obtained in Section III, which indicates that the string fields take into account the spinon-

holon interactions in the t-J model, and renormalize considerably the results obtained in

MFA without string fields.

D. Correlation Functions

The spin-spin correlation function is defined as

= {Sf(t)Sf(O)) = |{S+(<)Sr 0)). (52)

In the doped case, we need to replace the operator Sf in Eq. (52) by Eq. (44) to account

for the presence of holons. Thus substituting Eq. (44) into Eq. (52), we obtain the spin-spin

correlation function of the t-J model as

i[(S,

L^-iW'W)] . (53)

Following Haldane [12,29], we apply the bosonization method to the free holon field, and

obtain the following asymptotic form

1 1

( ^ "LK^iCHWefLK, ' ! °" ° J „ —_ :^_—^^^( (54)

where v^ is the holon Fermi velocity. Luther and Peschel [34] have mapped the ID Heisen:

berg model into an interacting spinless fermion system by using the Jordan-Wigner [25]

transformation. Their work involves generalization of the Jordan-Wigner transformation to

provide a representation for continuum spin operators. The asymptotic form of the spin-

spin correlation function of the Heisenberg model can be then obtained by considering the

spinon-spinon interactions. Following their calculation, we get

^ 4 , (55)
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where v, is the spinon Fermi velocity. Comb:ning Eq. (54) with Eq. (55), we obtain the

asymptotic form of the spin-spin correlation function of the ID t-J model as

S(Xi-Xht) ~ i —k •
 OT'2tf-^, (56)

which shows a power-law decay with exponent 3/2, in full agreememt with the numerical

result of the ID large U limit Hubbard model obtained by Ogata and Shiba [5].

E. Momentum Distribution Function

The electron momentum distribution function n(k) is defined in Eq. (36) within the

fermion-spin approach. To consider the squeezing effect and rearrangements of the spin

configurations, we need to substitute Eqs. (43)-(44) into Eq. (36). Then re(Jt) can be

rewritten as

(57)

where the factor G, = e'T(JV~^-i>'''!t">. In what follows, we will drop this factor as in the

previous calculations [29,24], since it will only contribute a next-to-leading additional power-

law decay in the asymptotic single electron Green's function, so one may neglect it if only

interested in the leading contribution.

The calculation for the global features of n(k) is similar to the case without string fields

within MFA and the result is

n(k) = 1 - 6 + A l ( k ) + A t ( k ) + A 3 ( k ) + ••-,

Mk) = (-)2sin(^)cos(fc),

A2{k] = (-)3[isin
2 1

= (-)4I-sin 1 5A
- ( 1 - — )Bin
o A

(58)

The curve n(k) is plotted in figure 3 (solid line) for 6 = 0.25 in comparison with the result

without string fields (dot-dashed line). We find some substantial improvement by including
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"••HI »"

the string fields. In particular, the location of the Fermi points was wrong in MFA without

string fields, while it is correct (kF = | (1 - i)) if they are included. In the same figure we

have also plotted the n(k) curve obtained in the early treatment (dashed line) [24] for CPl

electron representation (without accounting for hard-core nature of bosons). Obviously, the

global features of this curve are not correct (• n{k) goes up again as k further increases).

Nevertheless, the asymptotic fo> m of the momentum distribution near kp, obtained in both

approaches, is correct, namely,

n(fc) ~ const - C\k - kp\*agn(k - kF), (59)

again in agreement with the exact numerical result [5]. This singularity is washed out in the

numerical calculations and does not show up in figure 3.

To sum up we have confirmed that by introducing the string fields the spinon-holon

interactions can be included to some extent which allows us to obtain correct exponents for

the correlation functions and momentum distribution, as proposed earlier [29]. Moreover,

the global features of the energy spectrum and the momentum distribution, found in our

fermion-spin approach are correct in contrast with the previous approach [29] which could

not provide such an adequate description.

V. THE MEAN FIELD THEORY IN 2D WITHIN THE FERMION-SPIN

APPROACH

In this Section, we consider the 2D t-J model. Very soon after the discovery of oxide

superconductors Anderson [1] revived his idea of the resonating valence bond (RVB) to

describe the short-range AF fluctuations in the 2D Hubbard model. Baskaran, Zou and

Anderson [39] developed a mean field theory of the RVB state. Later a number of other

more elaborated mean field solutions have been discussed both at half filling and away from

it, such as the flux phase [40], the spiral phase [41,23] and the commensurate flux phase [42]

which breaks the time-reversal symmetry and parity. The latter is related to the proposed
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fractional statistics and anyon superconductivity [43]. For the early suggested flux phase

[40], the lowest energy solution is a state with ^ flux quantum (or phase 7r) per plaquette

which does not break the time-reversal symmetry and parity. Sheng, Su and Yu found that

the ir-flux phase can coexist with a + id wave RVB state for small dopings [44]. Lee and Feng

[22], and later Chen, Su, and Yu [45] found that the magnetized RVB state with coexisting

AF order and a d-wave RVB order parameter, has a gain in energy. Furthermore, Hsu [46]

has shown that the magnetized flux state which is the coexistence of AF order with a flux

state has a similar gain in energy. Recently, Wang [37], and Ubbens and Lee [47], obtained

the same result in a different framewotk. In this Section, we discuss the 2D t-J model along

this line.

A. Generalized Jordan-Wigner Transformation

In the fermion-spin approach, the success of theory depends strongly on whether one can

map the hard-core boson onto an appropriate fermion or boson representation. In the 2D

case, the Jordan-Wigner transformation of the spin operators has been generalized by several

authors [26]. In particular, Wang [37] discussed the Heisenberg model in the MFA using

this generalized Jordan-Wigner transformation. Using our fermion-spin transformation (7),

this mean-field calculation can be easily generalized to the t-J model. The generalized

Jordan-Wigner transformation may be written as [26,37]:

c+ _ ft »,

$z - ff f- - -si — U /> 2 *

(60)

(61)

(62)

where /; is a spinless fermion, 0; = Y.i*i fifiBu. In order to preserve the hard-core prop-

erties of the spin operators, Bn should be such that eiBil = —e'B'\ One possible way of

materializing this equality is to set Bu - Imln(Zj - Zf), with a complex representation of
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the lattice sites Zi = Xi + iYi. If the effects connected with the projection operator P are

neglected, then the 2D t-J mode! can be mapped onto the fermion representation as

+ *•«•) -

(63)

It has been shown [26,37] that the phase factor in the Hamiltonian (63) creates a gauge field,

with the vector potential given by

A(ri) = £n (£ili^l), (64)

where nj = / / / ; . On average, there is a jr-flux attached to each spinless fermion _ft, which

is nothing but the Chern-Simons gauge field converting a hard-core boson into a spinless

fermion. As mentioned earlier, the ir-flux does not break the time-reversal symmetry and

parity.

The Hamiltonian (63) is obviously very complicated, so a more complete discussion about

it beyond the MFA will be given elsewhere. In this Section, we only discuss some mean-field

properties of the 2D t-J model within the fermion-spin approach. In the MFA, following

the similar discussion of Laughlin et al. [43], Mele [26] and Wang [37], the phase factor

is absorbed by redefining a bond-dependent exchange parameter 7,j. At half fitling, there

are many possible phases and the state with the lowest energy [37] turned out to be the

magnetized flux state with coexisting Neel order parameter (Sf) — ( —1)'M and orbital

current order parameter (Si'S~+v) = x, where v = ±x,±y. The ground state energy per

bond is Eo = —0-33/, while the staggered magnetization is M = 0.389, which are rather

close to the best numerical estimates [48] EB = -0.33467 and M = 0.31, respectively. This

state is completely equivalent to what was first discussed by Hsu [46], who obtained the

ground state energy Eo = —0.33U and staggered magnetization M ss 0.3 within a different

theoretical framework. All these results show the accuracy of the mean-field result within

the generalized Jordan-Wigner transformation [26],
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B. Mean-Field Theory iiway from Half-Filling

Away from half-filling we need to introduce an additional holon particle-hole order pa-

rameter <j> = (ftjfc,+1,), and the t-J model can be decoupled in the MFA as

H = - 2JeffX

W) <Jt)

-2JtffM£(-l)'///i + 4HJt{

0"')
(65)

where JCJJ — J\(\ — 6)7 — if1], and N is number of lattice sites. In the magnetized flux

phase, the t-J model can be diagonalized by using the Bogoliubov transformation to give

H =
k(rtd) Ural)

+4NJcfJx
2 - (66)

where (red) means the summation is carried only over the reduced Brillouin zone. The new

operators a*, &, A(., and i?t are related to h*, hf, f£, and / f by

and

where

cosks — isi

1,, SJM

and the spin excitation spectrum is

while the charge excitation spectrum is

si = ±2ix7* - I*, Ik- 2(008*, + cos*;,,).
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(69)

(70)

(71)



In obtaining the above results, we have considered two sublattices A and B with i € A and

i -if. v £ B. The free energy of the 2D t-J model can be obtained as

+4NJ.JJX2 - 8JV<X0 + UellM\ (72)

from which we find the self-consistent equations for the order parameters x, M, 4> by mini-

mizing the free energy with respect to these parameters.

C. Doping Dependence of the Staggered Magnetization

At half-filling, the 2D t-J model reduces to a 2D AF Heisenberg Hamiltonian, and the

result is the same as discussed by Hsu [46] and Wang [37]. The spinon spectrum in the

magnetized flux phase with AF long-range order is expressed as

Ek = (73)

where a gap appears due to the presence of AF staggered magnetization. We note that

a gap in the spinon spectrum of the flux phase at half filling was suggested by Laughlin

earlier [43]. However, this gap coming from the staggered magnetization M decreases very

rapidly upon doping. In the MFA, M vanishes around doping S « 0.1 4-0.15 for t/J = 3 4-5

which is plotted in figure 4(a). This result is in reasonably good agreement with experiments

[49,50] and Monte-Carlo simulations [22]. For comparison we note that the magnetization

vanishes only at £ ss 0.62 in the MFA for the slave-fermion approach [23]. At finite dopings,

but stilt within the magnetized flux phase, we find a competition between the Neel order

parameter M and the orbital current order parameter x, with M decreasing very rapidly

(see figure 4(a)), and — x increasing very fast (see figure 4(b)) upon doping. In the small

doping range, the holon particle-hote order parameter <t> increases roughly linearly upon

doping, and is almost independent of t/J, which is shown in figure 4(c). The t-J model

is characterized by a competition between the kinetic energy (t) and the magnetic energy
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(J). The magnetic energy J favors an AFLRO for the spins, whereas the kinetic energy

/ favors delocalization of the holes and tends to destroy the spin AFLRO. Thus the rapid

suppression of the AFLRO upon doping means that the present mean-field kinetic energy

is better than those obtained in the slave-fermion approach and is closer to the optimal

kinetic energy of the system. Beyond doping £ « 0.1 4 0.15, corresponding to the range

of the actual high-temperature superconductors, there is no AFLRO, but short range AF

correlations persist and the spinons are in a disordered flux phase with a gapless spectrum,

J *, (74)

as conjectured by Anderson [1]. This spinon spectrum is similar to that of the flux state

discussed also at the mean-field level by Affleck and Marston, and Kottiar [40].

The mean-field phase boundary between the magnetized flux and disordered flux states

is, of course, at somewhat higher doping 6 than the value given by experiments and numer-

ical simulations. In fact, the frustrations of spins can shift the mean-field phase boundary

towards smaller doping S [51]. Thus we believe that the result will be even closer to experi-

ments and numerical simulations by going beyond the MFA.

D. Specific Heat

The specific heat measurements on oxide superconductors have been made for many

compounds by different researchers [52]. The descrepancics are mostly due to the difficulty

in preparing and characterizing samples of the oxide compounds. Although the specific heat

data for the superconducting compounds show considerable variations for samples measured

by different groups, some qualitative features seem common to all the measurements. Hence

a quantitative comparison between theory and experiment is still early, but the qualitative

tendency of the specific heat in an adequate theoreticl description should be consistent with

experiments.

In the half filled case, there are no charge degrees of freedom and the spinon specific

heat has been considered by Wang [37]. Away from half-filling, we are interested in the
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doping range 6 = 0.1 ~ 0.2 where the superconductivity appears. In this doping range, we

have shown that the magnetization M vanishes and the system is in a disordered flux state,

where the internal energy of the system in the MFA is given by

U(T)^ANJcJfX(l-X
2)-SNtx<i>,

from which the specific heat can be obtained as

(75)

(76)

The numerical result is shown in figure 5 at doping 8 = 0.2 for t/J=3 (solid line), t/J=b

(dashed line), and the shape is similar to the experimental results [52,53]. For T > 0.0005J,

the specific heat is found to increase with temperature T, which is also consistent with

the experiments. Therefore our simple mean-field calculation provides a correct qualitative

description of the specific heat for oxide compounds.

E. Phase Separation

The possible phase separation in the t-J model was proposed by Emery, Kivelson, and

Lin [54]. They argued that the dilute holes in an antiferroinagnet are unstable against phase

separation into hole-rich and no-hole phases, and the transition from an ordered state to

doped state is of first order. Later investigation (55] using high-temperature expansions

shows that a line of the phase separation extends from Jjt = 3.8 at zero filling to Jjt = 1.2

near half-rilling, but for the range of parameter interesting to the copper oxide planes there is

no evidence for phase separation. Within the mean-field theory of our fermion-spin approach,

we find that the phase separation is robust for the t-J model, and the phase separation

manifests itself at the mean-field level by a negative compressibility (slope of the chemical

potential). The total energy Etotaj and the chemical potential /i as a function of the doping

S for tj J = 5 is plotted in figure 6, which shows that the phase separation occurs roughly at

dopings 6 < 6e = 0.08. In this doping range (6 < Sc), the compressibility of the t-J model
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is negative, and therefore the magnetized flux state with long-range order is unstable. The

range of the phase separation will be reduced by considering the frustrations of spins [51],

VI. SUMMARY AND DISCUSSIONS

In this paper, we have developed a theoretical framework, fermion-spin approach, to

study the low-dimensional t-J model. In this approach, the physical electron is decoupled

as a product of a spinless fermion (holon) and hard-core boson (spinon). The main advantage

of this approach is that the on-site local constraints of the t-J model or the large U limit

Hubbard model can be treated exactly in analytical calculations. In this framework, we

have shown that the holon behaves like a spinless fermion, while the spinon is neither boson

nor fermion, but a kard-core boson, and the sum rule for the physical electron is obeyed.

This is not true for the conventional slave-particle theories, where the spinon behaves like

boson (slave-boson approach), or fermion (slave-fermion approach), and the sum rule for the

physical electron is not obeyed within the decoupling scheme [24].

We have applied this approach to study the low-dimensional t*J model.

In the ID ise, we have obtained gapless spinon and holon spectra, a good ground

state energy, and a reasonable electron-momentum distribution within the MFA. Thus the

ground-state in the fermion-spin formalism is in some sense closer to the Bethe-ansatz Lieb-

Wu's exact wave function of the ID large U limit Hubbard model than the slave-particle

approach. It is shown that the spinon and consequently also the physical electron behave

like Luttinger liquids. We have also obtained the correct asymptotic form of the spin-spin

correlation functions as well as the electron-momentum distribution function of the ID t-J

model within the fermion-spin approach by considering the string effects, with results in

agreement with the exact numerical simulations of the ID large U limit Hubbard model

obtained by Ogata and Shiba [5],

The ID problem is a good testing ground where the charge and spin are truly separated

(not in the literal sense of product of spinon and holon, but rather as independent collective
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excitations) and the Fermi liquid theory fails to describe its physical properties. To our

knowledge, neither the standard perturbation theory, nor the conventional slave particle

approach is capable of handling this aspect. Our results of the MFA seem to hint that the

fermion-spin approach has some potential to further explore.

The results for 2D are also very encouraging. The magnetized flux phase with a gap

proportional to the staggered magnetization, in the spinon excitation spectrum, has the

lowest energy at half-filling in the MFA. However, this AFLRO fades away at 10 -=-15% hole

doping for t/J = 3—5, beyond which a gapless flux state becomes stable. This result agrees

with experiments and numerical simulations [49,50,22]. It is essential that this mean-field

result was obtained without any adjustable parameters. This means that the formalism

itself is powerful enough to handle the frustration (delocalization) effect of the i-term in

destroying the AFLRO favoured by the 7-term. However, we should mention that the spin

excitation spectrum at half-filling is not gapless in this approach within the MFA as it should

be (spin waves). Both Laughlin's approach [43] and Hus's treatment [46] suffer from the

same weakness. Probably, it can be cured by including vertex corrections.

As mentioned in Sec. II, this formalism doubly counts the empty site by assigning a

"spin" to it. As shown there, this defect can be cured by introducing a projection operator

to remove the extra degrees of freedom. However, in our mean-field treatments we have not

taken this projection operator explicitly into account. The fact, that we still obtain very

good results as summarized above, indicates that we are not making substantial errors by

allowing this extra degree of freedom, at least in problems considered so far.

A natural question is: What is the reason why this simple-minded transformation is

so useful. To our present understanding, there are, at least, three reasons: (1) The local

constraint is exactly satisfied even at the mean-field level. (2) The hard-core nature is kept

in the calculation via the Jordan-Wigner transformation in ID [25] or its generalization in

2D [26]. (3) The representation of the hard-core boson in terms of spin raising and lowering

operators is essential, because whenever a hole hops it gives rise immediately to a change

of the spin background as a result of careful treatment of the constraint given in Sec. II B.
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This is why the t-term is so efficient in destroying the AFLRO. Of course, there are many

open questions in this approach, e.g., how to go beyond the MFA, what is the gauge field in

this approach and what are its major effects and so on. These and other related issues are

under investigation now.

After submitting the original version of this paper, we found Ref. 56 where a similar

approach was used to study the normal state properties of oxide superconductors. Apart

from the difference in issues addressed in our paper and theirs a careful reader could easily

discover the substantial distinction in the interpretation of transformations used in these

two papers.
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APPENDIX A: MATRIX REPRESENTATION OF THE PROJECTION

OPERATOR

T h e h o l o n o p e r a t o r s / t f a n d h i n t h e b a s i s I I . I I o f h o l o n s t a t e s a r e g i v e n b y

Vo/fc \l ,
0 1

0 0).• ' - C (Al)

while the spin raising and lowering operators 5 + , S in the spin 1/2 space

are given by

/ 0 1\ / 0 1

s+ = , s~ =
o / . Vo o

:); o.
(A2)

In the product space |We) ® |spin) the basis vectors are

U,T) =

|o,T) =

0

0

o
/o

o
l

V o /

, li,I) =
1

0

(A3)

which form a complete set.

The fermion-spin transformation denned by Eq. (7) gives the following matrix represen-

tation for the fermion operators

/o o o rj\

0 0 1 0
CT =

/i, 1\ /0 0\
= ®

Vo o/, \ i o/. o o o o

o o o o
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On the other hand, there
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constrained

(A4)

Hiibert space

(A5)

To remove the extra degrees of freedom in the |Me)® \spin) space, we introduce a projection

operator P. By requiring P|1,T) = P\\,l) = |0), P\0,t) = I T), and P|0,|) = I i), one can

easily find its matrix representation

(A6)

and its hermitian conjugation

/ I 0 0\

1 0 0

0 1 0

,0 0 1/

Using this projection operator, the electron operators in the restricted Hiibert space are

given by

(A7)
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' 0 0 0

C/t = PhS+P^ = I 1 0 0

0 0
'0 0 0\

0 0 , (A8)

J 0 0;

as quoted in Eq. (11). It is then straightforward to verify the operator relations quoted in

the main text Eqs. (12) and (13). In particular, the hole number operator

/ I 0 0 \
1 I

0 0 0 = | 0 ) ( 0 | = - P ( | l T){1 T 1 + |1 I K * i ))P • ( A 9 )

^0 0 0 /

The physical meaning of Eq. (A9) is transparent: The empty state should be counted

only once, not twice. Since in the mean-field treatment the constraint on average doping

concentration 6 is imposed directly on h^h, the sum rule for the physical electron is satisfied.
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FIGURES

FIG, 1. The momentum distribution of physical electrons in the mean-field approximation

obtained by the fermion-spin transformation proposed in this paper (solid line) in comparison

with corresponding curves in the slave-boson (dashed line) and the slave-fermion (dot-dashed line)

approaches. The doping concentration S = 0.5. .

FIG. 2. The spin background is assumed to be an antiferromagnetic state for the J > 0 case

of the ID t-J model. The t-J chain ia squeezed and the spin configuration is rearranged due to

the spin-up electron hopping: (a) Before hopping, when the holon is at site i. (b) After hopping,

when the holon has hopped to site i + 1 from site i, while the spinon has hopped to site i from

site i + 1. The spin polarization directions to the left of the hole are already optimized by the

fermion-spin transformation, but there is still a hole in the chain, (c) Squeezing out the hole from

the t-J chain. After this squeezing, the spin configuration is not optima! to favor the lowest spinon

energy, (d) Rearranging the spin configuration from -oo to site t to favor the lowest spinon energy.

The situation for the spin-down electron hopping is simitar.

FIG. 3. The momentum distribution of physical electrons in the mean-field approximation ob-

tained by the fermion-spin transformation with the string fields (solid line), and without string fields

(dot-dashed line), in comparison with the corresponding curve in the conventional CP1 approach

(dashed line) (see Ref. 24). The doping concentration 6 = 0.25.

FIG. 4. (a) The staggered magnetization, (b) the orbital current order parameter x, and (c)

the order parameter (j> as a function of the hole concentration 6, for t/J=5 (solid line), t / J - 3

(dashed line). MF means magnetized flux phase with long-range order, while DF is the disordered

fiux phase.

FIG. 5. Specific heat data as a function of temperature T (in units of J) at the hole concen-

tration 6 = 0.2 for t/J - 3 (solid line), t/J = 5 (dashed line).

FIG. 6. The total energy Et0tai (dashed line) and the chemical potential ji/3 (solid line) as a

function of doping 6 for t/J = 5. The range of the phase instability is roughly 0 < i < 0.08.
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