
A P P L I C A T I O N S OF A M A P P I N G P R O C E D U R E TO N U C L E A R 
A N D N U C L E O N S T R U C T U R E P R O B L E M S 

F. Catara a f t and M. Sambataro" 

a) htituto Nazionale di Fisiea Nucleare - Sezione di Catania 
Corso Italia 57, 95129 Catania 

Italy 

b) Diparlimento di Fisica delt'Universita 
951S9 Catania, Italy 

ABSTRACT 
We illustrate a mapping procedure which has been applied both for 

deriving boson images of fermion operators and for constructing nucleon 
images of quark operators within the framework of the non-relativistic 
quark model. We discuss in particular an application referring to the 
latter case. Starting from the one-body quark density operator, we 
calculate the one-body and two-body parts of its nucleon image and 
calculate their expectation values in the ground state of the doubly 
magic nuclei l c O and 4 "Ca. We analyze the role of quark exchanges 
between nucleons. We also investigate the effect on the quark density 
of short-range correlations in the nuclear wave functions as well as of 
variations in the nucleon size. 

1. Introduct ion 

Mapping procedures have found a great number of applications in the recent 
past especially in connection with the investigation of the microscopic foundations 
of the Interacting Boson Model 1. Here, these procedures have attempted to es­
tablish a link between two different spaces: on one side, the subspace of the full 
shell model space spanned by "collective" pairs of nucleons of angular momentum 
J=0 and 2 (S and D pairs, respectively) and, on the other side, a space spanned by 
elementary bosons of angular momentum J = 0 and 2 (s and d bosons, respectively). 
For any given fermion operator acting in the SD space, the mapping procedures 
have searched for an "image" operator in the sd space. In such a way, it has been 
possible to relate phenomenological parameters attached to IBM operators directly 
to the fermion countepart 2. 

There is a well different scenario which shares, however, a strong analogy 
with the one just discussed. This is offered by the поп-relativistic quark model 
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of the baryons3. According to this model, baryons are clusters of three quarks, 
each of them carrying colour, spin and isospin degrees of freedom. Quarks interact 
via a potential whose main terms are a confining and a hypcrfine term. The 
former is responsible for the confinement of the quarks within file baryons while 
the latter simulates the exchange of one gluon between quarks and is analogous to 
the electromagnetic potential describing the exchange of one photon in QED. 

It is by now clear the analogy with the former IBM scenario. Once the struc­
ture of baryons in terms of quarks is known, one can attempt to establish a cor­
respondence between two spaces: on the one side the space whose states are built in 
terms of clusters of three quarks and, on the other side, the space whose states are 
built in terms of the corresponding elementary baryons. It becomes then possible 
to construct baryon operators starting from the quark level. 

In this paper, we will discuss a mapping procedure which has the interesting 
feature of being applicable to both the scenarios illustrated so far. For reasons of 
space, we will review the main points of it already in the quark case. However, 
it will be realized that with only some necessary changes the procedure is aleo 
suitable to describe the IBM case. Applications concerning this case can be found 
in Ref.4 . In the following, we will limit ourselves to illustrate the most recent 
application of the mapping procedure which refers to the case of the one-body 
quark density operator3. We will construct the one-body and two-body terms of 
its nucleon image. In terms of these, we will study the space distributions of quarks 
in doubly magic nuclei like 1 G 0 and 4"Ca as they are predicted jointly by the shell 
model of the nucleus and the non-relativistic quark model of the nucleon. The 
comparison between the calculations with the one-body and the two-body nucleon 
terms will give us informations on the role of quark exchanges in different nuclear 
systems. We will also examine the effects on the quark distributions of short range 
correlations in the nuclear wave functions as well as of variations in the nucleon 
size. 

The paper is organized as follows. In Sect.2, we will review the main lines of the 
mapping procedure to construct nucleon images of quark operators. In Sect.3, we 
will show an application of the procedure to the one-body quark density operator. 
In Sect.4, we will calculate quark distributions in nuclei and look into the effects 
of short range correlations and nucleon size. Finally, in Sect.5 we will summarize 
the results and draw some conclusions. 

2 . T h e procedure 

The mapping procedure which will be used to construct the nucleon image of 
a quark operator is described in detail in Ref. 6. Here, we will only resume the 
main points. 

We treat quarks by means of creation and annihilation operators gt(r), g,(r). 
where n = {e,J,f} stands for the colour c, the spin and isospin projections « and 
t, respectively. They obey the usual fermion commutation relations 

Ыг).^;'(г')} = <W*(»•-*,) . (i<0 
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{g,w,9,.(r')}={?;( r)-9;'( r')}=o . w 
wheie{A,B} = AB + BA. 

Restricting ourselves to protons and neutrons, we only introduce up and down 
quarks which are characterized by isospin 1/2 and projections t = 1/2 and t •= 
— 1/2, respectively. By means of these operators, we construct operators N*T(R) 
which create clusters of three quarks in a colour singlet state, with total spin 1/2, 
isospin 1/2 and projections <r and т, respectively, and with center of mass in В.. It 

"" (в ,=йЛе5>. fT-л 

x £ ^f{^s1^a2\S31+s2){Ssl-\-S2-3u\-a) 
*l*3":i S 

1 1 . „ . , , „ . . 1 , 1 
* £ ИФч**[Til+l2)[Tti + h 2 h ' 2 T ) ( 2 ) 

x у drjiZMMfri 4- r 2 + r 3 - SRjlHrbra^ajRJjJ^nJgJ^raJg^tra). 

Here, e r ,e 7 c 3 is the totally antisymmetric tensor of rank 3 and П(г1,Г2,Гз;Н) de­
scribes the spatial distribution of the quarks in the cluster and is fully symmetric 
under permutation of г 1 }Г2,гз. 

We take fl(ri, r 2 , r 3; R) to be the product of three gaussians in the coordinates 
of the quarks relative to the center of mass of the cluster 

n ( r 1 , r 2 , r 3 ; R ) = ? ^ e - ^ l ' " - R ) , + ' " - R ' ' + < ^ - a > , l . (3) 
7 Г 3 ' 2 

The normalization is chosen such that 

< 0,|JV„(R)JV*,r,(R')|0, > = S„„.6Tr.6{tL - R') , (4) 

where \Qq > represents the vacuum of the quark space. 
We notice that, although they describe nucleons, cluster operators (2) do not 

obey fermion commutation relations of the type (1) because of their composite 
nature. 

We call NA the space of nucleon clusters which is spanned by states of the 
form 

< r , ( R . ) < r , ( R 2 ) - - - < i r . , ( H * ) | o , > • (5) 

Similarly, we introduce creation and annihilation operators n* r (R) , n „ r ( R ) for 
elementary nucleons. They do obey commutation relations of the type (1). We call 
nA the space spanned by the states 

»I ,r 1 (Ri )n* ,„(R ! ) . . .n i . i r . 1 (R.4) |0 n > , (6) 
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where |0„ >- is the vacuum of the nucleon space. States (6) are formally obtained 
from states (5) by replacing cluster creation operators W,J r(R) with nucleon cre­
ation operators njt r(R) and the quark vacuum with the nucleon vacuum. This 
correspondence is such not tu preserve the orthogonality relations between corre­
sponding states. 

The procedure to construct a nucleon image of a quark operator W4 goes 
through two main steps. In the first, one defines a new quark operator WJ* 
exactly equivalent to \V„ within a given quark space NlA) and such not to lead out 

of this space. In the secund step, one constructs a nucleon operator Wn whose 
action on a state of n l A ) is formally identical to that of the operator Wq~ on the 
corresponding state of JV1 AK This guarantees that if |ФЧ > is an eigenstate of Wq~ 
in / V t 4 1 with a given eigenvalue, the corresponding state |Ф„ > in n^A' is also an 

eigenstate of ff')t with the same eigenvalue. 
As a consequence of the non-unitarity of the correspondence between states 

(5) and (6), the nucleon operator so constructed is, in general, non-hermitian. 
However, it was shown in Ref.(6) that, by means of an appropriate transformation, 
this undesired feature can he removed. 

As a general result, the nucleon operator which is constructed is a sum of one-, 
two- A-body terms, if A is the number of cluster of the system under study, 
i.e. 

w,*], fi*11 + if<2> +... + fiy . (7) 
Such a complicated structure is determined by the need of simulating in a space 
of A elementary nucleons the complicated quark exchange dynamics within the A 
clusters. Each of the A terms contributing to form the nucleon image is linked to 
a different physical process, the one-body term reflecting only the quark dynamics 
within one cluster, the two-body term the quark exchanges between two clusters, 
etc... . 

Of course, evaluating the exact nucleon image when A is large becomes quite 
difficult and therefore some approximations are required. By limiting ourselves to 
processes which involve at most exchanges of quarks between two nucleons, only the 
one-body and two-body terms of (7) are needed. These operators are characterized 
by the following matrix elements in the n 1 and n2 spaces 6: 

< 0„|n,,. 1 . .(H.')iv, ( , ,V„ r(R)|u„ >==< 0, |JV„. r . (R') i r ,JV , „ r (R) |0 , > (8) 

and 

< |-,2|Й?,1

1

2ЧГ,2' >„= / < 1,2|1',2- > - " 2 < r , 2 - | i r „ | i , 2 > , < i , 2 | l ' , 2 ' > ; " * 
•/l-,2-.I.2 * 

-. l , 2 | l T i I , | l ' , 2 ' •-„ , (9) 

where г = {R,-,<r,-tr,-}, 
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< n ( R , ) ^ r j ( R 2 ) | 0 , , > = | l , 2 > , , (10) 

< r , ( R , ) < r j ( H 2 ) | 0 „ > - | l , 2 > „ , (11) 

and where the symbol / - means integration (summation) over continuous (dis­
crete) variables i,... . 

In the following we will show practical realizations of these nucleon operators. 

3 . T h e n u c l e o n image of t h e o n e - b o d y quark density operator 

Starting point for the applications of the mapping procedure discussed in the 
previous section will be the one-body quark density operator 

? , ( ' ) = £ «$(*)«»(') • (12) 

According to eq.(8), the one-body nucleon image is 

p'„,,(r)= Y /лг<да'<о,|л'„г(Н)?,(г)лг*,г,(н')|о,>п1г(к)71„-Г'(в.') 
ггта'т' 

(13) 
and since 

< o,|JV„r(R)?,(rX,.(R')lo, >= *„.„'*r.,.*(R - a , ) ^ ^ « " * / , 1 * , R - " " . 
(14) 

it is also 

#>(r) = Y J л ^ ^ е - ^ ' ^ ' п Г л а к л а ) . (is) 

Eq.(14) gives the quark distribution in a free nucleon. 
We notice that in the limit 7 —* 00, corresponding to point-like clusters, 

? „ > ) - * 3 $ > t r ( r K r ( r ) (16) 
ITT 

which is three times the usual one-body nucleon density operator. For any finite 
value of 7 , instead, the quark distribution calculated with the operator (15) is given 
by the nucleon distribution folded with the quark distribution in a free nucleon. 

The operator (15) does not take into account any quark exchange process 
between nucleons. The simplest of these processes, the exchange of quarks between 
two nucleons, can be described in terms of the two-body term 

d , 2 V ) = j / < l , 2 | p<„ i ! ' ( r ) | l ' , 2 '>„n tn jn 2 . » i . - (17) 
4J 1.2.Г.2' 
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The calculation of the two-body matrix elements appearing in this operator, to be 
tlniK' according to eq.(9), is rather involved and we will not discuss it here (for a 
deeper analysis, see Ref. 6). By limiting ourselves to quark exchange processes 
involving at most two nuclcons, the nucleon image of the one-body quark density 
operator takes then the form 

/.„(r) A"(r)+p<,2l(r) . (18) 

4. Quark distributions in 1 ( , 0 and 4 "Ca 

We have evaluated the expectation values of the operators (15) and (17) in the 
ground state of three doubly-magic nuclei: 4 He, I 0 O and 4"Ca. Here, we will only 
show those corresponding to the last two. This ground state has been Hrst described 
within a pure nuclear shell model with harmonic oscillator wave functions. Results 
are illustrated in Figs. 1,2. where the solid line refers to the operator (18), while 
the dashed line refers to the one-body term (15) only. In these calculations, the 
harmonic oscillator parameter •) of the quark wave function (3) has been taken 
equal to 1.25 fm ', corresponding to a unci eon r.m.s.r. of 0.8 fm. The equivalent 
harmonic oscillator parameter for (he nuclear wave functions has been chosen as 
follows: 0-63 fm" 1 for l G ( ) and (1.50 fm ' for '"('a. This choice guarantees the 
correct r.m.s.r. of these nuclei. 

Figs. 1,2 clearly show the non-negligible effect of quark exchange processes in 
determining the quark distributions. This effect gets larger for the heavier nuclei 
and increases for decreasing values r of the distance from the origin of the system. 

The calculations shown so far describe nuclei as systems of independent parti­
cles. However, being quark exchange intrinsically a short range process, one can ex­
pect that hard-core correlations between interacting nucleons can alter significantly 
the results. We have investigated to which degree this happens by introducing a 
correlation function of the type 

/ (R i ,R2) = l - e - l 1 1 ' ""'I' (19) 

and replacing states (10) with states 

Л Н ь Н г ) ^ | П ( Н , ) Л Г * 1 Г Д К 2 ) | 0 „ > . (20) 

Obviously, the results which concern the one-body nucleoli operator are not 
affected by these changes. With reference to the two-body term, instead, one 
observes the modifications which arc quantified in Fig.3 for "O. Here, the solid 
line refers to the quark distributions calculated without hard-core correlations while 
the long-dashed and short-dashed lines are the results obtained by using two-cluster 
states with a = 4 and a — 2, respectively. 

The short range repulsion is found to cause a decrease of the quark density at 
small r and a consequent increase at large r. This effect is the more evident the 
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0.20 

Fig. 1 - Quark distribution in 1 6 0 as predicted by the non-relativistic quark mod­
el in conjunction with a pure nuclear shell model with harmonic oscillator 
wave functions. The solid line is the expectation value of the operator 
(28) in the nuclear ground state. The dashed line shows the contribution 
of the one-body part (15) only. The normalization is chosen such that 
JVdrp,(r) = l 

0.08 

Fig. 2 - The same as in Fig.l but for 4"Ca 
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Fig. 3 - Effects of short-range nuclear correlations on the quark distribution of 
1 0 O . Solid line: no correlations. Long-dashed line: o=4 f m - 2 in the 
function (29). Short-dashed line: a=2 f m - 2 in (29). The normalization 
is chosen such that J r 2drp,(r) = 1 
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Fig. 4 - Expectation values of the one-body term (IS) (positive sector) and of 
the two-body term (17) (negative sector) in the ground state of " 0 . 
Solid line: 7 = 1.25 f m - 1 (< r 2 > * / 2 = 0.8 fm). Long-dashed line: 
7 = 1.11 fin-1 (< r 2 > J / 2 = 0.9 fm). Short-dashed line: 7 = 1.43 inT1 

( < r 2 > » / 2 = 0.7 fm) 
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smaller is the parameter a of the correlation function (19), i.e. the more intense is 
the short range repulsion. Even for a rather intense repulsion, however, the effect 
is not such to alter drastically the quark distribution. 

As a final point, we have calculated the variations of the quark density caused 
by changes in the nucleon size. In Fig-4, one sees the expectation values of the 
operators (15) (positive sector) and (17) (negative sector) for 7 = 1.11 f m - 1 (large-
dashed line), 7 5= 1.25 f m - 1 (solid line) and 7 = 1.43 f m - 1 (short-dashed line) in 
the case of 1 G 0 . These cases correspond to nucleon r.m.s.r. of 0-9,0-8 and 0.7 
fm, respectively. For increasing nucleon radii (and constant nuclear radius) one 
observes a growing of the exchange effects at small values of r, while the expectation 
of the one-body term stays rather constant. Thus, the global effect is a reduction 
of the quark density similar to that observed in correspondence to the introduction 
of the correlation factor (19) simulating a short-range repulsion (Fig.3). In this 
case, however, the effect is only due to the antisymmetrization of the nuclear wave 
functions with respect to quarks. 

5. S u m m a r y and conclusions 

In this paper, we have discussed a method to construct nucleon images of 
quark operators. As an application, we have studied the one-body quark density 
operator. We have derived the one-body and two-body terms of its nucleon image 
and we have shown the space distributions of quarks in 1 C 0 and 4 f , C a as they are 
predicted jointly by the shell model of the nucleus and the quark cluster model of 
the nucleon. The quark distribution that one calculates in correspondence to the 
one-body term turns out to be equal to the distribution of elementary nucleons 
predicted by the nuclear shell model folded with the distribution of quarks inside a 
free nucleon. The contribution of the two-body term takes into account exchanges 
of quarks between two different nucleons. 

We have performed two series of calculations, the first assuming an indepen­
dent particle approacn and, the second, introducing short-range correlations be­
tween nucleons. We have found that quark exchange produces sizeable effects on 
the quark distributions, larger for the heavier elements and increasing for decreas­
ing values of the distance r from the origin of the reference system. We have also 
seen that short range correlations can appreciably modify the quark distributions 
in the sense of shifting them torwards large values of r, without however causing 
drastic alterations. Finally, we have analyzed the variations of the quark distribu­
tions caused by changes in the nucleon size and found that an increase of this size 
gives rise to effects similar to those produced by the short-range correlations. 

To our knowledge, one can find in literature only another calculation of quark 
observables in nuclear systems of comparable "size" as those studied in this paper. 
This is contained in the recent work of Yamauchi, Buchmann, Faessler and Arima 7 

on quark exchange currents in nuclei. Their inspiring philosophy has been the same 
as o u r s 5 , 6 , namely that of constructing an effective nucleon operator starting from 
a quark one and their procedure has been based on the Resonating Group Method. 
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So Гаг, we have kinked intci space distributions of quarks in nuclei. With only a 
few changes in the formalism we are in a position to examine also quark momentum 
distributions. The importance of quark exchanges in modifying these distributions 
and the consequences that these can have on the nuclcon structure function have 
already been pointed out in connection with the EMC effect 8 , 9. However, these 
calculations have concerned either very small systems, namely A=3 systems 8 , or 
nuclear mat ter 0 . Our formalism allows the extension of this analysis to more in­
teresting intermediate situations. We expect that the not negligible role of quark 
exchanges found in the coordinate representation will be confirmed in the momen­
tum representation ant. we therefore hope that these calculations can provide a sig­
nificant contribution tn the understanding of this interesting nuclear phenomenon. 
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