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Abstract: 

The properties of finite nuclei are investigated in the framework of a chiral field 

theory using relativistic mean field approximation. It is shown that, in contrast 

with the conventional point of view, the normal type solutions for finite nuclei do 

exist. We have obtained these solutions and used them to calculate the nuclear bulk 

properties with two adjustable parameters. The mean field normal solutions are not 

so far from the observed nuclei. Theory simultaneously contains also configurations 

of abnormal type which in some cases may appear to be much more strongly bound 

than those of normal type. However, for the conventional values of the scalar meson 

mass m„ (~500 MeV) only one possibility remains - that of a normal configuration. 

76 



1. Introduction 

Relativistic quantum field theory is widely used now to describe nuclear matter 

and finite structures, the Lagrangian density of the system including nucleon and 

meson degrees of freedom on the same grounds [1)2]. Many essential results were 

obtained in the framework of this approach, in particular, self-consistent calcula­

tions were carried out for finite nuclei both in the Hartree [3,4] and Hartee-Fock 

approximations [5]. 

Relativistic quantum hadrodynamics has been used also to study JTN scattering 

(the additional mesons (IT,/>...) being included). As appeared, in this framework it 

is possible to obtain successfully low-energy pion dynamics in free space. However, 

the same dynamics, extrapolated to the nuclear medium, cannot be reasonably 

described. To ensure reasonable pion dynamics at finite density, it is necessary to 

impose some kind of chiral symmetry. 

So it appears to be essential to consider consequences connected with the invari-

ance of the Lagrangian density describing the interacting meson and nucleon fields 

relative to the chiral symmetry in addition to the conventional isotopic symmetry. 

After papers [6,7] interest to investigations of chiral models [8-11] considerably in­

creased. From the theoretical point of view the chiral invariance introduces essential 

limitations on the processes with strung interactions both in the empty space and 

in the nuclear medium. In particular, it is believed now that chiral models may 

provide a new treatment of saturation problem in nuclear matter. 

There are several different realizations of the chiral symmetry. Here we shall 

restrict ourselves to investigation of a chiral model including nuclcon, scalar and 
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rector fields. In this case it is possible to establish the relationship between the 

chiral approach and the conventional Dirac phenomenology for atomic nuclei. 

The standard chiral ff — w theory does not have a saturating normal matter 

ground state, the theory being considered in a mean field approximation (MFA) 

[7,12,13]. It is possible to avoid this difficulty introducing the vector field ш й by 

Higg's mechanism [12]. If one allows for a coupling between the meson fields, 

bifurcations disappear and a saturating equation of state can be obtained. In [12] 

the w-meson mass is determined dynamically: it appears (as well as the nucleon 

mass) as a result of spontaneously broken chiral symmetry. 

We shall start from the following Lagrangian density 

— C— 
L = ^(17*0,, - дл***? - W*(r) - 1д„у$тж)ф + — ф'у1*[уйт[<гдрп - nd^ff) + т.7г х дртг\ф 

+±№.«ev+а,9вчц - ^ A ^ + # - /С'Г 3 !!Ь 2 (i) 
2 8/5 m„' - m£ 

+/>rm* <r - i ( 6 > „ - д ^ К а - о , " - 8"a.") + \G\k? + *г)и2, 

with С = (дл — l)/,TZi дл being the nudeon anal-vector form-factor. / » is the 

vacuum value of the scalar field which determines the weak interaction pion decay 

rate. The upper arrows refer to isotopic space. Note that the terme proportional 

to " C are considered to account for deviation of the axial-vector form-factor дл 

from unity. Higg's type treatment of the ui-meson used by Boguta [12] may 

be considered as a simple and elegant way to ensure saturation within the linear <r-

model. As far as we know, such approach does not contradict any physical principle. 

Thus we employ this model for practical reason. 

Lagrangian (1) contains a symmetry-breaking term /*m*<r = e<r introduced 

78 



into the chiral approach to obtain the observed value of the pion mass. The p-

meson is not included into consideration in eq.(l) since we study the mean-field 

approximation to N=Z nuclei, and p-meson should not be taken into account in this 

case. 

Lagrangian density (1) was considered in [12,13] (we use the conventional nota­

tions here) for the case G„ = c u , which will be referred to in what follows as Model I. 

The authors [12,13] succeeded to describe the ground-state properties of nuclear mat­

ter (E/A=-16 MeV, po = 0.145/m" 3 ,M*=0.78M) with the following values of the 

parameters 0^=8.35, m f f=650 MeV (in the framework of the theory considered there 

is a relation connecting two coupling constants ды and ga: flj = G j , ^ - , m „ = 783 

MeV). 

Two points must be outlined. The first one is that the valus c' the nuclear mat­

ter compressibility at saturation predicted by the theory considered here is rather 

large (K=650 MeV). But a large value of the compressibility is a common feature 

of relativistic models used in MFA. The second point is that the value of the cou­

pling constant ga in Model I does not correspond to the value obtained from the 

Goldberger-Treiman relation [g„ — f~ = 10.6, дл being the axial form-factor). To 

overcome the latter difficulty, in papers [14] there was introduced another version 

of the theory which allows G u ф g u (j / = ^"0 (Model II). The ground-state nuclear 

matter properties were also reproduced in Model II (E/ A=-16 MeV, po = 0 . 1 7 / m - 3 ) 

with two adjustable parameters: m„=883.6 MeV, n = 1.385 (ga was taken equal to 

10.6 which corresponds to the correct value of £л=1.25). 
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2. General theory and results 

In [12,13] finite nuclei were investigated in the framework of the Lagrangian (1) 

though only abnormal states with properties drastically different from the observed 

ones could be found by the authors for finite structures. 

As our calculations have shown, Lagrangian (1), due to strongly non-linear char­

acter of the model, may contain simultaneously self-consistent normal and abnormal 

solutions. 

Let us consider the Lagrange-Euler equations corresponding to the Lagrangian 

density (1) (for H = 0), the Coulomb potential Аа(т) being added for protons [14]: 

[S.p + 0M'(T) + V(r) + i e ( l + Т , ) А , ( Г ) ] ^ А = Ехфх, (2а) 

w w + * 4 £ * W ( r > + m l { M _ ™sigLt«] -

= glp.(r)-M-(r)^-V2(r), (Щ 

V ° V W - ¥?M«(T)V(T) = -glp[r). (2c) 

V2A„(T) = -ePrlr), (2d) 

where M"(r) =g„<r =M+S(r) is the nucleon effective mass, p(r) is the vector 

and р.{т) the scalar - density. It should be noticed that the pion field equals 
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zero in the mean field approximation. However, even in this case the role of chiral 

symmetry is essential. It is revealed by the fact that the strength of the <rN coupling 

as well as the non-linear (г-terms are uniquely determined by the irN coupling and 

is also manifested by the structure of the field eqs. (2), in particular, for the tr-field, 

the chiral partner of the pion field. 

Both normal and abnormal solutions satisfy eqs. (2a)-(2d). To be complete, 

we start from discussing some properties of abnormal solutions. Let us consider the 

simplest nucleus - *He. Abnormal solutions in this case have been investigated in 

[13]. The authors established two types of abnormal solutions for *He: abnormal 

solution with negative value of the total binding energy (Т.В.Б.) and abnormal 

solution with positive value of Т.В.Б. We shall not discuss the latter case anymore. 

As for the first type of abnormal solutions, it demonstrates a shell-like structure, 

most of its mass being concentrated on the nucleus surface. The existence of this 

solution is connected with possibility for a scalar field to have a kinky cor, "guration. 

In all these points our calculations reproduce the results of [13] (in the latter case 

only Model I was considered). 

It should be emphasized that while the authors of papers [12,13] have succeeded 

to obtain the abnormal solutions for *Be, they have missed the case (probably more 

interesting) corresponding to the normal nuclear configurations. Let us consider this 

case in more detail. Our self-consistent results for the normel structure of *He are 

given in Figs. la,b (Model I). The charge density distribution and values of V(r) 

and M'(T) are reproduced in Fig. l a while in Fig. l b the upper component GN(T) 

and the component FN{T) of the wave function of normal l« i / j state of *He are 
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Fig. la. Charge density 
distribution over p0, V(r)/M 
and Jtf*(r)/M for the normal 
solution in 4 Я е for Model I 

(fm) 

Fig. lb . The upper 
component Gjv(r) and the 
lower component FN{T) of 
the wave function of the 
normal l a j / 2 state of 4 # e 
are compared with the 
components вл[г) and FA(T) 
of the same state but for the 
kinky abnormal structure 
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compared with the functions £?л(г) and FA(r) of the same state but for the kinky 

abnormal structure. The r.m.s. charge radius for the normal solution in *Hc is 

equal to 1.84 fm (Model I) and to 1.62 fm (Model II). 

Let us emphasize that the results presented above for normal states are in ob­

vious contradiction to the conclusions of [13] where no normal solutions had been 

obtained for finite nuclei. Moreover, normal solutions are stated in [13] to be com­

pletely impossible in the framework of the chiral field theory based on the Lagrangian 

density (1). This assertion could be considered valid if the non-linear boundary prob­

lem treated in [13] had a single solution only. But this is not the case since, as our 

calculations have shown there exist self-consistent normal type solutions as well. 

In this situation the question arises which of the solutions obtained (normal or 

abnormal one) may be considered to describe the nuclear ground state. It should be 

answered basing on the energetics argument. To receive the answer, we have calcu­

lated the total binding energy corresponding to the normal and abnormal solutions 

using the following formula: 
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Table 1. Single-particle binding energies (in MeV) in 1 6 0 for protons and neutrons 

(normal solutions) 

i e 0 

Model I Model II Experimental [15] | 

P n p n P " | 

l s l / 2 33.22 38.04 40.72 45.93 40 ± 8 47 | 

lP3/2 17.38 21.81 23.19 28.10 18.4 21.8 | 

lPl/2 14.29 18.72 18.95 23.92 12.1 15.7 | 

Table 2. RMS charge radii for "O 

1 1 6 0 1 
1 Model I Model II Exp [16] | 

rch | 2.56 2.33 2.73 | 
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The following results for the total binding energies have been obtained for *He: 

-27.5 MeV (Model I) and -57.5 MeV (Model II) for normal solution, +17.4 MeV 

(Model I) and -551 MeV (Model II) for abnormal one. Let us mention here that 

the chiral symmetry breaking term m\f*<r in eq. (1) may drastically influence the 

behaviour of the abnormal solutions, the total binding energies, in particular (for 

example in the case m\ = 0 the result of Boguta [12) -80 MeV for T.B.E. has been 

reproduced in our calculations for the kinky abnormal solution in Model I (Model 

II was not considered in [12,13])). We have solved eqs. (2a)-(2d) self-consistently 

and calculated ^ j 1 , the term m2

nfna in eq.(l) always being taken into account. 

It must be emphasized also that the predse value of T.B.E. is rather sensitive 

to the value of the step of integration, the latter has been chosen to be equal to 0.05 

fm in the calculations mentioned above. 

Now we consider our results for l s O with the values of parameters fitted to 

reproduce the nuclear matter ground-state properties. In this case we have received 

three solutions: two types of abnormal solutions and one normal solution (while the 

authors of [13] have succeeded to receive only one solution in this case). 

As for normal solution for 1 G 0 (missed in [12,13]), we have obtained the single-

particle energies, density distributions, r.m.s. charge radii (see Tables 1, 2 and 

Figures 2, 3) which qualitatively reproduce the corresponding values for observed 

nuclei. For example, the total binding energy corresponding to the normal solution 

in " 0 is equal to -139.3 MeV (Model I) and -200 MeV (Model II) for the physical 

values of the coupling constants. The deficiencies of some of these results are evident, 

however, we shall outline them: the calculated charge densities do not reproduce 
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Fig. 2. Charge density distributions for the normal solution 

in l e O . (Solid curves: experimental values from ref. 

17 (see also [18]), /Model I, //-model II) 
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S-dotted line, V+S -continuous line) 
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the data well, especially for Model II; the spin-orbit splittings are too small, by a 

factor of 2, and worse for Model I; the single-particle binding energies are too large, 

especially for Model II. We have received results with normal solutions also for i0Ca 

but we do not reproduce them here since qualitatively they are quite similar to those 

for i e 0 . 

For 1 6 0 we have obtained two types of abnormal solutions: 1) the abnormal 

solution with a barrier at the origin for the scalar field, and 2) the abnormal solution 

with kinky configuration of the scalar field. As for abnormal self-consistent solution 

of the first type in 1 6 0 we have just reproduced the result presented in Fig. 6 of [13]. 

(Let us mention that in this case we used mK = 0 to compare our results directly 

with those of ref. [13]). For small values of ди this solution is very strongly bound, 

Fig. 6 in [13] corresponds to gT = jjj- = 0.3, in this case Т.В.Б. for i e O is equal 

to -9302 MeV, however this solution ceases to exist for physical strength of vector 

repulsion gr ~ 0.83. In this point we agree with the results of [13]. 

For 1 6 0 we have obtained also the abnormal solution with a kinky configuration 

of the scalar field (see Fig. 4). This solution was also overlooked in [13] (moreover, 

it was considered there as non-existing one for all values of дш). Probably in this 

case the statement of paper [12] concerning the matching condition for the wave 

function on the boundary of a square well was misleading. As seen from Fig. 5, 

the total binding energy of abnormal structure may be very large. This structure 

may be much more strongly bound than the normal configuration. However, at the 

present stage the case with the physical value of J j is not completely unambiguous 

(see the discussion below). 
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Fig. 4. Kinky abnormal solu 
for Model I with f* : 

on in " 0 
3.5 
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Fig. 5. Dependence of the total binding energy and that of the energy of 1рз/г level in 

the kinky abnormal structure of " O (the latter level being the highest one for 
the abnormal configuration) on the value of f£ 
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Now we discuss some computational aspects of the problem considered. In all 

calculations presented here we use a standard fourth-order Runge-Kutta method to 

resolve the Dirac equation (2a). In a numerical iterative treatment of the system 

of nonlinear differential equations (2a)-(2b) special care was taken with respect to 

convergence, dependence on start value, etc. 

As starting point for the normal solutions, we approach S(r) and V(r) by two 

Woods-Saxon potentials with S(0)=-180 MeV and V(0)=+140 MeV. At each iter­

ation we only take 20% from new potentials. Self-consistency was achieved at ~60 

iterations for Model П, the procedure converges more rapidly in the case of Model 

I. Convergence is very good for both cases. 

As for kinky abnormal solutions, in this case it is possible, for example, to 

take the initial approximation for the scalar field prompted by the corresponding 

configuration obtained in [13], and the initial approximation for the vector field -

in the conventional Woods-Saxon form. Very good convergent, was achieved in our 

calculations for abnormal solutions in *He at less than 60 iterations. 

As for kinky abnormal solutions in " O , we must emphasize the following points. 

We have established unambiguously that in this case self-consistent solutions do exist 

and we have obtained them (see Fig. 4) for values of J j smaller than the physical 

value (up to ~3.5) . Self-consistency is achieved, the convergence being very well 

established. To obtain the results with higher accuracy, one needs only to further 

increase the precision of the computer facilities (in the present calculations we have 

used WAX-8350, with double precision). As for values of | j close to the physical 

value 3.858, regrettably, the result is not so unambiguous, convergence is not so 
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good in this case and it is hardly to say if this fact is connected ivith the computer 

precision available or with the actual absence of the kinky abnormal solution in 1 6 0 

for the physical value of дш. 

It should be noticed also that behaviour of kinky abnormal solution is much 

more dependent on the details of calculations than that of a normal one. In par­

ticular, the T.B.E., position of lp 3/ a-level in leO (this level is the highest for the 

abnormal structure) axe rather sensitive to the value of | £ . This fact is illustrated 

by Pig. 5. The T.B.E. for abnormal solutions are sensitive also to the value of the 

step of integration, the latter value was taken to be equal to 0.05 fm in calculations 

for abnormal solutions. 

Up to the present we have carried out investigations in the framework of two 

chiral models which have been used recently. We would like to emphasize the points 

in which previous investigators [12,13] were far from being complete. 1. The authors 

of [12,13] obtained kinky abnormal solutions only for 4 t f e and rejected existence of 

abnormal solutions of this type in 1 6 0 . We have obtained kinky abnormal solutions 

in the latter case also (see Fig. 4) undoubtedly for the values of the f j up to ~ 3.5. 

2. While the authors of ref. [12,13] have succeeded in some cases to obtain the 

abnormal solutions, for all nuclei considered they have missed the case (probably 

more interesting) corresponding to the normal configurations, 3. The chiral models 

considered in this paper have a common feature of a very large scalar mass value. 

However the ground-state properties of nuclear matter in the framework of the 

same approach may be obtained with smaller values of m f f | for example, m<r=500 

MeV. Our calculations have shown that in this case the kinky abnormal solutions 
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cease to exist both for 4 Я е and I 6 0 even for rather small values of g^. So for 

more conventional values of m,, only one possibility remains - that of the normal 

configuration. 

3. Summary 

Some properties of a chiral model have been investigated in the framework of 

a relativislic mean field approximation for finite nuclei. Following conclusions may 

be formulated. 

1) It is for the first time that in the framework of a relativistic chiral model a 

normal-type solution is shown to exist and is obtained for finite structures. 

2) The normal type solution was used to calculate the nuclear bulk proper­

ties: charge density distributions, r.ra.s. radii, single-particle energies, total binding 

energies, the values obtained arc not so far from the observed nuclei. 

3) We have shown that in the case of 4 f f e the normal-type solution for Model 

I corresponds to the ground state of this nucleus. 

4) Theory simultaneously contains also configurations of abnormal type which 

for large values of ma in some cases may be much more strongly bound than those 

of normal type. 

5) However, for: -»re conventional values oima (~500 MeV) only one possibility 

remains - that of a normal configuration. 

6) The model considered in this paper presents one of many possible ways to 

take into account chiral symmetry. In paper [19] the authors have developed a linear 

chiral tr-model where the scalar field includes two contributions - one is the chiral 
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partner of the pion and the other is due to the correlated two-pion exchange in 

the scalar-isoscalar channel; this approach is of considerable interest and deserves 

further investigation. 

7) It is natural that this paper is not a complete investigation of nuclear struc­

ture. Particularly, exchange effects are to be included. For this reason, the results 

obtained in this paper are not ultimate and a further development of the model is 

necessary what will be subject of future papers. 
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