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1 Introduction 

Gauge symmetries are of central importance in our present theories of fundamen

tal interactions. If there is no regularization procedure which respects all symme

tries of the classical theory it is not guaranteed that these symmetries survive the 

quantization of the theory, i.e. the theory may turn out to be anomalous. The 

BRS-formalism [5, 3] allows to characterize anomalies as solutions of the so-called 

consistency equation which generalizes the Wess-Zumino consistency conditions [17]. 

This makes possible an algebraic classification of anomaly candidates without refer

ring to a particular regularization scheme. A generalization of the BRS-formalism 

to symmetries whose algebra does not necessarily close off-shell is given by the BV-

antifield-formalism [1] whose forerunner has been formulated in [12]. Surprisingly it 

took quite a long time until anomalies have been discussed in this formalism [16] al

though the BV-formulation allows to characterize anomalies analogously as solutions 

of a consistency equation which follows from the anomalous Slavnov-Taylor-Ward 

identity for the effective action [14]. 

The consistency equation is most conveniently written in terms of the fields and 

antifields and it can be shown that each of its nontrivial solutions contains an anti-

field independent part which characterizes and determines it almost completely [15]. 

Nevertheless in general the complete solution depends on the antifields resp. on the 

sources of the (generalized) BRS-transformations of the fields. The main point I want 

to make in this paper is to show that this dependence is generally nontrivial, whether 

the algebra of the classical symmetries closes off-shell or not. Namely by means of an 

explicit example I show that even in the simple and phenomenologically important 

case of four dimensional renormalizable Yang-Mills theories there are previously un

known solutions of the consistency equation which depend nontrivially on the sources 

(antifields), contrary to the common belief and to different and consequently erro

neous statements which have been given in the literature [2]. 

Furthermore I discuss the connection between the BV- and the usual BRS-formu-
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lation of theories with symmetries whose algebra can be closed off-shell by means of 

appropriate auxiliary fields. In particular it is shown that solutions of the consistency 

equation which do not depend on the antifields in the formulation with auxiliary fields 

will generally (but not necessarily) depend on the antifields in the formulation without 

auxiliary fields. This result is exemplified for the case of abelian super-Yang-Mills 

theories where it yields alternative forms of recently found new anomaly candidates 

of these theories. 

2 The consistency equation 

I shall now briefly discuss the consistency equation in the BV-formalism. An anomaly 

shows up as a violation of the Slavnov-Taylor-Ward identity for the generating func

tional T[$,q,£,b] of renormalized 1PI Green functions which depends on the classical 

fields and the ghosts, denoted collectively by $, as well as on the sources q of their 

generalized BRS-transformations, the antighosts ( and the Lagrange multiplier fields 

b. T is constructed order by order in a loop expansion 

r = £/rrw (2.1) 
n>0 

where the tree functional T^ contains the invariant classical action as well as gauge 

fixing and corresponding ghost contributions (see below). It is chosen such that T 

satisfies the Slavnov-Taylor identity in Oth order: 

BmT[0) = 0 (2.2) 

where flr(0) is the nilpotent operator 

1 J \6qA 6$A 6$A 6qA 8C,N) y ' 

In the anomalous case (2.2) cannot be extended to all orders and the Slavnov-Taylor 

identity for T is violated by an anomaly A occurring at some order I which is nonzero 
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due to (2.2) but generally not known in advance: 

BTT = A=Y,*nA(n\ l>0- (2.4) 

The lowest order contribution A^ is a local functional and satisfies the consistency 

equation 

BMAW=Q (2.5) 

which follows from the identity BrBpT — 0 since the latter and (2.4) imply Br A = 0 

whose lowest order contribution is just (2.5). Trivial contributions B^^X can be 

removed from A^ by subtracting the counterterm ft'X from T. In particular A^ 

itself can be assumed to be nontrivial since otherwise the anomaly can be removed 

up to terms of order n > I. 

In the BV-formalism T^ is constructed from the proper solution 5 of the so-called 

classical master equation which has the form 

S = S[$, $*] = Sd[4>] + ƒ dDx *1# A ($) + 0(2) (2.6) 

wher^ 0(2) collects all terms which are at least bilinear in the antifields $ ' , 5cj is the 

classical invariant action and the iP generate its symmetries. Here {$"*,$^} denote 

collectively the minimal set of fields and antifields in the sense of [1] which consists 

of the classical fields <f>\ the ghosts CA and their respective antifields1: 

{**> = {*•,£"}, {*;> = {#.<£}• (2.7) 

In order to construct T^ one first adds the term CJV&A to the integrand of 5 and 

then one fixes the gauge by means of an appropriate fermionic functional $[$,(,&] 

with ghost number — 1: 

r " , ) = ( 5 ( * , * 1 + / j D x a 4 w ) | i ; i , (2.8) 

£': *\-U-l-y<">gx, tt—H"">|£ (2-9) 

1Fot simplicity only gauge theories aie considered which are irreducible in the sense of [1] though 

everything extends straightforwardly to the reducible case as well. 
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where e(Z) denotes the grading of Z (the signs occur since I use left derivatives 

only)- Straightforwardly one shows by means of standard methods that solutions 

of (2.5) depend on the fields ('v, bs only trivially if written in terms of the variables 

{ ^ J ^ J C * , ^ } since in these variables the generalized BRS-transformations take 

the simple form 

Br(o)#A = BS*
A, Bno)^ = Bs*\, **•>£* = **, Br^fc* = 0 

where Bs is the operator 

r ,D f SS 8 8S 8 \ 
Bs = dDx 7^ -7^ - r + 7 7 7 7 T - . (2.10 

As a result we obtain 

A& = W^WWv + BrviXfaq^b] (2.11) 

where X is a local functional with ghost number 0 and W 1 solves 

B 5 W 1 [* ,$ ' ] = 0 (2.12) 

which is the form of the consistency equation discussed in [15]. Thus (2.5) reduces to 

(2.12) since B^o)X in (2.11) is a trivial contribution to A^. Furthermore contribu

tions BsY{$, $*] to solutions of (2.12) obviously correspond to trivial contributions 

BT(o)Y to A^ where Y — Y\z< and solve (2.12) since the master equation implies 

(B$)2 — 0. Therefore two solution of (2.12) are called equivalent if they differ by such 

trivial contributions: 

VV1!*,*'] ^ W 1 ; * , * ' ! t> &[*,*'}-Wl[*,*m] = BsY[W}. (2.13) 

It can be shown [15] that each nontrivial solution of (2.12) has a nonvanishing antifield 

independent part WQ[#] which satisfies 

* i W j [ * ] - 0 , W ^ j / B j X o M (2.14) 
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where Bi is an operator whose action on the $A is defined by means of the part of 

(2.6) which is linear in the antiflelds, 

BX$A = RA(*), (2.15) 

and ~ denotes 'weak equality' denned according to 

^*I~$[#1 ** ^[*]-£#] = ƒ A ^ ^ 2 * ( * ) (2-16) 

where Z*($) are arbitrary local functions of the $A and their derivatives. Notice 

that (2.14) imposes only on-shell conditions on WQ since ~ requires equality up to 

contributions which contain the classical equations of motion. 

The importance of (2.14) consists in the fact that it represents a necessary and 

sufficient condition for the existence and nontriviality of the complete solution of 

(2.12). Namely each solution of (2.14) can be completed to a nontrivial solution 

W1!*,**] = Wj[#] + 0(1) (2.17) 

of (2.12) and each nontrivial solution of (2.12) contains a solution Wo[$] of (2.14) 

[15]. This can be proved by means of a result about the cohomology of the so-

called Koszul-Tate differential which holds under appropriate assumptions about the 

classical action and the gauge transformations [13. 

3 Symmetries whose algebra closes off-shell 

It is well-known that the BV-fonnalism reduces to the usual BRS-formalism for the

ories with symmetries whose algebra closes off-shell. Let us briefly recall this fact. 

In the case of an off-shell closing algebra one can define a BRS-operator s which is 

off-shell nilpotent on the classical fields and the ghosts. The solution of the master 

equation then takes the simple form 

S = Sel {<t>} + f dDx *\ s$A (3.1) 
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and (2.8) can be written in the familiar form 

r(0) = SM + s * [ * , C, *] + ƒ dDz qA s*A (3-2) 

where s acts on (N and 6* according to s(N = bF, sb* = 0. Due to (3.2) both BS$
A 

and Bi$A agree with the usual nilpotent BRS-transfonnations: 

BS*
A = Bt*

A = ** x , s2*A = 0. (3.3) 

This implies in particular that each BRS-invariant functional J~[$] with ghost number 

1 solves (2.12) and thus represents an anomaly candidate which does not depend on 

the antihelds resp. on the sources of the BRS-transfonnations of the fields: 

5W 1 [#]=0 «• 8sW
l[*] = Q. (3-4) 

(3.4) has been investigated extensively for various theories in the literature. Complete 

results have been derived for instance in [7] for Yang-Mills and Einstein-Yang-Mills 

theories and in [8, 9, 10] for a class of globally and locally supersymmetric theories 

by means of methods which can be generalized to a large class of gauge theories [11]. 

However it is still an open question in which cases the solutions of (3.4) cover 

already the complete space of solutions of (2.12). In order to show that this is 

generally not the case I give an explicit example of a source dependent solution of 

(2.12) in Yang-Mills theory which is not equivalent to a solution of (3.4). 

Example: I consider a four dimensional renormalizable abelian Yang-Mills theory 

defined by the following integrand of a solution of the master equation: 

C = £ ( - \ Fab1?**1 + A\*daC
l) + i £ # V 2>a¥' + £ C /(¥*£/* J + T-SjW) (3.5) 

/ i ji 

where Fat/ = daAb — d^Aj are the abelian field strengths, Cl are the abelian ghost 

fields and {#>} is a set of fermions in Dirac bi-spinor notation (9 = * t7°). Si denotes 

the generator of the 7th #(l)-factor and Va denotes the covariant derivatives: 

i 
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where g^ is the charge of 9* under Sj. One may check that the following functional 

solves (2.12) and is not equivalent to a solution of (3.4): 

H>1 = £ * " ƒ < * * (C'A^i'<K*t + iCICJ(9fr*i + 9iTs¥l)) (3.6) 
iu J 

where kjj are antisymmetric constants: 

hj = ~kJt. (3.7) 

Of course the example can be extended by coupling the 9 to nonabelian gauge fields 

as well. Notice that due to (3.7) the anomaly candidates (3.6) occur only if the gauge 

group contains at least two abelian factors. I remark that the nontrivial dependence 

of (3.6) on the antifields originates in the occurrence of 75 in (3.6). Since £ does not 

contain 75-dependent contributions one of course does not expect the presence of an 

anomaly which corresponds to (3.6) in this simple model but it is not excluded that 

similar anomaly candidates exist in more complicated theories. 

4 Elimination of auxiliary fields 

Often one can close an only on-shell closing algebra also off-shell by means of an 

appropriate set of auxiliary fields. However on the one hand auxiliary fields enlarge 

the field content unnecessarily in the BV-formalism and on the other hand it is in 

practice often difficult to find a set of auxiliary fields. Therefore it is instructive to 

compare the formulations of a theory with and without auxiliary fields. To this end 

we denote by $A the classical fields and ghosts which occur in the BV-formulation 

without auxiliary fields and denote the latter by Hr. In the formulation with auxiliary 

fields the solution of the master equation has the form (3.1): 

5[$, **,H, H') = 5c/[*, H) ~ J dDx {VA s$A + H; sHr) (4.1) 

where some of the nilpotent BRS-transformations s$A of course depend on the aux

iliary fields. As the defining property of the auxiliary fields we require that the 
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'equations of motion' for the HT which follow from (4.1) after setting to zero H* have 

an algebraic solution Hr ( # ,$* ) : 

Q=
SJ^2^lEA ^ IT = **(#,#'). (4.2) 

Notice that this definition of auxiliary fields differs slightly from the usual one which 

requires only that 6Sd[$,H]/8HT can be solved algebraically for the HT. Our defi

nition is motivated by the fact that the elimination of the auxiliary fields from (4.1) 

by means of (4.2) provides directly the BV-formulation of the theory since 

S[$, *•] := 5[#, $*, H{i, * • ) , 0] (4.3) 

solves the master equation. This result is contained in the following lemma: 

Auxiliary lemma: If a local functional ƒ"[$,$*,#, Hm] is Bj-invariant then the func

tional which arises from it for HT = Hr($, $*), H* = 0 is Bs-invariant: 

BEF[$,*',H,H-}=0 =• B s i"[$,*Mf(*,**),0j = 0 (4.4) 

where Bs denotes the operator (2.10) arising from (4.3) and B§ denotes the analogous 

operator arising from (4.1) (B§ contains functional derivatives with respect to HT and 

Proof: In order to prove this lemma we introduce the notation 

£ [ * , $ ' , # , J T | j := Gï$,**,ff(*,$*),0j 

where G denotes an arbitrary functional of the $, $*,H,H'. (4.4) is proved as follows: 

r I 8 J- 8J- 8"F 8J- \ i 

- ƒ A (<**•)£ + (Mi) jg + (*.**)£) | = B,(*l) 
where the first row is obtained from writing out B§P[$, $',H, H*} = 0 explicitly and 

the second row follows from the first due to 

{Bt**)\ = Bs*\ (Bè*\)\=Bs*\, {B§H')\ = BSH'(*,V), (B§H;)\=0 

(4.5) 
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which hold due to (4.2). 

As mentioned above, the lemma implies in particular that (4.3) solves the master 

equation since S is Fj-invariant by assumption and the master equation can be 

written in the form 

BSS = 0. (4.6) 

(4.3) and (4.5) are often useful in themselves since they facilitate the construction 

of the solution of the master equation and the generalized BRS-transformations con

siderably if a formulation of the theory with auxiliary fields is known. For instance 

by means of (4.3) and (4.5) one can easily reproduce the results given in [4] for 

N=l, D=4 supergravity and super-Yang-Mills theories (analogously to the example 

discussed below). 

Example: The outlined procedure is now exemplified for abelian D=4, N=l super-

Yang-Mills theories whose classical Lagrangian reads in the formulation with auxiliary 

fields 

£* = £ ( - | ^ ' F - M - i A V 0 j i / + § Z > / 2 > 1 ) 
i 

+ B - ^ 2 > « 2 > V - ixV*>.X i ~F>P) - V{<p,x,F,<p,x,F) 
j 

+ £ ( - i X > V ' W + \/2 A V ^ + V2 A J x J W ) (4.7) 

where F^1 denote as in the previous section abelian field strengths, Af, denote the 

gauginos, D1 are the real auxiliary fields of the super-Yang-Mills multipletts, <p> and 

x4 are component fields of chiral matter multipletts and FJ are the correspond

ing complex auxiliary fields. Contrary to the previous section, a two component 

Weyl spinor notation is used in (4.7) in which A and A are related just by complex 

conjugation2. Again Si denotes the generator of the 7th U(l)-factor and Va denotes 

3The conventions arc the same as in [9]. 
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the covenant derivatives 

ƒ 

(the charges of \3 and F1 are also given by gj). V denotes contributions obtained 

from a ^/-invariant superpotential f(y>) according to 

V{9,x,F7nx,f) = Waf{<p) + V&m (4.8) 

where Va and Va are spinor transformations denned by 

- - - . - - - - - < 4 - 9 ) 
V^ = y/2^a, Vax^ = V2e^F^ 0 è F ' = O. 

The nilpotent BRS-transformations under which S4 = ƒ <PxCd is invariant read 

« V = d«C7 + iA7<rf - i£<r«A' + C%Aj, (4.10) 

JAJ = -i^D1 + o*«%Fj + (TdX, («-"J 

JZ?7 = 3aAVf+fcr*0.A / + Ca0./> /, (4-12) 

« ^ = y/2Zx' + CI6i<pi-C*d*<pi, (4.13) 

«xi = % /5e.^ '-v /5»fi>^ + c / t ó+c*d a x i ï (4.14) 

5FJ = -V2iVax
i<r*ï+2Z\I6I?

i^CI6IF'~CadaF>, (4.15) 

J C ' = -2i£<7*fV + C'daC', (4.16) 

jCa = 2 t ^ ° | , (4.17) 

s£a = 0 (4.18) 

where C1 are anticommuting Yang-Mills ghosts, Ca denote constant anticommuting 

ghosts of translations and £°, £a are constant commuting supersymmetry ghosts. 

Nontrivial solutions of (3.4) are given by 

+3t {£A'AJA* + f A7 AJAK }) , (4.19) 

UK 

W)i = Y,k"f** (C'DJ+ Z<TayAa
J+ \IaaiAa

J) (4.20) 
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where the coefficients duK in (4-19) are totally symmetric and the coefficients kjj in 

(4.20) arc antisymmetric: 

djjK = d(UKh fa = -kjj. (4-21) 

(4.19) are supersymmetric versions of abelian chiral anomalies which have been de

rived in this or a similar form for instance in [6, 8, 10]. The solutions (4.20) have 

been found in [8]. Notice that as the example of the previous section their presence 

requires at least two abelian factors due to the antisymmetry of fc/j. 

By means of the procedure outlined above one easily constructs the BV-fbrmula-

tioa of the theory without antifields. To this end one eliminates the auxiliary fields 

D1 and Fi according to (4.2) which yields in this case: 

D1 = J ] i ?6rf +«i\) + i (\}, F> = 4 2fi£* 4- Jï êx* (4-22) 

where A}a and \mJ are the antifields of A/a and A* (A'" and A*™ are related by complex 

conjugation) and \"* is the antifield of j ^ . Notice that the chiral anomalies (4.19) do 

not depend on auxiliary fields at all. They therefore keep their form and in particular 

do not depend on antifields even in the BV-formulation without auxiliary fields. This 

is different in the case of the anomaly candidates (4.20) since they depend on the 

auxiliary fields D1 and thus give rise to the following antifield dependent solution of 

(2.12) in the formulation without auxiliary fields: 

W/i = / #z Y, M ^ ° * ' V ^ A V ( V ~ i C1 £ pSji? 4- i C^X'j + i C'£A}). 

(4.23) 

One can check the nontriviality of (4.23) by making shure that there is no local 

counterterm X[<t>\ such that BXX ^ W}i;A.=j._0. I remark that both (4.19) and (4.20) 

have locally supersymmetric extensions which therefore provide anomaly candidates 

of supergravity [10]. 
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