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ABSTRACT

Models of electroweak symmetry breaking with more than a single doublet of Higgs
scalars contain a neutral pseudoscalar boson. The production of such a pseudoscalar in
hadron collisions proceeds primarily via gluon fusion through a top-quark loop (except for
those models in which the pseudoscalar coupling to bottom quarks is strongly enhanced).
We compute the QCD corrections to this process in the heavy-quark limit, using an effective
Lagrangian derived from the axial anomaly.
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1. Introduction

The primary mission of the next generation of colliders is the study of the
physics of electroweak symmetry breaking. Since the Higgs mechanism provides
the most promising scenario for the symmetry breaking, the search for the particles
of the Higgs sector is of primary importance. The minimal model of electroweak
symmetry breaking contains one complex scalar doublet, three components of which
become the longitudinal degrees of freedom of the W± and Z. The remaining com-
ponent of the doublet is the so-called Higgs boson. However, the minimal model
with one doublet has no a priori justification and there are several motivations for
considering models with enlarged Higgs sectors, either containing more doublets,
singlets or more exotic representations. For example, supersymmetric models re-
quire at least two doublets. Likewise, at least two doublets are required to produce
CP violation in the Higgs sector.1

Models with enlarged Higgs sectors have a richer particle content than the
minimal model; in general, neutral pseudoscalars (with respect to their fermion
couplings) and charged scalars as well as extra neutral scalars are present. In what
follows we will study the QCD corrections to the production of a Higgs pseudoscalar
(A0) via gluon fusion. This process proceeds primarily through a top-quark loop
(unless the coupling to bottom quarks is greatly enhanced). We will focus on the
case of a light pseudoscalar and work in the heavy-top-quark limit : mt ~> MA.

To fix our normalization we take the coupling of the pseudoscalar to top
quarks to be rnt-^/v where v = 246 GeV. The lowest-order amplitude for gg -* A0 is
well known and takes the form2

M(g(k%), g{k\v) -> A0) = - u u ^ e " " " * . , ^ / ^ ) , (1)

with T = 4m2/A/2, gA = a,/2irv, and

* ' * ! > (2)
if r < 1,

where T/± = (1 ± •y/T-T). We see that in the large mt limit the amplitude for gg — 4̂°
is independent of the top quark mass, just as in the scalar case: rf(r) —» 1 as
T -> oo. The heavy-top approximation of the amplitude is accurate to within 5% for
m2 > 2M2 and to within 10% for m2 > A/2.

2. Effective Lagrangian

The amplitude in Eq. 1 can be computed by evaluating the triangle diagram
with a top quark in the loop and taking the limit mt —> oo or instead by noticing that
this amplitude is related to the axial anomaly.3 Let ;5 = ^75^ be the axial current
and jg = Tpifpfsip be the axial vector current. The anomaly equation reads:

^ = -2^5 + 1 ^ ^ , (3)



where G% is the field-strength tensor for SU(3) and (?£„ is its dual, G%¥ = ^u"IJGa
pa.

In the heavy quark limit the left side of Eq. 3 vanishes; it is proportional to more
powers of external momenta than the other terms.4 Therefore, in the heavy quark
limit the matrix element of j 5 between gluon states is given

2mt{g\j5\g) = j^{8\G
a

tlvG%\g). (4)

Equivalently, one may treat the interactions of gluons with the 4° in the heavy-quark
limit as arising from the effective Lagrangian5

^(j^A . (5)

The power of Eq. 5 for our problem comes from the Adler-Bardeen theorem6 which
states that Eq. 3 is true to all orders in perturbation theory. Therefore, Eq. 5 pro-
vides the correct effective Lagrangian with which to compute radiative corrections.
The advantage is that amplitudes which correspond to two-loop diagrams in the
original theory are one-loop diagrams in the effective theory. A similar Lagrangian
can be written for the interaction of photons with the pseudoscalar;7 in that case
one sees immediately that the O(a,) corrections to 77 —<• A0 vanish in the mt —• 00
limit.

The effective Lagrangian, Eq. 5, leads to two- and three-gluon vertices with
the A0 (as well as a four-gluon vertex which is irrelevant to the current study):

*«*?„. *5,.*$,) = m/a*V I"w(*i + *a + *3)., (6)

where the ib, are the gluon momenta directed inward.

3. Real and Virtual Corrections

We use dimensional regularization in computing the radiative corrections.
However, the c-tensors in Eq. 6 are intrinsically four-dimensional objects and must
be treated as such. The product of two e-tensors can be written in terms of £"" the
metric tensors in the four-dimensional sub-space:

where g^guv = 4. For simplicity, we take the incoming momenta to be in four
dimensions (this is simply a choice of frame). The lowest order cross section is
then, averaged over colors and polarizations in n = 4 - 2e dimensions,

• * ) . (8)

where z = Ml/s and s = {kx + ik2)
2.
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Figure 1: Feynman diagrams for the virtual corrections to gg —*• A0
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Figure 2: Feynman diagrams for the processes a) gg —»
qg -* qA° is a crossing of diagram b.

and b) °. The diagram for

The virtual radiative corrections are given by the diagrams in Figure 1, where
the amplitude involving the four-gluon vertex vanishes due to the antisymmetry of
the 03>lo-vertex. The other diagram yields the result for the virtual corrections

<T« = -h H+') «>-
where

Ml

(9)

(10)

The real corrections are given by the diagrams in Figure 2. The amplitudes
squared for the various processes are, averaged over colors and spins,

- 2« - + -stu



\M(qg - qA°)\2 =

(11)

where s, /, and u are the familiar Mandelstam variables and k3 is the momentum
of the final state quark or gluon, with the hat denoting the (n - 4)-dimensional
components. Since the initial state particles are taken to be in four dimensions
£3 • £3 is the only quantity which depends on the (n - 4)-dimensional components.
Under integration over the angular variables transverse to the incoming particles
we find8

f ^(n-2)

where jfcT is the transverse momentum of the outgoing gluon. So the terms with
k3 • k3 will contribute terms of (9(1), but only when multiplied by double poles, t~2

or u~2 (this was used in simplifying Eq. 11).
Integration over n-dimensional phase space gives the cross sections

I 7T 2 \ 2Z \ Z , 1 - Z

^ - = ) 3 , (13)

where

It is interesting to note that the real corrections, when written in terms of the
lowest-order cross section are identical in form to those for the scalar case.5

We see that the terms of O(l/e2) cancel between the real and virtual diagrams.
The terms of 0{\A) may be absorbed into redefinitions of the parton distribution
functions in the usual factorization procedure. We use the MS prescription which
fixes the subtraction terms as

)(4yr(l + )

~^(T(c)zPgq(z)(4nyr(l + e)-t, (15)

where the splitting functions are denned

Pg9(z) = 2N

Pgq{2) = ^
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Figure 3: Radiatively corrected results for A0 production in proton-proton collisions at the SSC,
for several values of the factorization/renormalization scale /x. Shown for comparison is the lowest
order cross section.

where /?0 = ^-Nc - $Nj with Nf being the number of light quark flavors. The charge
renormalization subtraction term is

zA (17)

When all the contributions are included the final results are
_ - _ _ _ . . _s> \-z

•K

(Tqg =
<•" K L \ *M~ / J

1 1
(18)

Since the real corrections in our result are the same as for the scalar case, the
only difference between the scalar and pseudoscalar results is the coefficient of the
6(1 - z) term coming from the virtual result: Ne{w2/3 + 2) for the pseudoscalar and
(Neir

2/3 + 5/2Ne - 3/2CF) for the scalar. The numerical similarity of the two constant
terms [an accident of SU(3)] means that the ratio between the next-to-leading order
result and the lowest-order result, or the 'K-factor,' will be almost equal for the two
processes.

The radiatively corrected cross section is plotted for proton-proton collisions
at the SSC, v^ = 40 TeV, and at the LHC, \/5 = 15.4 TeV in Figure 3 and Figure 4 for
several choices of renormalization scales and using HMRSB parton distributions.9
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Figure 4: Same as Figure 3 for the LHC.

The ratio between the radiatively corrected result and the lowest order result (com-
puted with the two-loop a,) ranges from about 2.6 for MK = 50 GeV to about 2.2 for
MK = 200 GeV for both values of \/S. As is the.case for the scalar Higgs, the con-
tribution from the gg initial state dominates with about half the correction coming
from the 6(1 - z) term.
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