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Abstract

We have obtained expressions ior au effective dielectric tensor for weakly rclativistic magne-
toactive plasmas with magnetic field inhomogeneity in the perpendicular direction. The effective
dielectric teusor (5,*;') satisfies the required symmetry conditions and describes correctly the en-
ergy exchange between wave and particles in a stationary. non-homogeneous plasma. when
utilized in a dispersion relation which is formally equal to the homogeneous one. We illustrate
with some numerical exampies for electron-cyclotron absorption,

1. Introduction

In order to discuss the dielectric properties of magnetized inhomogeneous media. we consider the
case of a stationary, weakly inhomogeneous magnetoactive plasma. with perpendicular magnetic
field gradients. It is known that in such a weakly inhomogeneous medium. the wave amplitude can
be modified not only due to wave-particle interaction. but aiso due to changes in the group velocity
and, less importani. due to mode conversion and partial reflections.

Assuming that the inhomogeneity is sufficiently small for the last two phenomena to be ne-
glected, Beskin et al.. 1987 have devised a procedure which separates the relevant wave-particle
interaction from the change in the group velocity. when discussing the changes in wave amplitude
along wave propagation. It has been shown that the correct dielectric tensor is an effective tensor.
obtained by the addition of corrections due to the inhomogeneity to a tensor obtained with the use
of a plane-wave approximation (;‘?J ). In the case of inhomogeneities in density. temperarure. and
drift velocity. explicit expressions lor the dielectric tensor have been obtained. by the addition of
first order corrections in the plasma gradients ( Caldela F? et al.. 1959 Caldela F?. 1990: Cuvalcanti
et al., 1991, 1993; Ziebell et al., 199.3). In the case of inhomogenevus magnetic field. infinite series
of corrections has to be added, and the effective dielectric tensor can be obtained trom :?, according
to the following { Beskin et ai.. 1987)
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where k is the wave vector. « is the angular frequency and r is the position.
The tensor s,‘f is constructed in order to describe correctly the energy »xchange between par-

ticles and fields, and satisfies the relevant simmetry conditions like the Onsager relation.
ef(r,~k.w.~Bo: F(p,. ) = N (r.kow. Bo: FipL.py)). (2)

where By is the ambient magnetic field. and F(p,.py) is the distribution function of the plasma
particles. These symmetry relations are general relations. derived by the linear response theory of
non-equilibrium statistical mechanics. The effective tensor satisfies a dispersion relation which is
formally the same as that for a homogeneous plasma.

det(k;k; - k26;; + w2 /e?) = 0. (3)

n—‘j

With the evaluation of s?j and the evajuation of the integral appearing in Eq. (1), explicit
expressions for sf,ﬂ can be obtained. We have considered the case of plasmas with inhomogeneities
perpendicular to the ambient magnetic field. General expressions have been obtained and shall
‘appear in a forthcoming publication ( Gaelzer et al.. 1993). In the present paper we make no
attempt to any particular application. although the geometry considered is relevant for many
actual cases, both in laboratory experiments and in space plasmas. We consider as an example
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to illustrate the use of the effectise tielectric tensor the case of ordinary mode waves propagating
parallel to the direction of the inhomogeneity. Since this direction is perpendicular to the direction
of the magnuetic field. in the case of distributions which are symmetric along the paraliel component
of the velocity the dispersion relation factorizes and for the ordinarv mode only one component of
the dielectric tensor is required.

In section 2 some de:2is uf the evaluation ol the dielectric tensor are briefly described. and in
section 3 some numerical analyvsis for the ordinary mode are presented.

2. The effective dielectric tensor

The mediumr has an ambient magnetic field in the = direction and a constant gradient in the r
direction.

B, = By(l+kgr)z {4)
kn = 1 dBylr)
b = Bo dr =0 )

After linearization of the Vlasov equation. the equation for the perturbed distribution function can
be solved by the method of characteristics. which implies time integration along the unperturbed
trajectories given by the single particle equations of motion in the ambient magnetic field. It is
assuiaed that at ' — —~ all perturbations vanish and at t' — t the particle has momentum and
position p and r. respectively.

To integrate the non-linear set of motion equations. we have used a perturbative method.
expanding in powers of kg all momenta and coordinates. and retaining only terms up to order
kg. It is shown that, in order to avoid non-physical secular terms. the cvclotron frequency has
to be corrected. resulting equations which satisfv the initial conditions 2nd are perfectiv coherent
among themselves ( Gaelzer et al., 1993). However. the most important corrections due to the
inhomogeneity are the macroscopical drift and the nonlinear correction to the frequency. which
is essential to avoid secularities. These corrections are retained. and all the other terms of order
O(kp) are neglected. The orbit equations are therefore giver by:

PL

(r)-r = — [sin ¢ —~ sin( ¢ — w,7)] (5.a)
R G S L kgt .
YolT)—y = —h [€OS( 7 — waT) — €08 2] + CRNTSITI (5.b)
A - — P - .
BTN -: o= (5.)
PorlT) = preosig— <y i5.d)
Pf,,( T) = posiliy —w,T) i5.e)
where r = t'~t. Q, = g, By/ m,cis the cvclotron frequency of the a-th species. <, = /1 = p*/m=c2.

pL and p, are the perpendicular and parallel momenta. ; is the phase angle and

-y = E!—'( L+ kgr)+ ksl)—:ﬂ.
o TuMy
The maintenance of the terms proportional to kg in «, is essential for the correct description of
the wave-particle interaction { Antonsen & Manheimer, 1978: Cairns el al.. 1991). The additional
term in (5.b) describes the macroscopic V Bgx By drift of the particles and must be retained in
the integration.
After Fourier transforming the electromagnetic fields and the current density we arrive at a

tensor 5?_, which does not describe the energy exchange between particles and fields. The correct
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= tensor. which we show

description will be achieved after the transformations (1). giving the :]

here for waves that propagate in the r — : plane:

—_— — Axq: -
eef_T _ Z..m_"n_ Z / d-jduu Cfoat ul ug I, [ e (6)
> I pmex
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where D,,, = vw - kpuyc — nQ,(1+kpr). w = p/m,c. and the operator £ and the vector Iz
defined by:

no

2 n b ’ i )
m: - nJ,(b, £ a, r/2) £ i (b, £ ayr/2) uy b, anr/2)
bo ‘LIHT/Z u;
L = (1 _ .’\‘I!u") b + .\'[’u£L .
) 2 v % du“

with b, = k u,¢/Q,. 0, = kpnupe. Ny = kje/w and Jo(2) is the Bessel function of order n. The
general expression is given in Gaelzer et al.. 1993.

We immediatly see that when kg = 0. the tensor (6) reduces to the well-known dielectric tensor
for homogeneous magnetoplasma. It satisfies also the Onsager reciprocity relations. eq. (2) and
conserves, by construction. the whole energy of the wave-particle svstem ( Beskin et al. [957).

3. Ordinary mode absorption near cyclotron frequency

In the case of electron cyclotron waves. the effect of ions can be neglected in the dispersion relation.
Assuming a Maxwellian distribution function for the electrons.

1
LR —uuc ‘2
fotus. u”)_n'(’r) e :
where n. is the electron density and u = m,c®/T,. where T, is the electron temperature: considering
a weakly relativistic regime.  ~ 1 + /2. and waves in perpendicular propagation. we arrive from
eq. (6). to the following =5 component:

x
o= 1+pXHo+pX Y Y Ha,. (7)
1=l =zl
_ -2 [* o explitle, = 2500+ 263 /(1 - it)] L (32 -2
Moy = ie /o d (1 —it)3/? ol T

Gn(‘z) = el (2).

where X = dmn.g?/mw?. 26, = Npnpl/?. 6,y = p(l = snY (1 + kg2)]. I = N3/Yu'% Ng =
kge/w, Y = N./w and 1,(2) is the modified Bessel function of the first kind. Again for kp = 0.
H,, reduces to the generalized relativistic plasma dispersion function ( Robinson. 1956). We have
then the dispersion function for ordinary mode waves.

N& = VE). . (8)

As a numerical example. we suppose ordinary mode waves propagating perpendicular to By in
a tokamak with a magnetic field profile given by eq. (4). Choosing the position at the center of
the torus (z = 0). we examine as both the absorption and refraction change as a function of the
parameter ry = Vg/| Vo], where | V| is the modulus of the refractive index for a frequency equal
‘tow = 0.99,. Figure 1 shows the real and imaginary parts of .¥3 for several values of ry.

It is seen that. unlike the case of density and temperature inhomogeneities. magnetic field
inhomogeneity is effective near the cyclotron frequency { Caldela et al.. 1990). and can substantially
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Figure 1: {a) Real and (b) imaginary parts of .V3 as a function of =/, for ry = 0. 2 x 1073,
3 x 1073, 4 x 1073 and 5 x 1073, for a maxwellian plasma with 1, = 1.25keV.

modify electron cyclotron wave absorption. This fact may be relevant for plasma heating and
current generation in tokamaks.

There are many other situations where interesting plasma phenomena occur in inhomogeneous
magnetic field. Such is the case of the drift instabilities. However. the study of these instabilities
requires examination of waves propagating perpendicular to the inhomogencity. a situation which
was not considered here. It is our intention to pursue our studies on the subject.
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