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AN OVERVIEW OF THE CURRENT STATUS OF RESONANCE THEORY IN
REACTOR PHYSICS APPLICATION

By

R. N. Hwang

I. INTRODUCTION

The neutron resonance phenomena constitute one of the most fundamental subjects in

nuclear physics as well as in reactor physics. It is the area where the concepts of nuclear

interaction and the treatment of the neutronic balance in reactor lattices become intertwined. The

later requires the detailed knowledge of resonance structures of many nuclide of practical interest

to the development of nuclear energy.

There has been a great deal of theoretical and practical interest in resonance reaction

since Fermi's discovery of resonance absorption of neutrons as they were slowed down in water.

The resonance absorption became the center of attention when the question was raised as to the

feasibility of a natural uranium fueled self-sustaining chain reaction. The observation by Fermi

and Szilard 50 years ago,that a substantial reduction in resonance absorption is possible if the

uranium was made into the form of lumps instead of a homogeneous mixture with water,

signaled the beginning of the nuclear era. The practical needs have since provided with the

motivation for better understanding of the resonance phenomena. Our knowledge in this area has

been significantly enhanced by the development of reaction theory,physical theory of reactor.and

other related subjects for the past decades. More recently,the significant advances in the new

generation computers made possible the investigations of the extremely complex problems

unimaginable in the earlier days. In parallel, a great deal of resonance data have become

available during the past few years. One key factor responsible for the continuous efforts to

improve the resonance data was the emergence of the fast reactor development which requires

such information not only for all major actinides but also for structural material over

considerably large energy span. Through the cooperative efforts of international nuclear data
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communities,the evaluated cross section data and resonance parameters have been systematically

compiled into various data files now in existence. Such a development,in turn.will undoubtedly

provide the needed basis as well as incentives to further improve the estimations of parameters

for the new generation nuclear reactors.

The key issue of the resonance treatment in reactor applications is directly associated

with the use of the microscopic cross sections in the macroscopic reactor cells with a wide range

of composition, temperature,and geometric configurations. It gives rise to the so called

self-shielding effect. The accurate estimations of such a effect is essential not only in the

calculation of the criticality of a reactor but also from the point of view of safety considerations.

The latter manifests through the Doppler effect particularly crucial to the fast reactor

development. The task of accurate treatment of the self-shielding effect, however, is by no

means simple. In fact, it is perhaps the most complicated problem in neutron physics which,

strictly speaking, requires the dependence of many physical variables. Two important elements

of particular interest are : (1) a concise description of the resonance cross sections as a function

of energy and temperature; (2) accurate estimation of the corresponding neutron flux where

appropriate. These topics will be discussed from both the historical as well as the state-of-art

perspectives.

II. GENERAL REMARKS ON SELF-SHIELDING EFFECTS

The self-shielding effect is a phenomenon directly attributed to the localized fluctuations

in neutron cross sections resulting from the resonance structures on the averaged reaction rates

of a reactor cell over energy and space. In the earlier days of reactor development focused on

thermal reactors with low enrichment fuel, a reactor lattice is usually assumed to be composed

of a handful of light nuclide with relatively constant cross sections serving as coolant and/or

moderator and cladding along with fuel element dominated by f/238. A few low-lying resonances

of the latter are essentially responsible for the absorption rates over the resonance energy range

which, in turn, determines the fraction of neutrons that can reach the thermal energy via the



elastic scattering. Two commonly considered scenarios in reactor applications were usually

restricted to either the infinite homogeneous medium or infinite lattice consisting of repeated

cells with fuel lumps surrounded by cladding and moderator. The resonance effect in the former

attributed to the flux depression in energy alone is generally referred to as the energy self-

shielding effect whereas the energy and spatial self-shielding effects are inseparable in the latter.

Such effects can be best illustrated graphically for the simplest cases involving a single Breit-

Wigner resonance. Fig. 1 shows the behavior of the neutron flux as a function of energy in the

vicinity of the U238resonance at 6.672 eV in a 'homogenized' system typical of light water

reactor composition. Also shown here is the macroscopic total cross section as a function of

energy. The behavior of flux and macroscopic cross section here clearly show that they are anti-

correlated. The significant flux depression within the extent of the resonance in question

indicates the existence of severe the energy self-shielding effect. The actual absorption rate is

far less than what can be expected if the flux depression were not present. Fig.2 shows the flux

distribution in a realistic light water reactor (LWR) cell consisting of a fuel pin with 3%

enrichment with zirconium clad imbedded in water. Here, the energy and space dependence of

flux become intertwined. The results shown were computed in the vicinity of the same

resonance. For illustration purposes, the radial distributions of flux given correspond to the

energy at the resonance peak, 3 and 10 Doppler widths away respectively. The significant flux

depression near the resonance peak which leads to the spatial self-shielding effect is quite

evident. The fact that a substantial reduction in absorption rate is possible upon making the

uranium into the form of lumps is one of the key factors leading to the successful demonstration

of the first self-sustained chain reactions. The quick recovery of the flux in energy as well as

in space reflects the characteristics of the sharp resonance considered.

Thus, for the simple cases described, a quantity traditionally referred to as the shielding

factor defined below is widely used as a measure of the degree of the resonance self-shielding

effect
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where 4>mym is the asymptotic flux in absence of the resonance. Physically, the numerator and

the denominator can be identified as the resonance integrals for the finite and the infinite

dilution of the resonance absorber respectively. As long as the resonances are well-isolated and

the flux recovers between them, the concept of the self-shielding effect in conjunction with the

resonance integrals is quite easy to visualize without ambiguity.

Since early 60's, advances in three major areas have significant impact on our

perceptions as well as the methodologies for treating the self-shielding effects. First, the

emergence of the liquid metal fast breeder reactor development cast the traditional resonance

treatment into different light. The focus has since been centered around the intricate neutronic

balance over a much larger energy span ranging from high keV region down to thermal energy

with numerous number of nuclide that exhibit resonance behavior. Thus, one must also deal with

interacting resonances of many other actinides, structural isotopes, as well as coolant in addition

to those of C/238in both the resolved and the unresolved energy regions. Of particular concern

are the estimation of the Doppler coefficient and the sodium void coefficient crucial to reactor

safety. Both these quantities require accurate resonance treatment. Furthermore, it is also note-

worthy that several zero-power assemblies such as ZPR-3, ZPR-6, ZEBRA, and ZPPR were

constructed in the course of the fast reactor development for the purpose of providing the

experiments to verify various reactivity coefficients of practical interest. The geometric

configurations of the cells in these assemblies are far more complex than what was envisioned

in the earlier reactor programs. Secondly, there have been continuous and relentless efforts in

the international nuclear data communities in recent years to systematically improve the data base

required. The most recent improvements in resonance data through dramatic extension of the

resolved resonance range and the introduction of the R-matrix parameters are particularly

remarkable. Thus, it is necessary to modify our traditional resonance integral concept based on

isolated resonances. Thirdly, the amazing progress in our computational capabilities provides

strong motivations for reactor physicists to venture into the much more rigorous approaches on

the resonance effects in reactor lattices unimaginable before. One noticeable consequence is the

availability of both the deterministic and Monte Carlo codes for treating the lattice physics



problems on a continuous energy basis whereby the continuous nature of neutron flux in energy

is preserved. It is important to realize,however.that the former is generally not free from

simplified assumptions while the latter is only useful as a bench-mark tool but still too costly for

routine applications in spite of the high-speed computing facilities now in existence. The most

commonly used methods for reactor neutronic calculations today are still based on the

multigroup concept. It is,therefore,useful to cast the self-shielding concept within the context of

the multigroup approach.

One essential principle of the multigroup approach is the separation of the fine structure

effect treatment from the global neutronic calculations of the entire reactor. This can be best

accomplished by first computing a set of effective group cross sections for each nuclide and

reaction type at a given location of the reactor lattice,

(2)
{UE,^ E,r

over the energy group with width much greater than the extent of resonances for the actinides.

Within the context of the effective cross section concept, the self-shielding effect can be viewed

as a measure of correlation between the microscopic cross section and the neutron flux in energy

and in space at a given temperature. With no loss of generality, the self- shielding effect can be

defined as :

COV \a(E)
_

x

where the covariance signifies the degree of correlation between ax and <f>. All averages here

also implicitly include those over statistical properties of cross sections if resonances are

unresolved,and can be cast either into the form of the usual Riemann integrals or Lebesgue

integrals.

Conceptually, such a description provides a plausible basis for much of the discussions



that follow. The main difference among various methods in practical applications is the rigor by

which such a correlation is treated. For the resolved resonance energy range, the degree of

correlation is clearly deterministic and multivariant in nature. For the unresolved energy range,

all averages must be treated statistically.

From Eq. 3, it is quite obvious that estimation of the self-shielding effects requires

accurate descriptions of the cross section and the neutron flux as a function of energy at a given

location and temperature in a reactor system. The general theories that account for the behavior

of these quantities are well-known. The utilization of these theories in the practical applications

is, by no means, simple. To facilitate their applications constitutes one of the most fundamental

problems in reactor physics.

HI. CROSS SECTION REPRESENTATIONS

m . l . A Brief Summary of R-Matrix Representations

In R-matrix theory, the reaction cross section for any incident channel c and exit channel

c' is generally expressed in terms of the collision matrix Vc...1'2-3-4

<V=** 2 gJ Sec - U J 2 (4)

where gc and 5c,.. are the statistical factor and the Kronecker delta respectively. The unitary

property of U^. leads to the expression of the total cross section as a linear function of U^.,

£ 8c d-9fc VJ (5)

The collision matrix, in turn, can be expressed in terms of the resonance parameter matrix R

according to Wigner and Eisenbud.1

U ,̂ = exp[-i (0C + 0C,)] {««, + iP* [ (I-* I-T1 4 c ^ } (6)
where

R = y ^ 7 x c lxc' (7)



is a real symmetric matrix and

C = (5C - Bc + i PC)8CC, (8)

The energy-independent parameters FX ,YXC and Bc denote the R-matrix state, reduced width

amplitude and arbitrary boundary parameters respectively. Of all parameters given above, <t>c,Sc

and Pc are momentum-dependent quantities. <j>c, hard-sphere phase shift factor, is directly

related to the argument of the outgoing wave function at the channel radius whereas Sc, shift

factor, and Pc, penetration factor, reflect the real and the imaginary parts of its logarithmic

derivative respectively as defined in Table. 1. These quantities along with the matrix R specifies

the explicit energy dependence of the cross section.

The theories of Kapur-Peierls I5 and of Humblet-Rosenfeld6 are alternatives to the R-

matrix formalism, whereby the collision matrix can be expressed as linear combination of the

Lorentzian type of rational terms. The principal difference between these two theories is that

the Kapur-Peierls parameters5 are implicitly energy-dependent whereas the Humblet-Rosenfeld

parameters6 are independent of energy and the matching radius; the latter, however, contains a

'background' term with unknown energy-dependence. Furthermore, another disadvantage of

these formalism is that there is no conclusive statistical theory to describe the behavior of these

parameters at present. These factors, in effect, hinder their wider usage in the practical

applications. Nevertheless, these formalism are very attractive in the reactor applications

because of the well-behaved nature of each Lorentzian terms that lead immediately to the well-

known Voigt profile upon Doppler-broadening as one shall see.

III.2. Practical Formalism In Use

Although the formal R-matrix representation is rigorous on the theoretical ground, it is

quite obvious that simplifications are apparently required before its deployment as the basis for



nuclear data evaluations and the subsequent usage in the reactor applications.. In the current

ENDF/B format, four major formalism pertinent to the treatment of the resonance absorption

are allowed, namely, the single level Breit-Wigner (SLBW), multilevel Breit-Wigner,Adler-Adler

(AA)7 and Reich-Moore8 (RM ) formalism. These formalism are based on the approximations

of the formal R-Matrix theory to various degrees of sophistication. For our purposes here, it

suffices to summarize their relevant connections to the theory and their characteristics pertinent

to reactor applications.

With exception of the Reich-Moore8 formalism, all other three exhibit the similar form

as a function of energy and can be considered as the consequences of the approximations of the

Wigner' level matrix1 under various assumptions. For our purposes here, it is convenient to

cast them into the pole expansion form either in the energy domain or in the momentum domain

(k-plane).

'. -1 E E «* (Energy domain)

(9)

(-0 _ (-0 (Momentum domain)

where Cx = dx , and the subscript x denotes the type of reaction under consideration. The

subscripts f, 7 and R will be used to denote fission, capture and compound nucleus (or total

resonance) cross sections respectively.

Physically, each individual term retains the general features of a Breit-Wigner resonance

upon which the traditional resonance integral concept was premised. The relationship between

these pole and residue parameters and the traditional resonance parameters for three major

formalism are tabulated in Table II. The use of the complex arithmetics here makes possible a

direct comparison of these traditional formalism to the rigorous pole representation to be

discussed later, p j ^ , however, are different and depend on the approximations assumed.
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(1) Single level Breit-Wigner Approximation (SLBW)

It represents the limiting case when the resonances are well isolated. Thus, the level

matrix A at a given E can be viewed as a matrix with only one element. In the earlier days of

the reactor development, the resonance integrals were also treated as such as long as the neutron

flux recovers between resonances. In reality, the resonance cross sections clearly can not be

taken as a disjoint set of isolated resonances if the rigor and the continuity of flux are required.

Ambiguity can arise as to what constitutes the macroscopic cross sections if one wishes to treat

the neutron slowing-down problem in detail over an energy span consisting of many resonances

of more than one nuclide. For this reason, the single level description used in practical

applications such as that specified in the ENDF/B manual is often given in the context of Eq.9

as a linear combination of Breit-Wigner terms supplemented by the tabulated pointwise 'smooth'

data so that the continuous nature of cross sections and thus the flux can be preserved.

(2) Multilevel Breit-Wigner Approximation (MLBW)

It corresponds to the situation in which the inverse of the level matrix is taken to be

diagonal. One constraint for SLBW and MLBW of practical interest is that all parameters must

be positive. It is worth noting that poles and residues are energy dependent although they are

usually taken to be energy-independent in many applications. Otherwise additional terms in the

\/E -domain would result in a lH > 0 sequences using SLBW and MLBW formalism.

(3) Adler-Adler Approximation7 (A-A)

The diagonalization of the inverse level matrix A "Meads directly to the pole expansion

defined by Eq.9. Adler-Adler approximation7 is equivalent to the Kapur-Peierls 5 representation

in which the poles and residues are assumed to be energy independent7. In the context of the



forgoing discussion, it is equivalent to assume the energy - independence of L° in Eq. 8 when

the inverse of A"1 is considered. The approximation is usually restricted to the s-wave

sequences of the fissionable isotopes in the low energy region where the assumption is valid.

(4) Reich-Moore Formalism8

For practical applications, the formal R-Matrix representation is obviously difficult to use

when many levels and channels are present. The problem has been significantly simplified by

the method proposed by Reich and Moore8. The only significant assumption made is

E YAc L ^ Y(1C> « 5A(1 E Y L LC° (10)
cey cey

which utilizes the presence of large number of capture channels and the random sign of -yXc. It

is consistent with the observed fact that the total capture width distribution is generally very

narrow. If one partitions the collision matrix into a 2x2 block matrix arranged in such a way

that the upper and lower diagonal blocks consist of only non-capture and capture channels

respectively and utilizes Eq. 10 as well as Wigner's identity between the channel matrix and the

level matrix, the collision matrix can be reduced to the order of m x m where m is the total

number of non-capture channels. The 'reduced' collision matrix remains in the same form

except that the real matrix R is replaced by a complex matrix R' and

(11)
- E - i I\Y/2

One consequence of the approximation is that the reduced collision matrix is no longer

unitary because R • is complex. For practical applications, it presents no problem since the

total cross section can be preserved if the capture cross section is defined as

c'€Y
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All parameters retain the physical as well as statistical properties specified by the formal

R-matrix theory. The order of the channel matrix is usually no greater than 3x3. Hence, the

method is attractive in the data evaluations and, in fact, Reich-Moore parameters have become

the backbone of the new ENDF/B-VI data.

However, unlike the other three formalism, resonances defined by the Reich-Moore

formalism8 can no longer be perceived in the context upon which the traditional resonance theory

in reactor physics was based. The direct application of this formalism to reactor calculations not

only requires the entry of excessive files of pre-computed, numerically Doppler-broadened

pointwise cross sections at various temperature, but also renders useless many well-established

methods based on the resonance integral concept. Hence, there is strong motivation to seek

remedies so that the newly released Reich-Moore can be fully utilized within the frame work of

the existing methodologies.

III.3. Generalization of The Pole Representation

Although any given set of R-matrix parameters including those in the Reich-Moore8 form

can be numerically converted into parameters of the Kapur-Peierls type9, the parameters so

obtained, however, are implicitly energy-dependent. With exception of low-lying resonances of

few fissionable isotopes, such dependence is generally not negligible. Thus, from practical point

of view, the route via the traditional pole expansion is not useful for most of nuclide of interest.

However, the desirable representations directly compatible to the traditional forms given by Eq.9

can be derived if the pole expansion is cast into somewhat different light.

(1) Rigorous pole representation10

One attractive means to preserve the general features of Eq.x and the rigor of the R-

matrix description of cross sections is to perform the pole expansion in the k-plane (or

momentum domain). The theoretical justification of such a representation is based on the
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rationale that the collision matrix must be single-valued and meromorphic in the momentum

domain. Any function that exhibits such properties must be a rational function according to the

well known theorem in complex analysis. The rational function characteristics are quite apparent

if one examines the explicit \jE -dependence of the collision matrix Ucc defined by Eq.6. By

substituting S, and Pt into Eq.6 and Eq.8, the quantity t/cc, is expressible in terms of a rational

function of order 2(/+l)iV where N is total number of resonances. This reflects the polynomial

nature of the cofactor and the determinant of the inverse level matrix . Thus, one obtains via

partial fraction10,

, N 2(1+1)

a= a + -i Y Y y SteJ IRS,. . e'"Vl] . ^ — L (13)

and similarly,

N 2(«+l)

for the reaction cross section of process x where /?$/,x an^ P® a r e P°le aat^ residue

respectively. Note that the complex conjugate ofp® is used here in order to cast the expressions

into the form defined by Eq.9. These equations can be viewed as the generalized pole expansion

in which all parameters are genuine energy independent and the energy dependence of cross

sections is specified explicitly by the rational terms alone.

By comparing Eq. 9 to Eq.13, one is led to the following observation: (1) For the s-

wave, both the rigorous pole representation and the traditional formalism consist of identical

number of terms with the same functional form in the momentum domain. In particular, the

Adler-Adler formalism3 for the s-wave can be considered as the special case of the former when

p[X) = -pf} and Rfj^x = ^-i%.,x 5 (2) For higher angular momentum states, Eq. 13 consists of
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2£N more terms than those defined by Eq.9. The difference, however, is only superficial. The

same number of terms would have been resulted if the detailed energy dependence of the

penetration factor and the shift factor had been included in Eq.9. Thus, the traditional

formalism, can be considered as the special cases Eq.x under various physical conditions.

Eq.13 and Eq.14 provide the basis whereby any given set of R-matrix parameters, in

principle, can be converted into pole parameters although it may not be an easy task in practice.

The recent availability of R-matrix parameters in the Reich-Moore form greatly alleviates the

numerical difficulties for such conversion process. A computer code WHOPPER based on the

Newton-Raphson technique was developed for this purpose. The viability of this procedure has

since been demonstrated.

One obvious disadvantage of this method is that as many as 2(1 + 1) terms must be

considered for each resonance if the cross section is to be evaluated in momentum domain. This

is obviously -undesirable from the point-of-views of computing efficiency, storage requirement

and its amenability to the existing codes for reactor calculations. It is clearly desirable to fmd

the potential! means to simplify Eq.14 without sacrificing the needed accuracies.

to(2) Simplified Pole Representation1

To simplify the problems resulting from excessive number of multipole parameters

requires better understanding of their fundamental properties. The 2(( + 1)N poles for a given

£ and J defined in Eq.13 and Eq.14 can be divided into two distinct classes. There are 2N s-

wave-like poles with sharp peaks and distinct spacings while the remaining 2£N poles are closely

spaced and are characterized by their extremely large imaginary components (or widths). In

fact, the contributions of the latter to the sums are practically without any resonance-like

fluctuations as if they were a 'smooth' constituent. On the other hand, the s-wave like poles

always appear in pairs with opposite sighs but not necessarily with the same magnitude. These

characteristics provide the valuable basis for simplification.
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Let qp
(x)(\/E) denote the contributions from those 2?N terms involving poles with giant

'width'. Eq.14 can be cast into the same form as that of Humblet-Rosenfeld.6

i r . LA
where E ' | i *-i

N (-0 ugw (-0 (16)

Hence, for a given range of practical interest, the rigorous pole representation can be

viewed as a combination of a 'fluctuating' term consisting of N poles withSte pf} > 0

expressed in the energy domain consistent with the traditional formalism and two 'non-

fluctuating' (or 'background') terms attributed to the tails of outlying poles (in reference to the

domain \j~E > 0 where calculations are to take place) with negative real component and the

poles with extremely large 'width' (or |3m p®| ) for i>0 states respectively. The striking

behavior of the 'fluctuating' and 'non-fluctuating' components have been confirmed in recent

calculations for all major nuclide specified by the Reich-Moore parameters in the ENDF/B VI

files.

The smooth behavior of these terms clearly suggests that their energy dependence can

obviously be reproduced by other simpler functions within the finite interval of practical interest.

It is well known in numerical analysis that the rational functions are best suited to approximate

a well behaved function within a finite range. Hence, the obvious choice is to set the approxi-

mate functions §,(X)(\/E) and qt
w(\/E) to be rational functions of arbitrary order. Mathematically,

they can be view as the analytic continuations of the original functions s^jE) and#,w(\/E)

within domain \fE > 0 . One attractive feature of the proposed method is that the rational

functions so obtained can be again expressed in the form of pole expansion via partial fraction,

i.e.,
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QNN(\/E) I-I « ; -V/E

if NN > MM.

The pole and residue parameters so obtained can be viewed as 'pseudo' pole parameters.

A code10 (WHOPJR) based on the MINPACK-package11 has been developed to compute these

'pseudo' pole parameters. To provide sufficient accuracy to cross sections, NN of no greater

than 3 is required. Thus, the procedure is conceptually equivalent to conversion of a given set

of R-matrix parameters into the Humblet-Rosenfeld-type parameters with the 'background' term

explicitly defined.

To verify the viability of the proposed method, extensive studies have been made for

practically all nuclide with resonance data specified in the Reich-Moore type that are available

in the ENDF/B VI files. With perhaps the only exception of U238, the maximum relative error

compared to the exact Reich-Moore cross sections were found to be of the order of 10"7- or

better. Even for the case of U238, the maximum relative errors seldom exceed 105 as reported

inRef.10.

III.4. Doppler-Broadenmg of the Generalized Pole Representation

Either one of the two approaches are usually taken depending on the rigor required. The

rigorous broadening must be carried out in the momentum domain whereas the simplified

broadening is based on the approximate kernel in the energy domain. In the following

discussions, the Doppler-broadened cross sections based on the traditional formalism and the

15



generalized pole representation will be compared.

(1) Exact Doppler-Broadening

Solbrig12 has shown that the Maxwell-Boltzmann kernel can be rigorously expressed as

exp - exp
(y/E

(19)

where

K T
= 'Doppler width' in momentum space (20)

k - Boltzmann's constant

T - temperature, °K

A - atomic weight

The Doppler broadening of yfE1 ax (\ftP) defined by Eq.9 in the momentum space and

that defined by Eq. 14 leads immediately to :

Traditional Representation

ox(v/E,T) = ± £
2 A

W -W* (21)

Generalized Pole Representation

N 2

j *=i j=i A m I A m

(22)

where W(z) is the complex probability integral and is directly related to the usual Doppler-
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broadened line shape functions via the following relation

W(z) = -L f" l l (23)
TC J-» Z-t

*Kx,y) + ix (x,y) = ft y W(z) (24)
and

z = x + iy

Under the single level limit, Eq.21 is equivalent to the generalized form of the exact

Doppler-broadening defined by Ishiguro13. Thus, except for the superficial difference leading to

the 'smooth' term #/%//?)-5,, Eq.21 and Eq.22 have the same functional form, but are

characterized by different parameters. From a practical point of view, the computational costs

for these equations are expected to be comparable if the 'smooth' term is replaced by the

approximation defined by Eq.17 and Eq.18.

(2) Approximate Doppler-Broadening

For most of the existing codes based on the traditional formalism, the Doppler-

broadening is generally based on the approximate Gauss kernel defined in the energy domain

rather than Solbrig's kernel.12

L exp
( Ex-E f (25)

4kTEwhere AE = . is the Doppler width in the energy domain.

The validity of such a approximation requires the criterion E > > > Am. It has been

well established that the use of the Gauss kernel in the energy domain is generally satisfactory

for E > 1 eV. Thus, only to the Voigt profile per resonance (or pole) is required for any pole

repre- sentation in the energy domain. The Doppler-broadened cross sections become :

Traditional Formalism
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Generalized Pole Representation After Simplification

(27)

where

NN

E
k=l

(28)

Thus, the utilization of the simplified pole representation in the context described above

is not only compatible to but also not much more costlier than the traditional methods when the

smooth contributions are effectively accounted for.

IV. FLUX DISTRIBUTION IN A REACTOR LATTICE

Once all neutron cross sections as a function of energy and temperature are specified,

the flux distribution in a reactor is, in principle, obtainable via the use of the Boltzmann's

transport equation. The case in point involves two general problems : (1) determination of

the spatial distribution of flux at a given energy resulting from the heterogeneous nature of

the reactor lattice; (2) determination of the source distribution as a function of energy at

various locations of the lattice. In the following discussion, a brief summary on the practical

treatment of this subject will be presented with emphasis on the conceptual aspects of the

problem.

IV.l . Integral Transport Equation

The determination of the detailed flux distribution as a function of energy and space over
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the entire reactor is generally a insurmountable task. Some simplified assumptions are apparently

required. For practical applications, a realistic reactor can be generally viewed as an ensemble

of unit cells consisting of one or more types of fuel lumps surrounded by cladding and

moderator. These unit cells, in principle, can have either identical or different composition

depending on the design under consideration. Without loss of generality, the obvious starting

point is the steady-state Boltzmann's transport equation14. Because it is a linear first order partial

differential equation, the solution can be cast into the following form via the method of

characteristics.

<j>(r,fi,E) = f exp - j Lt(r-g" ft, E) dg" s(r-g'Q, Q, E) dg1 (29)

where

s(r,Q,E) = f f dE1 rffl' Ls(r, E')f(kr,Et-*ESI'-*fi ) 4>(r,%E' ) + Q(r,Q,E ) (3°)

is the source term consisting of that due to elastic scattering as denoted by the term with double

integrals, and that due to inelastic scattering and fission processes as denoted by

Q(r,Q,E ) . E,(r,£) and "Ds(r,E) are the macroscopic total and elastic scattering cross sections

respectively.

This equation is generally referred to as the integral transport equation. With exception

of perhaps the Monte Carlo method, the expression involving extremely complex dependence

in phase space is obviously far too complicated for routine applications. One plausible

simplification is to assume that the scattering is taken to be isotropic. The isotropic scattering

assumption allows the elimination of the angular dependence by integration of Q over all solid

angles so that the sealer flux becomes a function of r and E only. The sealer flux after

integrating over Q becomes14

4>(r,E) = f 4>(rSi,E) dQ = [ A( | 7 -7 J ) S(?,E) dr' (31)

where A( | r-r*\ ) usually referred to as the transport kernel is defined as
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02)

Physically, Eq.31 represents the superposition of the neutron transport and slowing-down

process. From the perspective of the resonance treatment, the use of the source attributed to the

elastic scattering should suffice. Thus, the determination of the detailed flux distribution require

a the computation of the elastic scattering source and that of the inter- and intra-cell neutron

transport. For practical purposes, the problem is still far to too complicated because the space

and energy dependence are still hopelessly inter-twined. One convenient way to alleviate the

problem is to discretise the energy and space dependence. The discretization of its spatial

dependence leads to the widely used collision probability method and the interface current

method.

IV.2. Collision And Transmission Probabilities in A Lump

Conceptually, the discretization of the energy and space coordinates into fine meshes, in

which the macroscopic cross sections can be considered as constants, makes possible the

separation of the energy and space dependence defined in Eq. 31. For our purpose here, it

suffices to focus on the theoretical basis leading to various methods currently in use.

From the perspective of resonance treatment in which the energy mesh under

consideration is generally much finer than the extent of the resonance, any collision taken place

at a given hyper-fine group is practically equivalent to that of a pure absorber in the sense that

the collision will remove a neutron from the energy range in question. It is, therefore, possible

tc derive the first-flight collision and transmission probabilities for a given energy mesh on this

basis.

The first-flight collision probability15 for a lump is defined as the average collision rate

corresponding to the uniform source of unit strength, i.e.
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Jk
+(E) = 2 V . S ^ P ^ E ) + £ A,J,-(E)Tk

s^(E) ; k e M (40)

subject to the following boundary condition

j ; = 2 Bkl V (41)

where N and M are the total number of regions and surfaces respectively. For the sake of clarity,

the superscripts V<-V and S<-S denote the volume-to-volume and surface-to-surface transfer

respectively. As a general rule, a given region is always surrounded by one or more surfaces.

Hence, the evaluation of the current requires the solution of a system of linear equations. Once

these currents are known, the flux of any region i can be obtained via the determination of the

collision rate C(.(£) defined as

C.(E) = 2 Vj S.(E)P£V(E) + 2 A, V(E)PJ7(E) ; i e N (42)

where the corresponding flux is related to CfE) as follows

(43)

In contrast to the collision probability method, the major advantage of this approach is

the relative ease by which various probabilities can be computed. For most of the cases of

practical interest, a given unit cell can be viewed as a superposition of discretized sub-regions

with convex geometries and each sub-region is bound by two surfaces, i.e. N=l, and M=2 in the

context of Eq .40. Unlike the collision probability method in which the evaluation of eachP;<_.

must account for the intra-cell neutron transport in all sub-regions between i and j , all pertinent

probabilities here are only dependent on the optical path within a sub-region in question. The

intra-cell effects for this case ire accounted for by the boundary conditions imposed. The obvious

trade-off here is that the validity of the isotropic (or cosine current) assumption at each interface

is required. The simplification of the intra-cell transport effects can also lead to a system of linear

equations in neutron current much more amenable to numerical solution than those defined by
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Eq.35 as one shall see.

IV.3. Slowing-Down of Neutrons By Elastic Scattering

In the resonance region of practical interest, the neutron source term defined in Eq.35 is

dominated by that attributed to the elastic scattering process. Under the assumption of isotropic

scattering, the elastic scattering source is expressible by the following integral equation of the

convolution type in the lethargy (logarithmic in energy) domain14-17,

= E f" du' F<"') £"(W/) K{u-u') (44)
M •*••* £ , (« ' )

where F(u) = £,(«)• <|>(M) is known as the collision density and I is the total number of nuclide

in the mixture. The quantity K is the scattering kernel defined by

du , 0 < u-u' < e.

0 , elsewhere

where e; denotes the maximum scattering interval of the i"1 nuclide in the lethargy domain.

Because of the complex nature of the Doppler-broadened cross sections in the presence

of resonances, no rigorous analytical solution appears feasible. Therefore, one must result to the

use of numerical solution at the energy meshes much finer than the extend of a resonance if rigor

is required. Otherwise, one must rely approximate methods at the expense of rigor. In fact, the

accurate account of such a problem constituted one of the greatest obstacles in the treatment of

the resonance absorption in the earlier days of the reactor development.

In the past decade, however, the astounding advances in our computational capabilities

along with the development of highly efficient numerical algorithms, has made such a problem

much less inhibitive.
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IV.4. Approximation of Neutron Flux

In the earlier days of reactor development,two crucial areas required simplifications before

the resonance treatment could be carried out. One area was an viable but simple solution to the

slowing-down equation and another area was an approximate means to account for the collision

probability in a unit reactor cell. These approximations are physically equivalent to the

parameterization of the flux distribution in energy and space.

1. Neutron Slowing-Down In Infinite Homogeneous Medium

The usual starting point17 is to examine the distribution in an infinite homogeneous

medium consisting of background material with 'constant' cross section along with fuel in which

the absorption is attributed to an isolated resonance.

(1) Narrow-Resonance (NR-) Approximation17

By examining an isolated resonance in an infinite-homogeneous mixture with its extent

much Smaller than the maximum energy loss due to elastic scattering, it is quite obvious that the

first order approximation to the slowing-down equation defined by Eq.44 can be taken to be

constant. It follows immediately that the flux for such a simple case must be inversely

proportional to the macroscopic total cross section according to the definition of the collision

density, i.e.

l ( 4 6 )

This is generally referred to as the narrow-resonance ( or NR-) approximation. Physically, it

provides an extremely simple illustration of the fact that the flux and the resonance cross section

are anti-correlated. This method is particularly useful in the fast reactor applications where the

assumption is valid for the majority of resonances considered.

(2) Infinite Mass Approximation17

In another extreme when the mass of the absorber atom approach infinity, the

corresponding scattering kernel in the slowing-down equation becomes a 8-function.

Consequently, the flux is reduced to a form similar to Eq.46, i.e.
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(bk. (47)
[Z™ + £ (£)] £

where Ljf*' is the macroscopic potential scattering cross section of the background material only.

The only difference between Eq.46 and Eq.47 is the absence of the scattering cross section of

the absorber. Physically, it is equivalent to the situation where the extent of the resonance

becomes large compared to the scattering interval. Therefore, it is sometimes referred to as the

'wide-resonance' approximation. Mathematically, it retains the similar functional form which can

be use as the basis for a more realistic approximation.

(3) Intermediate Resonance (IR-) Approximation

Another widely used approximation is the 'intermediate resonance' approximation

pioneered by Goldstein and Cohen18. The rationale is to utilize a parameterization scheme to

unify the strikingly similar flux shapes exhibited by narrow and wide resonances. It is reasonable

to conjecture that the neutron flux across a resonance generally resembles the following

approximate form

<(,(£) = P P (48)

where X is a parameter characteristic of the resonance in question yet to be determined. The

expression obviously satisfies the narrow and wide resonance limits as X approaches 1 and 0

respectively. Hence, the key question here is how to define A. in order to reflect the

characteristics of the resonance in the slowing-down process. Goldstein and Cohen18 argued that

one way to determine is via a transcendental equation of the form

Jiir(E)<!><»(£) dE = J L ^ E X ^ C E ) dE (49)

where <t>(1)(E) is the first order iterant taken to be that defined by Eq.48 and <(>(2)(E) is the second

order iterant upon substitution of the former into the slowing-down equation. Thus, the

parameter X serves as a vehicle to account, at least in part, for the higher order effects of the

elastic scattering process sometimes referred to as the Placzek oscillations. It should be noted that

the solution of the transcendental equation is by no means simple unless the integral can be
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evaluated analytically. One obvious that hinders such a procedure is the complexity of the

Doppler-broadened line-shape functions. Therefore, the evaluation of X in most of practical

applications is either based on the Lorentzian shape functions at zero temperature or on the

approximate broadening functions.

2. Rational Approximation of Collision Probability And Equivalence Relation

Another important development in the earlier days is the approximate means of treating

the neutron transport problems in a reactor cell, particularly those in a two region cell consisting

of a fuel pin surrounded by moderator. From practical point of view, two essential elements are17

: (1) simplification of the method for evaluating the collision probabilities; (2) an approximate

model to represent the flux distribution in both energy and space. The former can be

accomplished via the use of rational approximation while the latter is the natural consequence

of applying the rational approximation to the two-region slowing-down equation defined by

Eq.35. The original development leading to these approximations was pioneered by Wigner.

From the definition of the escape probability, Wigner conjectured that one plausible

approximation for P,^ is a simple rational function in terms of the mean-free path across the

region in question, i.e.

The obvious rationale was based on the fact that the above expression simultaneously satisfies

the small argument limit commonly referred to as 'white' limit as well as the asymptotic limit

also known as the 'black' limit, namely, lira Pea ~ 1 - £,(£)£ and lim ~ 1 /I>t(E)l

respectively. One most striking consequence of this rational approximation is that it leads to the

so-called equivalence relation, whereby the two-region coupled slowing-down equation implied

by Eq.35 reduces unambiguously to the form of Eq.44 if the collision density in the moderator

is taken to be constant. The only difference between the resulting integral equation and that for

infinite homogeneous medium is that one must replace E ; for the homogeneous medium by

Ep'"+1//. Thus, the equivalence relation provides an extremely simple vehicle to account for the
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neutron transport from a fuel pin to the moderator in terms of its average chord length while the

slowing- down equation retains the same form as the case of the infinite homogeneous medium.

The 'equivalent' slowing-down equation is obviously amenable to all approximations

described above. For convenience, a quantity known as 'equivalent' potential scattering cross

section, denoted by oj,'*\ was introduced for application of the equivalence relation,

a(eq) = \ +Kc (51)

where 2,m, referred to as 'escape cross section', is equal to 1/ / if the Wigner approximation

is used and N(abs)is the concentration of the absorber.

The significant simplification demonstrated by such an approach had motivated a great

deal work to improve the accuracy of the Wigner approximation. The most commonly used

method is to introduce additional correction factors into the original expression of S^so that19

- _ 1 a ( 1 - Q

where C and a are generally referred to as the Dancoff factor16-20 and Bell factor respectively.

Physically, the Dancoff factor represents the probability that a neutron leaving the surface of the

pin in question will reach any neighboring pin without suffering any collision in the moderator.

The fact that this quantity is a function of the optical path of the moderator alone and, thus, can

be considered as energy independent greatly simplifies the problem involved. The Bell factor, on

the other hand, represents the correction attributed to the 'non-black' nature of the neighbor pins

so that a neutron still can re-enter into the moderator. For the repeated-infinite lattice usually

assumed, a is taken to be constant depending only on the configuration of the fuel lump. The

parameterization of this type no longer poses a great deal of problem since the availability of

many Monte Carlo cedes with great flexibility on the geometric configuration of the lattices.

Since Eq.52 does not change the basic feature of the rational approximation, the equivalence

relation for a two region cell remains valid.
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Another approach to approximate the collision (or escape) probability is to use the

multiple rational terms numerically equivalent to the well-known Pade approximation where

Er(£) is the variable. From the point of view of accuracy, the higher order rational function can

clearly provide better estimate of the quantity in question. Nevertheless, the method is not free

of other complication. It should be noted that the equivalence relation can no longer be rigorously

derived beyond the NR-approximation if the collision probability is represented by more than one

single rational term. Generally speaking, the validity of the equivalence relation become less

apparent for unit cells containing more than one region with different resonance absorbers if one

ventures beyond the NR- approximation.

V. METHODS FOR TREATING RESONANCE ABSORPTION

Various deterministic methods differ only in the rigor by which the detailed flux is

computed. They are either used in conjunction with the multi-group approach based on the

effective cross section concept or the continuous slowing-down approach based on the resonance

integral concept. In the following discussions, a brief summary is presented with emphasis on the

conceptual aspects of the method.

V.I. Integral Transport Theory Approach

In principle, the most rigorous method for computing the effective resonance cross

sections is via the use of the integral transport method along with the numerical solution of the

slowing-down equation at extremely fine mesh interval compared to the extent of each resonance

(or pole where appropriate). At this point in time, the detailed resonance treatment is still limited

to the idealized case of repeated unit cell with convex geometries in the one-dimensional domain.

One the most attractive method of treating the detailed flux in a unit cell to date is via

the use of the interface-current approach described earlier. Because of its importance to reactor

applications, a brief summary is presented.

(1) Neutron Transport In A Generic Configuration
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One of the most useful unit cell configurations of practical interest is the case of an

infinite cylinder discretized into tubular regions. From the perspective of collision/transmission

probability evaluations, the neutron transport within the cell is determined by the dimension and

composition each annular region in the polar coordinate system if the integration of Eq.33 is

.-iried out along the axial direction. An annular segment can be considered as the most generic

configuration in reactor applications because of its unique properties2122. In the limit when both

the inner and outer radii approach infinity, it becomes a plate. On the other hand, it becomes a

pin when the inner radius vanishes. Thus, to specify the neutron transport properties in an

annulus amounts to the specification of those in all three configurations most commonly

encountered in reactor applications.

To compute the detailed flux distribution, a cell can be divided into a total of K annuli.

In the context of Eq.40, any annular region k is sandwiched between the inner and outer surfaces;

i.e. N=l and M=2. Thus, the pertinent collision and transmission probabilities depend on the

macroscopic cross section, inner and outer radii of the annulus in question while the interaction

effects between regions manifest through the simple boundary condition imposed. The resulting

current equations can be symbolically represented in the following matrix form19'22,

T J = P S (52a)

where T, P, J and S denote the transmission probability .collision probability, current and neutron

source respectively. It should be noted that the current for any given region k consists of an

outgoing component as well as an incoming component impinging on the outer surface. Hence,

Eq.52a represents a system of 2K linear equations. As described in Ref.21 and Ref.22, the

transmission probability T is specified by three elements, namely, T°°, Tk
01 and Tk

IG which

represent the transmission probabilities from outer-to-outer,inner-to-outer,and outer-to-inner

respectively. These integrals can be written in the form of the 'incomplete' integral of Euler-type

as a function of the mean free path and radii of the region. The corresponding collision

probability of the region Pk can be obtained via the reciprocity relation defined by Eq.40. Thus,

within the context of Eq.x, T for the annulus bound by two surfaces must be tri-diagonal in

nature so that Eq.x is readily amenable to the numerical solution via the simple Gauss elimination

procedure followed by backward substitution once the source at a given energy mesh is known.

This method, along with the rigorous numerical algorithm for solving the slowing-down equation
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described in the following section, has been successfully deployed in the RABBLE-code as well

as the RABANL option of the A/C2-2 code for routine reactor applications.

(2) Numerical Solution of the Slowing-Down Equation

One representative algorithm22 that had successfully demonstrated its worth in treating

the slowing-down equation was developed by Kier and was subsequently incorporated into the

MC2-2 code19. The method is exceeding efficient inspite of its surprising simplicity.

The basic resumption is to divide the lethargy domain into equally-spaced hyper-fine

groups (hfg) with width Au much smaller compared to the extend of any resonance in question

so that the macroscopic cross sections and thus the collision density can be taken as constant

within such an interval. Hence, it is possible to discretize the collision density defined by Eq.44

in terms of average quantities for the hfg under consideration. It was shown that the computation

of the discretized slowing-down equation can be significantly expedited via the following

recurrence relation

F. = \FH e* - (K, - Kse-<») a ( 2 ^ ) , . ^ - Kx ( 2 ^ - a Kt (S,40yJ / [1-r.] (53)

where r. = Ks [Zs/Ltj\ and Ky - (1 - e'^f / (1 - a ) , /sphere denotes the average scattering

kernel corresponding to the effective probability of self-scattering within the j * hfg in question

and L is the total number of number of hyper-fine group within the scattering interval of a

nuclide. For the case of a mixture consisting of many nuclide, the above equation must include

the linear combination of the appropriate constituents. Hence, the collision density in the j'hMg

requires only that of the previous hfg (/-I) and the evaluation of a total of no more than four

terms per nuclide in solving the integral equation on a step-by-step basis. In the limit of

vanishingly small AM , the problem becomes even much simpler as Ks approaches zero.

V.2 Resonance Integral Concept

In contrast to the more rigorous approach, the more widely used resonance integral

concept provides better analytical in-sight on the subject of resonance absorption. The

fundamental idea was premised on the assumption that the resonance absorption can be treated
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individually for each contributing resonance with known physical attributes as a function of

energy and temperature. For an isolated resonance in an infinite homogeneous medium illustrated

in Fig. 1, the resonance escape probability, which serves as a measure of the fraction of neutrons

scattered past the resonance without being absorbed, can be simply expressed as17

P<sr = 1 " J ^ <K£) dE <54>

where the integral is commonly referred to as the absorption probability for an isolated resonance.

That is to say that the initial neutron source must be attenuated by Pese when neutrons are slowed

down past the resonance via elastic scattering. For an energy interval containing more than one

resonance, the flux distribution can be obtained via the step-wise attenuation the initial source

by the product J J P®. This provides a simplistic description of the role of each resonance and

becomes the basis of the continuous slowing-down approach widely used in reactor applications.

Traditionally, the resonance integral that characterizes the absorption process is defined

as the absorption rate attributed to a given resonance, i.e. the integral in Eq.54, normalized by

the asymptotic flux above the resonance. Analytical behavior becomes more transparent if one

of the approximate methods described earlier is introduced. Since all three approximations exhibit

the same basic form as a function of E,(£) and are equally amenable to the use of the

equivalence relation, it should suffice to examine the case on the basis of the NR-approximation

for illustration purposes.

If the Briet-Wigner representation is assumed, the resonance integral for a given

resonance r in an infinite homogeneous medium is defined as17

k 7(8 ,p ,a) = ?lz 1 f~ V ( M * (55)

where Tar = F^+F^ , Pr = £/|XOr cos2(p(] and ar = tan2q>r Here, EOr is the total macroscopic

peak resonance cross section of the level r and op is the macroscopic potential scattering cross

section per absorber atom, hence, the J-integral provides a concise mathematical description of
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resonance absorption as a function of reactor composition as well as temperature.

The emergence of fast reactor development has introduced a somewhat different scenario

that clearly affects our perception of the resonance integral concept. The question arises as to

whether a resonance can always be treated as isolated. This makes necessary the inclusion of the

mutual self-shielding effect attributed to the neighboring resonances. Another potential problem

resulting from the relatively more important role for the fissionable isotopes is the questionable

validity of the Breit-Wigner representation when applied to the more closely spaced resonances.

The only consolation is that the NR-approximation is likely to be more plausible for majority of

resonances in the relatively high energy region.

For these reasons, a plausible means to resolve these problems was proposed23. The most

important criterion for generalization of the resonance integral concept is that one must be able

to represent the cross section in terms of linear combination of the Breit-Wigner terms generally

achievable via the pole expansion scheme described in section III. Thus, each resonance or pole

still retains the same physical properties as those of a Breit-Wigner resonance. From the

perspective of resonance integral, each term still can be considered as 'separate' entity provided

that the overlapping effects of the neighboring resonances are taken into account in the evaluation

of the detailed flux. It follows that, through the use of the approximate flux in rational form, a

generalized J-integral denoted by J* can be expressed as23

j ; = JK(%Bk,ak,bk) - £ O,*, (56)
k'tk

where

i /. llrfft Y\ + h vffl r ^
_ dx> (57)

dXk (58)
k
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x.,) + a,,
rk, = _ _z_!— * :__: ( 5 9 )

k'ek

Here, Ak,denotes the ratio of the peak macroscopic resonance cross section of the k'th level to

that of the k'h, and bk, the ratio of the imaginary part of the k lh residue for the absorption cross

section to that of the real part if the pole representation or the Adler-Adler approximation are

used, is zero otherwise. All parameters retain the same physical meaning described previously

according to the type of representation used. Physically, the generalized J'-integral consists of

an 'isolate ' resonance term signified by Jk($k,Qk,ak,bk) resulting from the contribution of an

individual pole k (or resonance where appropriate) in question, and an overlap term J ^ O t t , to
k'€k

account for the mutual self-shielding effect due to the neighboring poles. All these integrals are

readily amenable to the efficient quadrature described in Ref.23.

Thus, the coexistence of the resonance integral approach and the more rigorous integral

transport theory approach is possible as long as the cross sections can be represented by the

linear combination of the Breit-Wigner-like terms.

VI. STATISTICAL TREATMENT OF UNRESOLVED RESONANCES

The treatment of resonance self-shielding effect in the unresolved energy range constitutes

one of the most important links in the fast reactor application. The methods for treating this

phenomenon can be viewed as a natural extension of the statistical theories of average cross

sections. More recently, new frontiers on this subject appear to be on the horizon as the work

pioneered by Frohner24 on the basis of information theory and that by Lukyanov et al2526 using

the 'characteristic' function concept have offered potential alternatives to the traditional

approaches. Since the theoretical foundations may often be obscured in routine applications, it

is useful to summarize briefly some conceptual aspects of the problem prior to the discussions

of the basis for the calculational methods.
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VI.1 Nature of the Problem

Two average quantities of interest in reactor calculations are <oj§ >Er and <§>EF which

represent the expectation values over a large number of events within a given energy and spatial

interval. As discussed earlier, the flux depends on the macroscopic total and scattering cross

sections as specified by the integral transport equation. Unlike the cases considered in the theory

of average cross sections, the averages here are clearly multi-variant in nature. Without loss of

generality, each microscopic cross section is represented by the R-matrix formalism defined

previously in terms of parameters E. and yei respectively. From the statistical theory of spectra,

the distributions of these parameters are well-known. The distribution of E. for a given spin state

is characterized by the Wigner distribution and by the long-range correlation described by

Dyson27. yci's are statistically independent and normally distributed with zero means and variance

of unity according to Porter and Thomas28. These distributions, in effect, define the joint density

function (j-d.f.) required for evaluating the averages. Given information of <\E.-EM\> and<y£>

and through the explicit knowledge of the behavior of O"x and $ , the expectation values of

interest are, in principle, completely specified.

Two special problems must be considered in the applications of the statistical theory to

the self-shielded cross sections. First, the attenuation of flux within the region under

consideration, strictly speaking, implies that the events are actually deterministic in nature. It

should be noted that the statistical averaging implicitly requires the stationarity of the quantity

within the energy interval under consideration. The question may arise since the flux will

attenuate within the interval containing many resonances. The statistical description becomes

meaningless if the flux attenuates too rapidly. Consequently, significantly large uncertainties in

the estimated self-shielding effect are expected if the statistical method is applied to the low

energy region where the resonance absorption is substantial. In fact, this has motivated the

continuous efforts to extend the resolved energy regions for all major actinides in the past

decades. Secondly, there does not appear any simple way to relate the statistical behavior of the

self-shielding effect in the complex reactor lattice directly to the observed measurements such
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as the Doppler reactivity experiments. One closest analogy is perhaps the transmission and self-

indication measurements which, in effect, provide the information of the correlation between the

transmission and absorption ratios of a simple foil containing one nuclide at a given temperature.

It is equivalent to the self-shielding effect in its simplest form. Therefore, these measurements

can serve as useful guides for bench-marking purposes.

VI.2 Existing Methods—Basis And Problems

The averages of interest can be either cast into the form of Riemann integral or that of

Lebesque integral depending on the philosophy of how the joint density function is defined. The

former is the consequence of the direct use of the statistical distributions of the resonance

parameters while the latter results from using the conditional probabilities of partial and total

cross sections themselves which, in principle, can be derived via the transformation of variables.

Two forms of the j.d.f. provide the theoretical basis for all existing methods in existence. In the

following discussion, a brief summary is presented.

1. Methods Based On Distributions Of Resonance Parameters

There are two methods originated via the direct use of the probability distributions of the

resonance parameters, namely, the ladder method and the integral method.

(1) Ladder Method

This method is conceptually the most straightforward. Discrete resonance sequences for

each J-state can be constructed directly by sampling from the cumulative density functions of yei

(or "fci) and level spacing with the standard technique widely used in the Monte Carlo approach.

Once these resonance sequences (or ladders) are generated, the subsequent calculations are the

same as those for the resolved resonances. Thus, the method is applicable to all methods to

various degrees of sophistication described previously. Unfortunately, considerable uncertainties

in the self-shielding are expected especially when the total number of resonances is small or the

flux attenuation is substantial within the given energy interval. From a practical point of view,

some bias in the selection process is obviously required in order to reproduce the observed

physical phenomena such as the Doppler effect. It is believed that the problem can be greatly

alleviated if the results from accurate self-indication experiments are used directly as one of the
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criteria. This is because these observed quantities inherently contain the information directly

related to the self-shielding effect of a nuclide at a given temperature.

(2) Integral Method

In contrast to the ladder method, the averages of interest, in principle can also be obtained

by direct integration over the prescribed joint density function. However, the problem is

obviously too complicated in practice unless some simplified assumptions are made. To utilize

this method for practical applications usually requires three basic assumptions not required by

the ladder method. (1) validity of the Breit-Wigner approximation for cross sections ; (2) validity

of the NR-approximation ; (3) validity of the equivalence relation. Since the detailed descriptions

of this method had already be given in Ref.23, a brief summary here should suffice.

Under the above assumptions, the expectation values of interest can be represented in

relatively simple forms23:

- £ (60)

where o^9) and <D> are the 'equivalent' potential scattering cross section per absorber atom and

average level spacing respectively. The summation in the reaction rate is over the 1- and J-states

of the nuclide in question while that in flux is over all resonance sequences for the mixture. The

angular bracket < > signifies the population average for an ensemble of stationary samples of

resonance integrals which are specified by the statistical properties of resonances parameters in

the vicinity of Eo. In terms of the known distributions explicitly, such an average can be

represented by multiple integral of the form23

J Q ( D ) d D n - p )

where Pv(Tx /<Vx>) and Q(Dy I<D}>) are the ^-distribution of v-degree of freedom and the

level correlation function respectively, and ô  denotes the quantity to be averaged. Since the

partial width for a given channel c of the reaction process x, fj.? « -yf, and Vx = J^I^f, it
c=l
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follows, from the elementary statistical theory, that PJy) is the distribution for the partial width

consisting of v channels with equal strength. Physically the level correlation function Q(y) is

equivalent to the probability of finding any level within an interval dlEk - Ekl at a distance of

D = lE -̂E Î from a given level k. If k and k' belong to resonances of two different J-state or

different nuclide, the levels are statistically uncorrelated so that Q(y) = 1. On the other hand,

if k and k' belong to the same J state of the same nuclide, they are subject to Wigner's level

repulsion and/or Dyson's description of level correlation. For practical applications, there are

three ways by which £l(y) can be evaluated.

(1) Direct Numerical Approach

If one neglects the long range correlation of Dyson, the function Q(y) must satisfy the

following integral equation of the convolution type

ii(x) = W(x) + J dt Q(x-t)W(t) (62)
o

where W(y) is the Wigner distribution defined as

W(y) dy = 1 y expf- ly 2 ] dy (63)

The analytical solution to this equation in a closed form does not appear to be feasible. Hence,

one has to resort to the use of numerical means when applied to the evaluation of Eq.62.

(2) Analytical Approximation

The solution to Eq.62 becomes significantly simplified if the Wigner distribution is

replaced by a x2-distribution Pv(y). For the convolution integral equation of this type, it is most

readily amenable to the use of Laplace transform method provided that its inverse is derivable.

The ^-distribution used in this context leads immediately to the inverse transform defined by

vp

(1) 7 e^dP (64)
/ 2 J

_ V

e

271/
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whereby, for all even v > 2, Q(y) is expressible in terms of the analytical function of the closed

form in terms of the damped-oscillatory terms as can be readily seen via the Cauchy integral

formula. In particular, the ^-distributions of 8 or 10 degrees of freedom exhibit the closest

resemblance to the Wigner distribution. The former is especially suitable for practical applications

because of its relatively simple form as given below.

Q(y) = 1 - e ^ - 2 « H ' sin(4y) <65>

The above equation was extensively used in the earlier studies of the Doppler effect contributions

attributed to the unresolved resonances.

(3) Dyson's Two-Level Correlation Function

Another alternative is to identify Q(y) directly with Dyson's two-level correlation

function defined as

= l - [s(y)]2 - £QL Ut))dt
dy

y

where siy)= L2!l. In Ref.23, a numerical algorithm specifically developed for treating the
ny

integrals defined by Eq.66 and Eq.61 was proposed and has been incorporated into the MC2-2

code19 used for routine applications.

From a practical point of view, the multiple integral defined in Eq.61 is obviously still

too cumbersome to evaluate since the problems of interest inevitably involve many uncorrelated

resonance sequences in the mix. One simplified approximation23 that can simplify the problem

drastically is the separability assumption on the NR-flux. This can be accomplished by noting

that

* ~ J L (67)
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Upon integrating over the uncorrelated level spacing of J and j , the reaction rate of a given

sequence J is reduced to a much more manageable form23

E<—V (68)

which provides a concise description of resonance overlapping effect attributed to other

statistically uncorrelated sequences. Thus, it follows that the corresponding effective cross section

for a given nuclide becomes1923

E (69)

whereby each uncorrelated sequences can be evaluated separately in so far as the effective cross

section is concerned. However, this is not to imply that the mutual self-shielding effect on the

absorption rate is unimportant.

Thus, the simplified expression only requires the evaluations of the integral over the

partial width distributions and the correlation function of each spin sequence in question so that

computations can be expedite considerably.

2. Method Based On Conditional Distributions Of Cross Sections

One alternative to those methods discussed above is to utilize the statistical properties of

cross sections directly if the probability distribution and the associated conditional distributions

are known. The theoretical basis can be best illustrated by examining the case of a single nuclide.

Let h(Gx,as,Gt) be the joint density function for random variables ox, as anda,

corresponding to the absorption, scattering and total cross sections respectively. With no loss of

generality, it is related to the conditional distributions by

h(ax,at,a) = ht(a) hx(ap) ht(as\ax,ot) (70)

It should be noted that, for reactor applications, the only conditional distributions of interest are

/t^(0j0(), and h^aloj pertinent to the evaluations of the reaction rates and flux. Hence, the
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problem is reduced to the specifications of distribution of the total cross section and conditional

distributions of partial cross sections for a given value of c r. Conceptually, these distributions,

in principle, can be deduced from the known statistical properties of resonance parameters

discussed in the previous section. The actual evaluations, however, are obviously difficult because

of the extremely complex relationship between the cross section and the corresponding resonance

parameters. The temperature dependence of cross sections further complicates the matter.

One direct means of evaluating these distributions widely used in reactor applications is

via the numerical techniques originally proposed by Levitt29. The procedure involves generations

of many resonance 'ladders' from the known distributions of resonance parameters described

previously, whereby h^a) and conditional distributions can be computed numerically in various

energy intervals covering the unresolved energy range. It is important to realize, however, that

the conditional distributions so obtained must be stored in three dimensional arrays, which can

require exceedingly large storage space and multi-dimensional interpolation schemes when

applied to practical calculations. Fortunately, for the purpose of computing flux and reaction

rates, only ht(a) and the conditional means are required. This can be readily illustrated by

examining the simple case of the NR-approximation for the case of one nuclide

of""' a"*"

where the conditional means of the partial cross section is defined as

or*

E[hx(axla,)] = jax hx(aja) dax

Here, the relevant statistical descriptions of practical importance are the marginal probability

distribution of the total cross section and the conditional means of the partial cross section, both

of which are a function of or alone. Thus, one only needs to pre-compute these quantities for

each statistically uncorrelated nuclide at various energy intervals and a given temperature. The
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results can then be stored in simple tabulated forms in two dimensional arrays from which the

averages can be computed.

This method is commonly referred to as the 'probability table' method29. It is

theoretically equivalent to converting the Riemann integrals defined by Eq.x to the form of

Lebesgue's integrals by transformation of variables through numerical means. The widely used

sub-group method can be considered as a subset of this method extended into the resolved region

as well. From a practical point of view, It is apparently much more efficient than that based on

the direct use of resonance 'ladders' and is particularly attractive in conjunction with applications

using the Monte Carlo techniques. It should be noted that this method is not without its short-

comings. The conditional means so obtained are usually accompanied by large statistical

uncertainties as expected for quantities generated from the second order distributions. This

motivates further explorations of other possibilities of treating this intriguing problem.

VI.3. Recent Advances in the Treatment of Unresolved Resonances

From the perspective of reactor applications, two recently developed methods deserve

particular attention and further exploration. For our purposes here, it suffices to summarize the

theoretical basis of these methods and their practical implications.

1. Method Based on Information Theory

As discussed in Sec.III, two matrices that determine the properties of the cross section are

R .̂. and Ucc. (or S .̂. using Frbhner's notation424). Therefore, the statistical properties of the cross

section are completely specified if joint density function of the matrix 5 and/or R are known.

The latter can be picture as the product of a probability distribution P(S\S) and an equally

probable aprioi, d[S\ equivalent the invariant (differential) volume element in the sample space

of S. By utilizing the maximizing of the information entropy and the elegant mathematical theory

matrix developed by Hau Lo-Ken30, Frohner24 was able to derive the generalized distributions of

P(S\S) d[S] and P(R\R) d[R] analytically in the closed forms.

The information theory concept was originally developed by Shannon31 and the ideal was

later adopted by Jaynes32 and others for physics applications. One quantity that serves as a
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measure of indeterminacy of a given distribution in question is called information entropy. In lieu

of complete information, one is led to choose a distribution that is maximally non-committal

because any other choice would imply the knowledge that is lacking. The maximization of the

information entropy subject to constraints of the known information given in terms of expectation

values gives a powerful means to construct the probability distributions which satisfy the known

macroscopic information on one hand while maintaining the maximum unbiased stance with

respect to the unknown knowledge on the other hand.

For a continuous probability distribution p(x) of a physical quantity x with equally

probable apriori within a differential segment dx, the information entropy is defined as

H = - Jdx p{x) \n[p(x)]

The known macroscopic information is assumed to be the average values <fk(x)> given by

; k = 1 A - • • %K

where fk(x) is a known function of x for various events k. The problem of maximizing H subject

to the constraint of Eq.x is tailor-made for the method of LaGrange's multiplier with result

p(x) = lexp[-£ \fk(x)] (75)
z k

where the normalization function z, also known as the partition function, is defined as

dx cxpi-'E fk(x)] (76)= (
J

and the LaGrange's multiplier Xk can be determined from a system of equations (usually non-

linear)

-JL[ln«] (77)
dkk
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Hence.the desirable distribution can be derived via this procedure.

For our case here involving a nxn complex matrix (or real for R), the problem is

obviously much more difficult. To define such a distribution, one must define a reference

coordinate system by which the apriori can be specified. Furthermore, one must also choose a

viable constraint through which the procedure of the method based on the LaGrange multiplier

can be carried out.

Based on the work of Hua30, Frohner24 derived the pertinent expressions for the

differential volume elements d[R] and d[S] in the generalized polar coordinate system for the

real symmetric matrix R and the complex unitary as well as symmetric matrix S. The coordinate

system is defined in terms of eigen values and eigen vectors of these matrices as given below.

d[R] = 2 * - ' * [ I dRc n I Ra~Rb I 50o6 ; -oo< /?,< R2<- • - < / ? „ ; a < b (78)
c a<b

and

d[S] = 2n("-1)''2]][yec I I ' exp(jeo)-exp(J6fr) 180,, ; - J I < 6, < 02 • • • < n (79)
c a<b

where Rc and exp(/9c) are eigen values of R and S respectively. 5Oa6 here is a skew symmetric

matrix introduced by Hua30 and is related to the orthogonal transformation O that diagonalizes

R, i.e.

50 = O Td0 = - 80 T C80)

It should be noted that the commutative property of R and S are implicitly utilized so that80

is common to both expressions.

For the required constraint, Frdhner24 chose f(S) of the form

JiS) = In I det( S - S ) 12 (81>

so that the constraint becomes

<j(S)> = 2 In (det T) (82)
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where

T = l - S * S ( 8 3 )

is also known as Satehler's transmission matrix. The quantity f(S) here ensures the utilization

of all possible moments of S and the causality relation inferred by the constraint.

Given d[S] and the constraint required, Frohner showed that both P(R !/?) d[R] and

p(S IS) d[S] can be expressed in terms of a generalized form of the usual t-distribution. In

particular, the latter is given by

p(S IS) d[S] = C'n [ ^ 1 Z T*m d[S] (84)
detl / -5 *S I 2

where C'n is a normalization constant. In the limit of one channel (or pure scattering case), the

above expression reduces to the Poisson's distribution and becomes the same as that derived by

Lopez, Mello and Seligman33.

The method, in principle, provides the vehicle to derive analytically the distributions for

the 'probability table' method discussed previously. From a practical point of view, however,

further exploration is apparently required before such a method can be deployed for two reasons.

First, the extension of this method beyond the simple case of pure scattering can be an

insurmountable challenge. Secondly, the applicability of this method to reactor applications must

be accompanied by the means to include the Doppler-broadening effect to be useful.

2. Method Based on Characteristic Function

Like the method of Frohner, another unconventional approach based on the 'characteristic

function' concept to examine the statistical properties of cross sections was recently developed

by Lukyanov et al25'26. Its potential role for reactor applications also warrants further exploration.

Unlike the former, the basic concept is relatively simple and much easier to understand.

The original idea was first conceived by examining the average cross section based on

the Reich-Moore formalism for the simple case of one channel. With no loss of generality, one

observes that the statistical average of Unn (or Sm) requires the evaluation of <( 1 - iR ) '> ( or

43



<( 1 - iR') '> if the Reich-Moore formalism is used), which can present a problem in the

presence of many levels. This problem can be alleviated if one makes use of the relation

'<eiKt>dt <85>

where the average on the right hand side is more amenable to the integration over the Porter-

Thomas distribution. By carrying out the averaging process before integration, the average is

likely to be easier to evaluate. The quantity <eiRl> is referred to as the 'characteristic' function

which can serve another purpose beside the evaluation of the average defined in Eq.85. Since the

average implies that

< e -'"*' > = fe -'"*' p(R) dR

where p(R) is the probability density function of R. Thus, by knowing the characteristic function,

one can, in principle, deduce the probabilities p(R) as well as p(S) via the Fourier transform.

For this particular case, it is quite obvious that these distributions will become Poison's

distribution same as those derived by Frohner if the characteristic function remains in the

exponential form.

As pointed out by Lukyanov et al, the characteristic function concept can be best

illustrated by examining a simple example based on the Reich-Moore approximation and the

'picket fence' model in which resonances are equally spaced. The equal spacing assumption

makes possible the subsequent combination of terms resulting from the integration over the

Porter-Thomas distribution of each resonance into a function of the closed form. It was shown

that the characteristic function can be evaluated analytically with the result given as follows.

<e iRl> = e ""*"'

<r>
where sn = — is the strength function. It follows that <5nn> is immediately reduced to the

familiar result given by
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. (88)

It is also note-worthy that the above scheme can be readily used to confirm the validity of the

causality relation

even if the Reich-Moore approximation is assumed.

The characteristic function approach has since been extended to the two channel case

using the same basic assumptions. Its potential importance as a possible alternative to the

numerically-based probability table method is very much in evidence. It is important to realize,

however, that further explorations especially in the area to account for the Doppler -broadening

are apparently needed.

VII. CONCLUSIONS

A rather subjective overview on the current status of resonance theory for reactor physics

applications has been presented. The state-of-art developments were discussed along with the

historical perspective on this subject

For the past decades, there have been significant advances in all areas pertinent to this

intriguing subjects. These include the improvements on our better understanding of the basic

theories, our capabilities of dealing with extremely complex problems and the quality of

resonance data. Three general areas are believed to be still worthy of further explorations. First,

the deterministic methods to this date are still limited to infinite-repeated reactor lattices based

on the 1-dimensional cell configuration at the resonance level. Further exploration into the

feasibility of treating the problems in multi-dimensional geometries will undoubtedly be of some

practical interest. Secondly, extensive bench-mark studies to verify our ability to predict the self-

shielding effect and its associated Doppler-effect are apparently lacking. One idea place to begin

is to utilize the existing results of various transmission and self-indication measurements. Thirdly,

the statistical theory for treating the unresolved resonances is also worthy of further exploration.
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Table 1. Momentum-Dependent Factors for Various {-states Defined at

Channel Radius rc (p = krc).

Factors

P,

s,

1 = 0

p

0

p

t = l

p3

1+p2

-1

1+p2

p-tan^p

< = 2

P5

9+3p2+p4

-(18+3p2)
9+3p2+p4

1 = 3

P7

225+45p2+6p4+p6

-(675+90p2+6p4)
225+45p2+6p4+p6

p-tan"1 p(15-p2)

{ 15 ~6p2 J
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TABLE II. Poles and Residues for Traditional Formalism

FORMALISM

SLBW

MLBW

ADLER-ADLER

POLES, <ix

Same as above

RESIDUES, pg^

C c x * "*• * ' T c f v

C gj 2rnX — exp (-Qty; x e R

Same as above if x e f,Y

C g j 2 Tni -L {exp(-i2<|)<) + WAj ; X e R

where

w - T^ nX'

C g j [O« + fflf ] ; x e f, Y

C g, exp(-i 2 ^ [G{° + iHw] ; x e R

c =
1 +>i
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