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Abstract 

Several methods for analysis of acoustic emission signals are presented. They are 
mainly oriented to detection of changes in noisy signals and characterization of higher 
amplitud discrete pulses or bursts. The aim was to relate changes and events with 
failure, crack or wear in materials, being the final goal to obtain automatic means of 
detecting such changes and/or events. Performance evaluation was made using both 
simulated and laboratory test signals. 

The methods being presented we the following: 

1. Application of the Hopfieid Neural Network (NN) model for classifying faults in 
p*pes and detecting wear of a bearing. 

2. Application of the Kohonnen and Back Propagation Neural Network model for 
the same problem. 

3. Application of Kalman filtering to determine time ocurrence of bursts. 

4. Application of a bank of Kalman filters (KF) for failure detection in pipes. 

5. Study of amplitude distribution of signals for detecting changes in their shape. 

6. Application of the entropy distance to measure differences between signals. 

This work is partially supported by IAEA Research Contract Number 5987/R1/RB. 

Introduction 
We analyzed acoustic emission signals (AES). They are the electric response of a 

piezoelectric transducer to an excitation consisting of elastic waves. Elastic waves are 
emitted by a material during development of plastic Reformation or development and 
crack growth. AES can be seer, as a series of decaying bursts, stochastically spaced 
and with random amplitudes. When monitoring the transducer output, each burst 
results in the form of decaying oscillations within frequencies 50 KHz to lMHz.(Fig 2). 
We may distinguish two kinds of AES: low amplitude continuous emission and higher 
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amplitude discrete bursts. Random noise is always present. AES had been analyzed 
by Fourier techniques. Gabor or Wavelet transforms.etc. and aiso using only bursts 
parameters, i.e. amplitude, duration and rise-time, whose definition is dear from Fig. 1. 
The approach presented here uses neural networks, Kalman filtering, usual statistics 
and time series results. 

1 Neural Networks 

1.1 General Concepts 
Neural Network (NN) computing model is based on actual brain NN. A NN is defined 

by its architecture and by the activation function it uses (see [1]). Network architecture 
depends on neurons and synaptic weight matrix. Neurons are simple processing units 
where a weighted sum of inputs is done. The synaptic matrix contains synaptic junction 
weights between pairs of neurons. It is respectively possitive or negative according to 
excitatory or inhibitory synapse. Network ""aining for each determined task consists 
of fitting the strenght of synapse. A differed. NN models arises from each architecture, 
as for example: Hopfieid model. Back Propagation, Kohonen features mapping, etc. 
Not all problems can be solved with any model. It will depend on interconnections 
and activation functions. 

1.2 Hopfieid Model 
This model recovers a given set of images in such a way that if a previously learned 

fuzzy or noisy image is entered, the network is capable of returning.the complete 
original image. 

1.3 Back Propagation 
A set of patterns is given as input. Network is trained to obtain the desired output. 

This is accompiised by minimizing mean square differences between network output 
and desired output. 

Once trained, the network was capable of producing a reasonable answer even for 
patterns not belonging to the training set (pattern: input problem representation). 

1.4 Kohonen feature mapping 
It maps input patterns onto an output matrix. Only one neuron of the output matrix 

gives an answer when the network is excited by each input pattern. The goal was 
having grouped similar input patterns in neighboring locations of the output matrix. 
This network preserves input features. 

2 Applications of Neural Networks 
2.1 Hopfieid model 

In this approach Hopfieid model is used to memorize different stages of wear in a 
bearing. Each event is parameterized as amplitude, duration and rise-time. Afterwards 
it is discretized in binary matrices so becoming images capable of being memorized. 
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This approach was also used to memorize pressure zones when piessuring a pipe 
that had a defective welding in an extreme. The experiment is descript in [3], and the 
neural network is in [2]. Same parameterization was used. 

2.2 Kohonen plus Back Propagation 
When locating the source of an Acoustisc Emission, the model that best suits is 

Back Propagation. The input is a pattern that represents a signal and the output is 
a distance. One drawback of this model is that, to avoid loosing signal features, it 
is necessary a high sampling frecuency during a reasonable long period. The pattern 
representing the signal includes too many points, the synaptic matrix results extremely 
large and processing become difficult. It is then seek an input pattern representation 
including fewer points. It's done by preprocessing input patterns (previously to the 
Back Propagation Network) through a Kohonen Network. The la'ter maps signal 
features in neighbouring regions. 

To enter Kohonen network signal is divided in k windows of a fixed size. So, k 
coordinates in the matrix are obtained and used as input to the Back Propagation 
network. 

3 Estimation of time occurrence and ampli­
tude of bursts using Kalman filters 

Fig. 2 shows a laboratory simulated signal consisting in two bursts of the same 
amplitude located in tx = 350fis and H = oOO/xs. As can be :seen two contiguous 
bursts can be andistinguishable because they are too close, their amplitudes differs too 
much, they are masked by background noise, etc. Hence it is worth to estimate time 
of occurrence and amplitude of bursts, and much better if it can be achieved on line. 
Ours is a model based approach and make use of Kalman filtering theory, issued about 
1960. 

3.1 Model assumed 
We consider the AES s{t) to be of the form (see [4]) 

where h(t) = tb exp _ <* sin u0t fort>=0 
Oi random variables of a known distribution 
U random impulses, Poisson distributed 
w 0 transducer resonant frequency 
6, c a priori estimated parameters 
Using this model, ${t) can be represented as the solution of a dynamical system of 

the form 

X{t) = AX{t)+Bti{t) 
X{to) = 0 

where 
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.4. B are coefficient matrices. 
XL a one-dimensionai excitation of the form ii{t) = T?jl1 a;£(t — U) where 6 is the 

Dirac delta function 
X(i} the state vector, being s{t) one of its components. 

3.1.1 K a l m a n filtering 

This is an approach that leads to computing algorithms that provide at each time 
t an estimate £(x) of a random process x(t). It is based on measurements related 
with x(t) obtained previously to time t. The process to be estimated must satisfy an 
equation of the form: 

X(t) = AX(t)-rB*(t) + Gv{t) 
X(to) = 0 K 1 } 

where 
X is the state vector 
a is a gaussian white noise with zero mean and known variance. 
A, B and G are coefficient matrices. 
v any known input. 
It must be assumed that the initial value s(*o) is a gaussian random variable with 

known mean and variance. There must be also available measurements z-K at time Z* 
for i = fl,l,2.... related with the process by an equation of the form 

zK = Hz(tk) -r v>k 

where H is a matrix and wt is a white gaussian sequence with zero mean and known 
variance. Under the above conditions it is possible to obtain for each time ft an 
estimate £(:*) of x{t-K) that has minimum variance and is liuear on the measurements 
r I : ...,zjt- This result is due to Kalman and leads to an algorithm that allows computing 
on line the estimate i{tk) as soon as the observation z& is obtained. The main use of 
this algorithm has been to obtain the actual signal by filtering both the measurement 
noise Wk and the uncertainties in the model expresssed through the noise input u in 
the dynamic model. Nevertheless, we went farther in the applications. 

3.1.2 App l i ca t ion 

Two approximations were made in this point. Firstly, we replace the Poisson impulses 
process a exciting the system by a sum of strongly decaying exponential functions, i. 
e.: 

7 a large possitive number. This allows including u as another component of the 
system of differential equations 1 and so using Kalman filtering to estimate it. Secondly, 
including u in the state vector the resulting system random input is a Poisson process 
with zero mean and variance A *6(t-1i)'. It is observed that first and second moments 
of this process coincide with those of white noise. So, we directly considered the input 
as if it were white noise. [5]. By monitoring the signal we obtain noisy measurements 
that can be modelled as 

Z = $(t ) + W = Hx{t )+U7 
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by letting H — { 0 0 ...i ...0 j . Hence, we only need to the assumptions on initial 
conditions necessary to use KF theory. 

3.1.3 Resul t s 

As output of KF fed with signai measurements it is obtained a new signal where 
it is easier to distinguish two bursts very close, its relative amplitude and, if a long 
rise-time is present, the actual initiation of bursts. Figures 2 and 3 show the input 
signal and that provided by the filter.lt is possible to distinguish two pulses of same 
amplitude approximately located in 320 — ZSOus and 500—550/is. This fact is not dear 
in the original signal. It is remarked that the output signal is obtained on line, making 
so possible to relate ocurrence of bursts with deformations or cracks and further on, 
with distance to the sensor. It also has to be remarked that this method is based on 
the model assumed. So, one of the remaining questions is the reliability of the model 
parameters. Even when numerical experiments showed good results independentiy 
of parameter accuracy, we continued this work looking for a method to evaluate the 
parameter c. 

4 Banks of Kalman filters 

4.1 Estimation of decay time. 
The parameter r = ~ is called decay time of bursts and is related with source-sensor 

distance. For this reason and for improving model reliability, we extended the above 
modei based approach fay using, instead of one, several filters, with the purpose of 
estimating r . As has been said, KF are used to estimate the time signal. It is then 
reasonable to expect tLit if the estimation is good it will not be very far form the 
measurements. In other words, the series of the so called "residuals" or "innovations" 

e/e = z* - z(tk) 

should have zero mean and small variance. As r is not known, a finite set of r values 
Ti,Tirm'i'rm, is proposed. For each, r,- a different model Mi is obtained. On this 
base, a different KFi is designed for each model, constituting a bank of m KF that 
operates simultaneously in parallel on the measurements (Fig. 4). It is then established 
a criterion to choose the value rs« such that the corresponding KFi- works best. The 
criterion consists on choosing the minimimun of Si, a weigthed sum of the residuals 
e\. of each filter.In other words, the smaller the residuals , the better the estimation. 
Weights are obtained from probabilistic considerations [6] 

4.2 Results 
We tested the method on numerically simulated noisy signals [7]. They were obtained 

by simulating the stochastic model for a particular value of r and corrupting with 
noise. Simulated observations were entered a bank of filters designed for that r value 
and several others. The minimun Si was reached by the KF designed for the r used 
in the simulation. 

Hence, including the bank of KF allows to improve the model used to estimate 
time of occurrence of bursts as well as get information about source-sensor distance. 
Both tasks can be done on-line. 

We use a sligthly different approach to solve another pvoblem. 
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4.3 Application to leakage detection 
In figure -5 it can be seen a simplified scheme of doubie pipe "neat excaanger.The 

failure to be detected is any ieak in the inner pipe. In normal operating conditions, 
velocity in each pipe remains invariant. 

If a ieak in the inner pipe occurs, velocity is modified due to the Sow going from 
one pipe to the other. We considered both pipes divided in sections. Taking as state 
variables temperatures of the flow at each section of each pipe, we can reach to a model 
for normal operating conditions of the form i. where now X Ls a vector of tempera­
tures of dimension equal to twice the number of sections. Observations available were 
tremperatures of the outcoming water from the inner pipe. i.e. measurement model 
resulted 

z{tk) = Hxitk) ~ wK 

where S — [0 0 ... 0 I 0 ...01 and tr* the observation noise, (gaussian. white, zero mean, 
known variance). So. conditions to design a KF are satisfied. 

The coefficients in A. B and G depends on 8ow velocities in each section. When a 
failure occurs in one section, velocities in that and subsequent sections change propor­
tionally to the leak size and so do coefficients. Hence for each failure hypothesis TU, 
different matrices Ai, B,- and Gi will be obtained, each one leading to a different model 
Mi and so to a different filter KF{. 

On this scheme , observation are processed through a bank of filters including that 
designed en the normal operation model and those designed on models corresponding 
to each size and location of failure. It is reasonable to expect that, at each time, the 
filter designed on the actual operating model should work best. We used the criterion 
mentioned in the previous section to choose it. Hence, while system operates on normal 
conditions. The sum S/v corresponding to the normal model will be minimum. When a 
failure occurs, another 5,» will become minimum. As Mi- models one determined size 
and location of leak, detection and identification of failure are achieved simultaneously 
and on line. We evaluated this method simulating leaks of several sizes in different 
sections [8]. Fig. 6 shows 5,- values as function of time. It can be seen that the 
minimum changes after failure occurrence at time t = 300s. It has to be remarked 
that simulated faults cannot be seen in the observations because the effect produced 
is smaller than measurements standard deviation. 

5 Detecting toolwear by AES amplitude dis­
tributions 

We sought a method to detect changes in the shape of signal waves that could 
be related with toolwear. Our approach, began considering segments of the digitized 
signal as statistical populations and establishing their probability density function. In 
other words we simply divide the range of amplitudes in several intervals, count how 
many times the amplitud value fall in each interval and build a frequency histogram. 
Figure 7 show how different wave sha?es result in different probability density shapes. 

Third and fourth moments of a distribution, i.e. skew and kurtosis are related with 
density function shape. Skew refers to the symmetry about its mean and kurtosis to its 
sharpness. Moreover, they can be easily estimated from data. So if pairs of estimated 
skew and estimated kurtosis are plotted in the x-y plane, similar distribution shapes 
will result in neighboring locations. 

in 



Then, the method proposed consists of firstly determining the region in the plane 
corresponding to right working. When pairs of estimated skew and kurtosis computed 
while monitoring the signtl fail outside that region, it will mean that a change in the 
waves happened, indicating begining of wear. 

A drawback is that skew and kurtosis are very sensitive to odd values. So we 
normalized data, and assumed they are Beta-distributed. This distribution depends on 
two parameters a and 6, that are mutually independent and completely determines its 
shape. Depending on a and b. this distribution takes different asymmetries and changes 
from bell-shaped to U-shaped- Moreover, a and b can be easily estimated using only 
mean and standard deviation of data. Skew and kurtosis of Beta distribution may 
in tarn be computed from a and b. So we assumed data, were Beta distributed and 
then determined right working regions for pairs (a,b) and skew and kurtosis of Beta 
distribution [9]. 

Figures 8, 9 and 10 show plot obtained by monitoring AES from a bearing rolling 
without lubrication. It can be seen that pairs obtained near the end of the experience 
and those of the begining lie in different regions. 

6 Entropy distance 
This is another idea to determine differences between signals that make use of the 

entropy distance. 
A classical approach to analyze time series is fitting to data the so called Autorre-

gresive (AR) models. It consists of assuming that signal satisfies a difference equation 
of the form 

? 

where x,- are the signal values, <,- are zero mean,gaussian random variables, p the 
selected order and a,- coefficients that have to be estimated from the signal itself, as 
well as a2. 

A comparison of the signal monitored with another used as reference will be done. 
Modelling both two as AR processes of the same order p, it is possible to compute the 
joint probability density function of the two signals. It will depend on the parameters 
fitted. 

These probability density functions are computed under two different hypothesis 
Tic .""both signals fit the same model", Ti\ :"the signals fit different models" Under Tic , 
parameters of two signals will be the same and the maximum joint likelihood function 
results 

where A* is the signal length and a> the standard deviation estimated for a joint rgnal. 
Under Ti\, two set of parameters have to be consider >d, hence it results 

where C"R and C'M are the standard deviations of reference and monitored signals re­
spectively. Then a likelihood ratio is computed and the entropy distance is defined as 
[10] 
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This is a non-negati%'e number that is nail if and only the parameters are equal. 
i.e. if the fitted models coincide. The entropy distance is a measure of the statistical 
difference between two signals. The larger the value of d is, the parameters of the 
two signals are considered to be more different. By comparing monitored signals with 
those corresponding tc right working, a threshold may be determined beyond that it 
is considered that wear began. 

We applied this method on the data mentioned in the previous section [9]. Figure 11 
show distances computed between segments of the signal at the begining (named with 
V ) and near the end of the experience("marked with f ) . 
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Figura 1: Scheme of a typical Acoustic Emission event 
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Figura 2: Experimental AE signal 
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Figura 3: Time occurrence estimation given by Kalman Filter 
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Figure 4: Scheme of the bank of Kalman filters 
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Figure 5: Simplified scheme of a heat exchanger 
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Figure 8: Pairs of skew and kurtosis (o at the begining, * near the end of the experience) 
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ca 

cb ) fa | fb | fc 
1034.7J 3389.7) 2821.6) 5671.1 

d) | 0.0( 1253.1) 1889.5) 3572.1 
fa j 0.0) 1209.1) 1563.9 
fb ) 0.0) 3297.5 

Fieura i I: Computed entropy distance (segments ca and cb corresponds to the oegining and 
the / a , fb and fc corresponds to the end) 
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