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I NUCLEAR PARTITION FUNCTIONS

1 Introduction

Tools to deal with many- body systems at finite temperature were developped long ago. As
early as 1932 R. E. Peierls [1] established the general framework of thermodynamic perturbation
theory for quantum systems. In 1955 T. Matsubara [2] worked out the details of thermal
perturbation theory for many body systems (see also [3]). Several textbooks in the field have by
now been available for some time. Among these we wish to mention those of Baym and Kadanoff
[4], Abrikosov, Gorkov and Dzyaloshinsky [5], Thouless [6], Fetter and Walecka [7]. More recent
reviews including a presentation of functional methods [8] can be found in the monographs by
Negele and Orland [9] and Blaizot and Ripka [10]. It is also worthwhile mentionning some
of the classic articles in the field such as the elegant construction given by M. Gaudin in
1960 [11] of Wick's theorem at finite temperatures, which exploits the algebra of exponentials
of quadratic forms in the field operators. As a second example we mention the exhaustive
discussion of the mean field approximation (including small amplitude collective motion in hot
Fermi systems) given by des Cloizeaux in his 1967 les Houches lectures [12] using the framework
of the variational principle.

The motivation for the present lectures arises from the renewed interest in finite temperature
many body methods which has appeared recently in several different domains of nuclear and
particle physics. These include in particular the physics of hot nuclei, which is the main
purpose of these lectures, but also the restauration of broken symmetries in the standard model
[13, 14, 15] or the physics of the quark gluon plasma [16, 17, 18, 19, 20]. These methods are
also important for the description of type- II supernovae or the discussion of meson properties
in hot dense matter.

The possibility of producing thermalized hot nuclei with temperatures of the order of several
MeVs (IMeV ~ 1O10 K) has been demonstrated in the early eighties by performing collisions
of two nuclei at intermediate energies. The first experiments where carried with a 720 MeV
carbon beam at CERN [21] and a 44 MeV per nucléon Argon beam at GANIL [22]. For a
review of recent developments in this field the reader is referred to the lectures presented at
the 1992 Prcdeal School by B. Tamain[23]. It is worthwhile emphasizing that temperatures of
about 5 MeV are precisely those which are reached during the collapse of massive stars which
are believed to lead to type II supernovae explosions. The measurement of thermal properties of
nuclei in this temperature range is thus of significance for an accurate description of the collapse
of massive stars. Among such properties is the specific heat and level density parameter of hot
nuclei. Their values indeed determine how much energy and entropy can be stored in nuclear
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excited states. It is also important to have good estimates of the limiting temperature beyond
which nucléons will no longer be bound into nuclei. Beyond this temperature one indeed
expects a sharp increase in the interior pressure of the star due to the sudden appearance of
the contribution of nucléons.

Another reason for the renewed interest in hot many body methods was the observation by
the Berkeley group in the early eighties of the persistance of giant collective oscillations in hot
nuclei up to temperatures of the order of several MeVs [24]. The possibility of giant collective
oscillations built on nuclear excited states was anticipated in 1955 by D. M. Brink in his thesis
work [25]. Shortly after the discovery of giant resonances in hot nuclei several theoretical
studies using linear response theory at finite temperature were performed [26, 27, 28, 29].
Several applications of this approach were investigated at the same time. For instance the long
standing question of the contribution of collective modes to nuclear partition functions [30, 31]
was reexamined.

The purpose of the present lectures is to review the approximation methods relevant to
describe many -fermion systems at finite temperature. In the next section we review the
grand canonical formalism for independent fermions and discuss its applicability to the case
of finite nuclei for which fluctuations arising from the small number of particles involved are
expected to be sizeable. In section 3 we present a derivation of the mean field equations
based on the variational method. In the second part we discuss perturbation expansions of
partition functions. We consider a particularly important subseries containing the so called
ring diagrams whose summation leads to the random phase approximation (RPA). In the third
part an application to the physics of giant resonances in hot nuclei is described.

2 Partition functions in astrophysics
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The basic tool for calculating thermodynamic properties of atomic nuclei is the familiar grand
canonical partition function

Z(a,/3) = Trace exp(<*JV - 0H), (2.1)

where the Trace is taken over the entire Fock space i.e. runs over all possible quantum states
of all possible nuclei. Denoting by En[A) the energy of the n-th excited state of the nucleus of
mass number A this definition implies

EE (2.2)

(2.3)

The canonical partition function ZA((3) is defined by a similar formula
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" Partition functions are involved in a large number of applications. As a first example they
" appear in the determination of chemical (or thermonuclear) equilibrium. For a reaction

A + B -» AB

the densities n,\ — NA/H,nB = JVs/fî, nAB — NAB/Q indeed satisfy Saha's equation

t nAB f m \

X

f J
e nAnB \2xh2p) ZA(0)ZB(/3)
S where /3 — 1/fcT is the inverse temperature and where Z is the internal partition function

Z((3) = 1 + e^E' + e~0BS + ... (2.5)
where JS* = En- E0 is the excitation energy of the n—th state of the system and m the reduced

J mass m.4ms/(m.4 +

Nuclear partition functions are also important to determine which nuclei are present in the
hot dense matter encountered e.g. in collapsing stars. Let us use a single label i to specify the
neutron number N and the proton number Z of a nucleus. With this notation the density n,
of the nucleus i is given by

In this formula m, is the mass of the nucleus i, Ei its energy and «ft = 2J1 + 1 its ground state
degeneracy. The quantity â  is often referred to as the degeneracy parameter and is given by

kfOi ~ N1In + Zfip, (2.7)

where /In and nP are the neutron and proton chemical potentials. These should be adjusted in
order to have the desired total nucléon density and proton fractions of the medium. Actually
equation 2.7 is approximate only. It neglects the interactions inside the nucléon vapor in which
nuclei are immersed. This is a reasonable approximation provided the density of the vapor is
not too high.

To conclude this subsection we mention that partition functions are a useful tool to con-
struct approximate expressions for nuclear level densities. Indeed the partition function can be
expressed as

Z(a,0)= f J p(E,A)exp(aA-0E)dAdE, (2.8)

where p(E, A) is the level density. By taking the inverse Laplace transform of this expression
we find

'A) = (élÎICI Z(a>0)exti~aA + 0E)**&- (2-9)
As will be shown below the use of the saddle point method for this integral leads to useful
approximations to the nuclear level density.
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3 grand canonical formalism for independent nucléons

1

y

The most convenient formalism to cieal with independent fermions is the grand canonical for-
malism. In contrast in the microcanonical or canonical formalisms the Pauli principle is difficult
to implement. A non trivial question however arises since nuclei are finite systems containing
a rather small number of particles. Fluctuations are thus expected to be sizeable. For this
reason we present in this section a critical review of the basic formulae in the grand canonical
formalism and discuss their applicability to the case of atomic nuclei.

Let us consider independent nucléons moving in a potential V(r), described by the one body
hamiltonian:

2k =
2m

In this case the grand partition function

Z0 = Traceexp(aJV -

is easily calculable. Using H0 = h(l) + h(2) + .. we find

log Z0 =

(3.1)

(3-2)

(3-3)

Jn this equation the index i labels the single particle levels of h and e, is the single particle
energy defined by

P2

(— + VWr) = €iip,{r).
2m

The number of particles is obtained by means of the standard formula

(3.4)

where /,- is the occupation number

U =
exp{/?(e,-

Similarly the energy is given by

~

To evaluate the entropy we use the definition

(3.5)

(3.6)

(3.7)

(3.8)
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where D0 is the density matrix

This formula leads to:

D0 =

Using equation (3.3) this gives the familiar expression

S = - £ { / . log Si + (i - /Oiog(i - Si)}-

(3.9)

(3.10)

(3.11)

As an application of the above formulae let us now construct an approximate expression for
the level density of a nucleus. We start from eq.(2.9) which we rewrite as

p(E, A) =
VZTTl

(3.12)

Dominant contributions to this integral will occur from the neighborhood of the point (ao,Po)
where the integrand is stationary i.e.

A = ^
Q

(3.13)

Expanding the argument of the exponential to second order in a — oto and P — Po we find

1 " — ( 3 1 4 )

D the determinant

(3.15)

' 2iry/D

where S(ao,po) is the entropy calculated at the saddle point (ao,Po)
of the matrix of the second derivatives of log Z

D =
d2 log Z/da2 d2\ogZ/dadp
d2 log Z/dadp d2 log Z/dp2

Actually this formula corresponds to a nucleus with an equal number of neutron and protons.
For asymmetric nuclei one needs different chemical potentials for neutrons and protons [32].

Equation (3.14) is the well known formula expressing the fact the entropy is the log of the
number of accessible levels. Here however we have an additional correction appearing as a
preexponential factor. While in macroscopic systems this prefactor is negligible it is important
to include it in the case of atomic nuclei. A comparison between the grand canonical formula
(3.14) and a microcanonical enumeration of states performed by Jacquemin [33] in the case of



calcium-40 is shown in Fig.3.1. It can be seen that a good agreement is obtained for excitation
energies above E" = 10 MeV.
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Figure 3.1 Level density in calcium-40 calculated in the grand canonical formalism and with
an exact enumeration of states [33]. Single particle energies are taken from [32].

4 Variational method and mean field approximation

\

The variational method is based on the principle of maximum entropy. This principle states
that for a given family of density matrices, the best density matrix D is that for which the
entropy functional

S(D) = - JfeTrace(Z) log D) (4.1)

is maximum. This maximization has to be performed for a fixed particle number and a fixed
energy. If we introduce two Lagrange multipliers to account for these constraints we find that
the functional

- JfcTrace(Z> log D) - 0Tta.ce{DH) + aTi&ce(DN), (4.2)

should be maximum for the optimal density matrix. It is customary in the littérature to consider
the functional

A(D) = Trace(M) - kTS(D) - /*Trace(DN), (4.3)

where we have introduced the chemical potential fi = a/j3 and the temperature T = l/kj3.
The previous functional is referred to as the grand potential. Minimizing the grand potential
is thus equivalent to maximizing the entropy while including the adequate constraints due to
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energy and particle number conservation. If this minimization is performed for the most general
density matrix one obtains the usual Gibbs distribution [34]

D = Z~l exp(aJV - 0H). (4.4)

Unfortunately for interacting systems, expectation values with this distribution cannot in gen-
eral be calculated exactly. One thus has to rely in this case on approximation methods. A
convenient and powerful method is to minimize the grand potential within a restricted set of
density matrices for which calculations are feasible. An important example is the mean field or
Hartree- Fock approximation. This approximation corresponds to the case where the trial set
of density matrices is taken to be of the form

D = Z-1 exp(£ Mijafaj), (4.5)

This choice corresponds to a density matrix of independent Fermions. In this case the entropy
is found to be

S[D) = -fctracefrlog p + (1 - p) log(l - p)}, (4.6)

where the trace is over single particle indices and where p is the single particle density matrix

afaj) =< j\p\i > . (4.7)

Performing the Trace in this equation leads to

exercise 4.1

Prove the relation

Use this relation to derive equation 4.8.

I answer The desired relation is obtained by expanding, in powers of the matrix M, the quantity

Dai D-! = 4 + E Mijafa^ai) + ...

and by using the commutation relation

1

.



Equation 4.8 is then established by writing

Trace ra , ) = $>A')raJtTrace(a+Z?a,).
m

By exploiting the anticommutation relations of a and a+ one obtains

exercise 4.2

Using the results of the previous exercise prove that

Trace(Da+atajafc) =< k\p\i >< l\p\j > - < l\p\i X k\p\j >,

(Wick's theorem),

answer

Using the commutation relation of D and a+ gives

Trace(Z?ata+a/afc) = Y,TTace(atDaja,ak)(e
M)mi.

m

The next step is to reorder the fennion operators by means of the anticommutation relations.
This leads to

£ Tracera+ «+a,ak)(l + eM)m; =

(>)*. < 1\P\J > "(eA/)« < k\p\j > .

Multiplying both sides by (1 + eA'),"n' and summing over i gives the answer.

Let us now evaluate the grand potential corresponding to our trial density matrix. We assume
that the hamiltonian of the system is of the form H = T + V with

t

if*. ï = ^e,o^a, , (4.10)

i and
S\ V = \Y,< *i|fIW > atajaiak. (4.11)

The expectation value of the number operator is

V - < N >= traced). (4.12)

1 9
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Let us now calculate the expectation value of the energy. The kinetic energy is

. (4.13)
ij

Using the result of exercise 4.2 the potential energy is found to be

<V>=^2<iJ\V\kl><i\p\j><k\p\l>, (4.14)
ijkl

where < ij\V\kl >=< ij\V\kl > - < ij\V\lk >.

In order to determine the optimal density matrix DHF we now have to perform a variation
of the grand potential with respect to the variational parameters M{j or equivalently pij. Two
different types of variations can be envisaged. The first type corresponds to transformations of
the form

P = JXpHPe-**. (4.15)

Such transformations do not change the entropy and do not change the number of particles.
The change in the grand potential therefore reduces to the change in the energy. This change
is conveniently expressed by introducing the mean field operator W defined by

SE = Tmce{WSp). (4.16)

Its explicit expression is given by
s.

< i\W\k >= Y, < *i|VW >< l\p\j > • (4.17)
ji

9)
Since Sp = »[X,P//F] we learn that Trace([W,p//f]x) vanishes for any operator x i-e-

1 [W,p,iF] = 0. (4.18)

Thus W and puf can be simultaneously diagonalized. We denote their common eigenvectors
by ipi

' ^* We can also perform a second type of variation for which only the eigenvalues of the one body
I density matrix are modified e.g.

,i.i Sp = Sfi\ipi><\ipi\. (4.20)

' J Requiring the change in the grand potential to be zero we find that the eigenvalues of the one
body density matrix should be given by Fermi occupation numbers

1
2)

10



•••••• Jk.

Equations 4.17, 4.18 and 4.21 are referred to as mean field or Hartree- Fock equations at finite
temperature. In these equations the chemical potential is to be adjusted in such a way that
the total number of nucléons equals A i.e.

^- (4-22)

exercise 4.3 For a spin saturated symmetric nucleus (i.e. N=Z) work out the expression of
the mean field W in the case of a simplified Skyrme force which is a sum of two and three body
forces

V = V12 + «123, (4.23)

where the two and three- body terms vi2 and V123 are respectively given by

«12 = to6{rx - r2),

and
V123 = t36[ri - T2)S[T2 - T3).

answer

In second quantized form the hamiltonian density of the nucleus reads

| W + | : (V+(rty(r))2 : + | : (*+(r)tfr))» :, (4.24)

where the notation :: indicates that the operators should be normal ordered i.e. all creation
operators placed to the left of annihilation operators as prescribed by equation (4.11). Note
that in the previous equation 1}) is a two component spinor whose components are:

*+(»,») = I>?(*.*h+- (4-25)
,> t

) . The expectation value of the energy density is obtained by applying Wick's theorem with the

I result:

Vj < H >= Jf-T(T) + lt0p
2(T) + ^ 3 p 3 ( r ) , (4.26)

J 2m 8 16
where p and r are respectively the density and kinetic energy density

p(r) =< rl>+(r)il>(r) > = ]T / , | v? , ( r ) | 2 , (4.27)

11



and
T(T) =< VV»+(r)VV(r) >= $3/i|Vy?,(r)|2. (4.28)

Requiring the grand potential to be stationary leads to the mean field equation

where the average potential U is given in terms of the density distribution by

U(r) = -top(v) H—— <3/>2(r). (4.30)

exercise 4.4

Let us define the grand partition function in the Hartree- Fock approximation as

log ZHF(a,0)=-p A(D). (4.31)

Show that this definition preserves the thermodynamic identities

E = - ^ r log Z, JV = — log Z, (4.32)
op Oat

„ .. d d

answer

Let us evaluate the change in log Z when a and P are increased by Sa and 6/3 respectively:

£ (4.34)

Note that there is no term arising from the variation of the density matrix because the grand
potential is stationary. Identification of the variations in a and /? provides the desired result.
Note also that the Hartree- Fock partition function is not the free particle one Z0.
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II THERMODYNAMIC PERTURBATION THEORY

5 Dyson's expansion

Suppose that we have to deal with a many fermion system whose hamiltonian H is the sum
H — T + V of a one body operator T (e.g. the kinetic energy for an electron gas or the average
field for a nucleus)

= \f < l\TU > *iai = 2L, eiaiah (5.1)
'j »

and a residual two- body interaction V

(5.2)

(5.3)

z ijkl

As was mentionned in section 2 the partition function

Z{a,0) = Trace exp(aN - /3H)1

cannot in general be calculated explicitely in this case. In this section we present a method
to construct Z as a. perturbation series in the residual interaction V. Let us first write the
partition function as

"{"I P) — iracee j \0A)

where the operator Ho collects the one body terms

i

and where fi is the chemical potential
/t = a/0. (5.6)

In order to construct a perturbation expansion for Z it is convenient to make explicit the
contribution of the unperturbed hamiltonian

Z0 = Trace e~$"\ (5.7)

(which is calculable by the methods of section 4), and to write

--0H0

Z{a,p) =
"0

(5.8)

The attractive feature of this expression is that it is well adapted to the case of a weak residual
interaction. Indeed it expresses Z as the product of bare partition function ZQ by a correction

15



factor. This factor is the thermal expectation value in the unperturbed state of an operator
close to unity when V is small. Explicitely

with

(a,p) = Z0 < U1(P)

= eWoe-PWo+v),

(5.9)

(5.10)

This operator is reminiscent of evolution operator in the interaction representation. Indeed it
satisfies the following evolution equation (sometimes referred to as the Bloch equation [I])

(5.11)

(5.12)

where V/ is the residual interaction in the interaction representation

V1(P) = e+fiH*Ve-filt*.

The only difference with ordinary perturbation theory is that we now have an imaginary value
of the time variable. For this reason the formalism described below is called imaginary time
formalism.

Integration of the above evolution equation yields

Ul(P) = I- £ V1(T)U,(T)dT,

which can be expanded as (Dyson's expansion)

In this equation the notation T denotes the time ordering operator defined by

= A(T1)B(T2) HT1 > T2,
= (-IfB(T2)A(T1) IfT1 < T2,

(5.13)

(5.14)

(5.15)

where A (resp. B) is a product of an arbitrary number of creation and annihilation operators
with the same time argument T1 (resp. T2) and P is the parity of the permutation bringing the
fermion field operators in the desired order.

exercise 5.1 Establish equation (5.14).

answer

16



-y.

Iterating equation (5.13) twice gives

= 1 - [* V,(T)dT + f$ dn P Jr2Vf(T1)Vy(T2) + ... (5.16)
Jo Jo Jo

which can be rewritten in the form (5.14) for the first two terms. Higher order terms are
obtained by induction.

To evaluate the partition function Z = Z0 < Uj > we are thus left with the calculation of the
thermal expectation value of time ordered products of interaction terms in the unperturbed
density matrix. The implementation of this step is achieved by means of the following two
lemma.

lemma 5.1

In the interaction representation the two body interaction reads

T/- / \ _ *f̂  "̂ Vôlï/IW ^ n•(r\n -(v\n (v\n (r\ (*î 17^

^ ijkl

where the notation a(r) denotes creation and anihilation operators in the interaction represen-
tation

Oi(T) = e+THaaie-Tlfo = a,exp{-(e, - /I)T}, .g J g .
ài(r) = e+THoafe~TH° — af exp{+(e, —/IJT}. ^

1 Note that â(r) is no longer the hermitian conjugate of the annihilation operator CL(T) in thermal
perturbation theory, unless T = O.

proof

The derivation of (5.17) is straightforward. In order to establish (5.18) we expand â(r) as:

i*. S1-(T) = of + T[H01Ot] + C[Bo, [H0,at]] +... (5.19)

' ( The commutator appearing in this equation is given by

J \H~ /i+1 = (e, -fi)at, (5.20)

which leads to the result. A similar calculation can be made to establish the expression for
a(T).

17
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lemma 5.2

The thermal expectation value of a time ordered product of creation and annihilation oper-
ators in the unperturbed state is obtained by grouping the operators by pairs, multiplying the
expectation values of each time ordered pair, adding the contributions of all possible pairings
with a sign determined by the parity of the permutation which sets the operators in the required
sequence (Wick's theorem).

example

< T{â,(r1)âJ(r2)ofc(T3)a,(r4)} > =< T{â,(r,)a/(r4)} >< T f à f a
- < T(O1(T1)O^T3)) X T(^(T2)(H(T4)) >
+ < T(^(Ti)Oj(T2)) > < T(^(T3)Oj(T4)) > .

(5.21)

The last term in fact vanishes since it involves the expectation value of two creation operators.

proof

Let us first restrict ourselves to the case of four operators mentionned in the previous example.
A possible -though tedious- way to prove Wick's theorem is to exploit the time independent
version of this theorem discussed in exercise 4.2. A more elegant proof however [1] is obtained
by applying to both sides of equation (5.21) the operator d/dri — e, + /i. Note that, although
the action of this operator on O1(Ti ) vanishes, such is not the case for a time ordered product
involving this operator because of the step functions implied by the time ordering. As a result

= S(T1 - T4)Su < T(Oj(T2)Ot(T3)) > - ^ T 1 - T3)6ik < T(Ôj(T2)a/(T4)} > . * ' '

It can thus be seen that both sides satisfy the same differential equation with the same an-
tiperiodic boundary conditions on the interval [0^3]. The extension to an arbitrary number of
operators is straightforward.

MN
> 1 I

\

Definition 5.1

According to Wick's theorem all expectation values of products of creation and annihilation
operators can be expressed in terms of the quantities

- T') = Trace {e T^W))}T^W))} (5.23)

These quantities, which depend only on T — T' are called unperturbed propagators or unper-
turbed single particle Green's functions in analogy with the zero temperature case. Exact
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Green's functions G are defined in the same way provided the full hamiltonian H is substituted
to the unperturbed one \r the above formula.

exercise 5.2

Unperturbed propagators are needed only in the interval 0 < r < /9 i.e. — /? < r — T' < +0.
Show that in this interval G^°\T) is antiperiodic with a period /?.

answer

Assume r to belong to th interval [0,/3]. We have in this case

Z0G^(T - /3) - Trace {e-^T[ô,-(r - /3)^(0)]}

TVa*»*» ï 0*~&HQ OTHQ n + O — THQ n A
— XICLvC i C C U1* C U* f

(5.24)

which establishes the result. Note that the antiperiodicity of Green's functions holds only in
the restricted interval [—/?, +/3].

exercise 5.3

Show that in the basis in which the single particle hamiltonian HQ is diagonal the unperturbed
Green's function G^ are given by

G<S\T) =Sijf**»->* if r > 0
= - ( I - /i)«iye~(€<~|i)T « r < 0

where /, is the Fermi occupation number defined by equation (3.6),

(5.25)

hint

Use the definition (5.15) and equation (5.18). Note that equation (5.25) satisfies the antiperi-
odicity condition studied in the previous exercise.

V
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The unperturbed propagators can thus be represented by a Fourier series as

Gf1 \r) = \ g e-̂ GJJW), (5.26)
P V——OO

where
wu = {2v + 1)T/ /3 ,

with v being an arbitrary positive or negative integer. The frequencies wu are called Matsubara
frequencies. From the previous equation we find

It is interesting to see how equation (5.26) is able to reproduce the discontinuity at r = O.
Suppose that r is greater than zero. By using the two previous formulae, we can write the
propagator as

G\?(r) = Si-J0 f(z)dz (5.28)

where the function / is defined by

M - R T ^ ^TT (5-29)

and where the contour C encloses the poles of / located at i times the Matsubara frequencies
i.e. at z = iwu. Now when \z\ is large the function f(z) behaves as

f(z) ~ e-<*-T>Re» if Rez>0 , (5.30)

and
/ ( * ) ~ e r R « if Rez<0 . (5.31)

In both cases the fuction /(z) vanishes exponentially at large \z\ and the contour C can thus
be deformed into a single loop around the remaining pole at z = (e, — (i). This gives

^i In the case where r is negative the above procedure fails because f(z) no longer vanishes at

I large \z\. However it is possible to use another function namely

Indeed this function g(z) behaves for large z as

V g{z) ~ e ^ ) * " if Rez < 0, (5.34)
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and
ff(z)~eTR" if Re*>J . (5.35)

A deformation of the contour C thus leads in this case to

From the calculation we have just made we also learn that the expression we have written for
the propagator in terms of its Fourier components is not a convergent one for r = 0. In order
to have a formula valid for all values of r it should be modified into

Gjj>(r) = Bm ~ E e ^ e - ^ G g W ) (5-37)

exercise 5.4

Establish the correction to the partition function in first order perturbation theory.

answer

From equations (5.9) and (5.13) we have

Z[P) = SSO<{1-£ Vi{r)Ut{r)dT) > . (5.38)

Up to first order Z = Z0 + Z1 with:

= - f < «ilV-lfcl > {GSfc(+0)G§,(+0) - G&(+0)G5b(+0)} (5.39)
= -%<ij\V\ij>fifii

where V denotes an antisymmetrized matrix element:

L < ij\V\kl >=< ij\V\kl > - < ij\V\lk > . (5.40)

!

j 6 Diagrams

As for zero temperature perturbation theory it is convenient to visualize the various terms in
y the perturbation expansion by means of graphs or diagrams. These terms involve the two body



interaction V and the single particle propagators G. To each of them one can associate a graph
in the following way. An interaction matrix element < XjIV]W > is represented by a dotted
horizontal line:

<ij\V\kl>= )> <f (6.1)

whose altitude characterizes the imaginary time r when it is taking place. Propagators G\j (T—
T') are represented by a solid line beginning at imaginary time T and ending at time T' and
oriented from r to T'. With these conventions the first order contribution Z\ to the partition
function is represented by the following graph

Z1= 0 O (6.2)

It is also possible to define graphs with interaction matrix elements which are not antisym-
metrized. One has in this case a larger number of graphs in a given order.

disconnected graphs. Some terms in the perturbation expansion can be factorized as a
product of two or more thermal expectation values in the unperturbed state. Such terms lead
to disconnected graphs. As an example in second order one encounters for the partition function
the following diagrams

°o:--:--o
which correspond to the contribution

Z2/Z0 = So dn S? dr* <V,(Ti)>< Vi[T2) >
= UlEij <ij\v\ij>fifj)2- { }

In contrast contributions which cannot be factorized are called connected graphs.
!

linked cluster expansion As for zero temperature the sum of all graphs, connected and
disconnected, is equal to the exponential of the sum including connected graphs only. Let us

': illustrate this property on the following example

exercise 6.1 Calculate the sum of the corrections to the partition function Z0 defined by the
following graphs:

ZfZ0 = 1 + 0 0+ 0 0+ 0 0 + ..
L 0 0 0 0 (6.5)
1 0 — 0

answer. The n-th order contribution is

ZN/Z0 = fo dn...£"~l drN < F7(T1) > ... < V1(TN) >, (6.6)

)
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' which is equal to
d ZN/Z0 = ̂ Y,<ij\V\ij>f. (6.7)

) The sum of all such graphs is thus

Z/Zo = exp{-^£ < ij\V\ij > fjj}. (6.8)

This sum enjoys the following property.

exercise 6.2 Show that when the unperturbed hamiltonian is chosen to be the kinetic energy
operator T and the perturbation to be the two body interaction V, then the sum of all discon-
nected graphs generated from the first order one has an expression similar to the Hartree- Fock
partition function but with the Hartree- Fock occupation numbers replaced by the unperturbed
ones.

answer. Using the expression of the unperturbed partition function and equation (6.6) we
obtain:

-PlOgZ = -/3£log{l + e * ^ } + W < iJ\VM > UU- (6-9)
i l a

The first term can be transformed into

Trace(TDo) - S[D0)Jp - (iN{D0), (6.10)

where S(D0) and N(D0) are the unperturbed entropy and particle number respectively. The
last term is equal to 1TiACe(D0V). Combining these results we have

- /31og Z = TmCe(D0H) - S(D0)Jp - /iTrace(D0^). (6.11)

This expression looks similar to the Hartree- Fock partition function ZHF but in fact differs
from it because the occupation numbers fi are not the Hatree- Fock ones.

To conclude this section we now perform two additional exercises which will be usefull in the
next section.

exercise 6.3 List the second order connected graphs for the partition function and evaluate
their contributions.
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answer. In second order one has two possible connected graphs which are displayed in the
following figure

I j Z2b/Z0 = A" (6.12)

Tlie contribution of the first graph is given by

=
^o 8

The labels of single particle states have been classified as p or k depending on whether thry
become particle or hole states at zero temperature. The contribution of the second graph is

Z2b/Z0 = V E fifiiX - /i)A < tf 1*1« >< 3k\V\jk > . (6.14)
1 ijk

Note that this graph would not occur in zero temperature perturbation theory because the
factor / ( I — / ) would vanish in this case. It would also not occur in the Hartree- Fock basis as
shown in the next exercise.

exercise 6.4 Examine the case where the unperturbed Hamiltonian is chosen to be the
Hartree- Fock Hamiltonian. Prove that in this case all graphs containing insertions of the form

• > O (6.15)

vanish identically.

answer The Hamiltonian H0 is T + Û — fiN, where Û is the Hartree- Fock potential, and the
perturbation is V — U where V is the two- body interaction. An insertion of the form (6.15)
contributes a factor

S « = E A < iMV\jk >-< i\U\j > . (6.16)

^, Using the definition of the Hartree- Fock potential one finds S = O .

"I
7 Thermal Green's functions

In the previous sections we already encountered one body Green functions. For the discussion
of the random phase approximation it is also convenient to introduce the so called particle

24
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hole Green functions which involve expectation values of time ordered products of two pairs
of creation and annihilation operators. More precisely we define the unperturbed particle hole
Green function as

< j*r|<#VfcV >=< T{àh(r)ap(T)âpl{r')ah'(T')} > . (7.1)

The definition of exact Green functions is obtained by substituting the exact Hamiltonian to
the unperturbed one in this equation. Using Wick's theorem one obtains:

' >= Gg(+0)Gj3,(+0) - Gp% - T')G$(T' - r). (7.2)

The applications considered below involve only the second term in equation (7,2), From now
on we thus focus on this particular function which we denote by G2 :

Gf--Gp%-r')G^,(r'-r) (7.3)

The function G2 is periodic with a period /3 in the interval [—/3, +/?]. It can thus be represented
by a Fourier series

$V) = ± £ e-'-Gf K)1 (7.4)
P u=—oo

with U)x, = 27TI///3, v being an arbitrary positive or negative integer. The Fourier coefficients
are found to be

G<o)K) = | o e--G|0 )(r)dr , (7.5)

or explicitely

< ij|Gi0)K)|« >= - W ( I - fk) J0
0

 e<«""+"-^T. (7.6)

Using the expression of the occupation numbers this formula leads to

where the matrices Ae and F are given by

< ph\&e\p'h' >= S^Sutfo - eh), (7.8)

IZ < ph\F\p'h' >= -6pp.6hh'(fp - h). (7.9)

'; : If we work in a model space containing N single particle levels, then the matrices Ae and F are
V both N2 by N2 matrices (in fact N(N — 1) by N(N — 1) matrices since the matrix elements
J with p = h vanish). It is worthwhile noting that with this notation the second order graph Z2a

considered in the previous section can be written as

Z2JZ0 = J Trace {VG^VG^}, (7.10)
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where the indices in the above matrices are of the form (r,p, fe), r being the imaginary time
variable belonging to the interval [0,/3], while p and h are single particle indices. The interaction
matrix V is defined by

phT\V\p'h'T' >=< ph'\V\hp' > 6(T - T ') . (7.11)

Note on this specific example that the function of interest is G2 and not G2- The function G2

would not be useful since it would include undesirable disconnected graphs.

Note also that the Fourier decomposition of the product of two operarors

<T\A\T'>=
P

and

<T\B\T'>=-Y,J"V(T-

is, according to the standard properties of Fourier transforms, equal to

<T\A\T"XT"\B\T'>=W*

In this formula the product of the matrices A and B now involves a summation over the indices
(p, h) only.

8 The random phase approximation (RPA)

ring diagrams

The notation introduced in equation (7.10) suggests that the subset of the perturbation series
leading to contributions of the form :

C{N) = A N Trace {VGl°])N (8.1)

should be worthwhile investigating. Due to the structure of the two particle Green's function
G2 we see that the corresponding graphs contain two one-particle propagators originating
both a time r and ending at time r'. They have the structure shown in the figure below

(8.2)
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Such graphs are called ring diagrams.

summation of ring diagrams Enumerating the various possible ways of constructing term
of the form (8.2) we find that

ÂN = éf for N>2 (83)

while A2 = 1/4.

proof Let us diplay the interactions V at the various times T\,T2...TN as shown on the figure
below

1 > < 2 T1

3 > < 4 TN

There are 2(JV — 1) possibilities to link the first particle hole pair (labeled 1 on the figure)
to another one. Suppose we pick the pair labeled 3 on the figure. We now have to link the
pair labeled 4 to another one. Except for N=2 the pair number 2 is excluded since this would
give rise to a disconnected diagram. We thus have 2(N-2) possibilities for this second step. By
induction we find that the total number of possibilities is 2N~1(N — 1)! except for N=2 where
there is a single possibility. To obtain the expression for AN we must incorporate an extra
factor ( l /2)w due to the N interactions V and another factor(—1)N/N\ arising from the Dyson
expansion.

The sum of all ring diagrams which we denote by ZRPA can thus be expressed as

2 log(ZRPA/Z,lF) = -Trace log(l + VG£O)) + Trace (VOf) - ± Trace (VG1?)2. (8.5)

The value ZRPA is generally referred to as the partition function in the random phase approxi-
mation. By using the Fourier representation of the unperturbed Green's function the first term
in this formula can be rewritten as

Tracelog(l + VGf) = £ tracelog{l + GfK)V)1 (8.6)

I (< ' i

I Note that in this formula we have two different types of traces denoted respectively Trace and \
trace. The notation Trace involves a summation over the indices (p, A, T) while the notation i j
trace implies a sum over the indices p, h only. Similarly, matrix multiplications on the right j
hand side involve summations over the particle hole indices (p,A) only, while the left hand
side also includes an integration over the imaginary time variable. In particular, although we
have kept the same notation, the interaction matrix V in the left hand side is an operator in

\• the space (p,h,r) while in the right hand side it is an operator in the space (p,h). Using the V

\ ]\



relation trace log M= log det M (valid for any matrix M) and the explicit form of the Fourier
coefficient we obtain

\

Trace log(l + VG^) = $ > g det{-—J-r-(Ae + FV + «*„)}. (8.7)

This formula unvails the important role played by the eigenvalue equation

{At +FV)[Yn >=En\Yn>, (8.8)

which is known in the littérature as RPA equation at finite temperature. This equation has
the following properties.

property 1 If \Yn > is an eigenstate of the RPA matrix, then the vector

\Xn >= F-][Yn >, (8.9)

is an eigenvector of the matrix (Ae + VF) with the eigenvalue EN.

property 2 The eigenvalues of the RPA equations (8.8) are real when the unperturbed
Hartree-Fock ground state corresponds to a true minimum of the Hartree- Fock grand potential.

proof

Let us perform a small variation of the Hartree- Fock density matrix Du f defined by

D = j*DHFe-ix, (8.10)

where x is a small hermitian operator. The change in the one- body density matrix p to second
*- order is

; • P — Po + Pl + P2 + •• (8-11)

with

Pi = »[x>Po], (8.12)

and

;'• p2*=-\bc>bc,po]]. (8.13)

I In this transformation the entropy and particle number are unchanged. The variation of the
" ! grand potential is thus the change in the energy i.e.

J 8A=<x\(FAe + FVF)\x>, (8.14)

where \x > is a vector whose components are related to the matrix elements of the operator x

\ ^
Y Xvh=<h\x\p>- (8.15)
W
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Since SA > O for any x w e find, by considering the particular choice |x >= |JC > that

Sn < JCIFIJrn > > 0 . (8.16)
•7)

Since F is a hermitian matrix En should be real.

property 3

The eigenstates of the RPA matrix corresponding to two different eigenvalues En and Em

satisfy the generalized orthogonality relation

<Xn\F\Xm>=0 if En±Em. (8.17)

proof

This property is obtained by using the fact that the matrices F and Ae commute and by
calculating in two different ways the matrix element < Xn |(FAe + FVF)\Xm >.

property 4

If Xn(p,h) is a solution of the RPA equation corresponding to the eigenvalue En then X^(h,p)
is a solution corresponding to the eigenvalue -En.

proof

This property is a consequense of the symmetries of the matrices involved in the RPA equation

Ii' >= - < hp\&e\h'p' >%
< ph\F\p'h' >=-< hp\F\h!p' >', (8.18)
< ph\V\p'h' > = < hp\V\h'p' >• .

In the following we shall denote negative energy states as \X* >.

, property 5

The RPA eigenvectors can be normalized by means of the following relation

< Xn)F]Xn >= Smnsign(En) (8.19)

This is a direct consequence of the previous property.
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property 6

Provided the RPA eigenvectors form a closed set one has the following closure relations

X Xn\ - IXn
+ >< X:\}F = 1, (8.20)

n>0

and

E i{ly™ >< Y»\ ~ \Yn >< Yn\} = !» (8-21)
n>0 "

where the summation over the index n runs over positive energy states only. We will now show
that the properties of the RPA equation allow one to obtain an explicit formula for the RPA
partition function.

Explicit expression of the RPA partition function

Using the RPA eigenvalues it is possible to derive a more explicit expression of the partition
function in the RPA approximation. Indeed from properties 2, 3 and 4 we obtain

2 ) = (8.22)

where the notation n > 0 implies a summation over positive RPA roots only. The next step is
to use the representation of the hyperbolic sine as

^ j (8-23)

where the product runs over all positive integer values of v. This formula allows one to perform
the infinite product over the Matsubara frequencies with the result

\og(ZRPAIZl{F) = E log sinh{/?(ep - eh)/2} - £ log sinh{/?(£n/2}
n>0

> (g.24)

8 tpeh + evfy ' l >

Since the partition function of a quantum harmonic oscillator is Z(P) = l/2sinh(/?u>/2) we
see that the partition function in the random phase approximation can be interpreted as being
that of an assembly of independent harmonic oscillators whose frequencies are just the RPA
frequencies. There are however two important correction terms which must be introduced to
obtain the correct coefficients of the first and second order terms in the perturbation expansion.
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9 The time dependent mean field approximation and
RPA

The time dependent mean field approximation is obtained by assuming [2] that at each time
the density matrix D is the exponential of a one body operator. By considering the one body
reduction of the Liouville von Neuman equation for D, iD = [H, D], we obtain the evolution
equation for the one body density matrix p defined by

< i\p\j >= Ti&ce{D(t)afaj}. (9.1)

The result is
ip=[W,p], (9.2)

where W is the mean field hamiltonian, defined as the functional derivative of the energy
functional with respect to one body density i.e.

SE - Ttace(W6p). (9.3)

Using

E = Trace(7» + \ £ < ij\V\kl X k\p\i >< l\p\j >, (9.4)

where T is the kinetic energy operator we find, as in section 4,

< i\W\k >= £ < ij\V\kl X l\p\j > . (9.5)
ji

As for zero temperature the thermal RPA equations are related to the linearized mean field
equations. Let us consider small amplitude oscillations around a solution of the static Hartree-
Fock equations at finite temperature characterized by a one body density matrix p0 such that

[W0, Po] = O. (9.6)

Substituting p[t) = p0 + &p[t) into the evolution equation, and retaining only linear terms in
Sp, we obtain

i^tSp=[Wo,Sp) + [SW,p0). (9.7)

Considering the matrix element m, n of this equation we find

d
ijt < m\Sp\n >= (em - 6n) < m\Sp\n > + < m\SW\n > (/„ - / m ) , (9.8)

where /„ =< n|/»o|i > is the usual Fermi occupation number. Note that the structure of this
equation implies that only the matrix elements with m ̂  n need to be considered. In contrast
matrix elements of Sp with m = n are constants of the motion.
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Calculating the change SW in the mean field from equation (9.5) we find that the linearized
evolution equation can be written as

iX = (Ae + FV)X,

where the vector X is defined by its components

Xmn =< m\8p\n >,

(9.9)

(9.10)

and where the matrices Ae, .F, V are the matrices which were introduced in section 7 to define
the particle hole Green functions (equations 7.8,7.9,7.11).

The matrix (Ae + FV) is also related to the response of the system to a small external field.
Suppose that at time minus infinity the system is in thermal equilibrium, described by a static
Hartree Fock density matrix p0, and submitted at later times to the external field

Vext = \{e-i{u+ir>)tO (9.11)

In this equation O is a one body operator (e.g. the dipole operator in the case of an external
electric field). The quantity i\ is a vanishingly small number corresponding to an adiabatic
switching of the external perturbation. We consider the limit where the strength A goes to zero
for which linearized evolution equations can be used. In this case we find:

i m\8W (9.12)j - < m\Sp\n >= (em - en) < m\Sp\n >

If we define a vector \0 > whose components are

Omn =< m\O\n >, (9.13)

we find that < m|£/>|n >= Xmn(t) + X*m(t) where the vector X satisfies the evolution equation

{idt - (Ae + FV)}|X >= -\e-
i(u+iTl)tF\O > . (9.14)

The solution of this equation satisfying the boundary condition X = 0 at large negative times

(9.15)
is

\X >= -

where R(v) is the response function

iyj- (Ae + FV)
F.

This equation can also be written as

R(u>) = F
1

w + JiJ-(Ae +

32
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Using the closure relation of the RPA eigenstates we have

(Ae+FV) = E En{\Yn >< Yn\ + \Yn
+

n>0
(9.18)

where
\Yn >= F\Xn > . (9.19)

Indeed the action of this operator on the basis vectors \Yn > provides the expected result. We

iy+ >< Y+\
1 " " l l (9.20)

can therefore write

Displaying the indices explicitely we find the following formula

1WJh O w 1I
ph\R(u>)\p'h' >=

y()y(
}• (9.21)

10 Linear response theory in hot nuclear matter

\l

The formalism presented in the previous section becomes particularly simple in the case of
nuclear matter, for which the single particle states are plane waves. Single particle states are
thus labeled by the three quantum numbers (k, or, r ) where k is the wave number, a the spin
and T the isospin. Matrix elements of the response function R(u>) are thus of the form

,Tï;k2 ,0-2 , (10.1)

Let us suppose that the two- body interaction V is invariant under spin and isospin rotations.
In this case, if we couple in the above matrix element particles 1 and 2 to a total spin (S, Ms),
total isospin (T,Mj) and particles 3 and 4 to (S',M'S),(T',M'T), then the matrix R will be
diagonal in the quantum numbers S, Ms1T, MT and will not depend on Ms or MT. The matrix
R thus falls into four blocks characterized by the four possible values of the quantum numbers
(S, T)

<kuk 2 | l î S T (u)) |k 3 ,k 4 >. (10.2)

Let us now specialize to the case of a local interaction VsT(^i — r2) in the channel (5,T) and
let us furthermore ignore exchange terms in a first step. From the definition of the interaction
matrix V we have

=< (10.3)
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In this formula we have introduced the momentum transfer variables

q = fci - k2 q' = k3 - k,,

and V is the Fourier transform of V

V(q)=

(10.4)

(10.5)

We thus see that the response function R(w) is diagonal in the momentum transfer q. In
contrast the matrix elements of V are independent of the total momentum variables

K = k, + k2 K' = k3 + k4. (10.6)

Therefore V is not diagonal in K. However it is possible to construct an explicit expression for
the matrix elements of R(w) in the basis |K,q >. The first step is to expand the RPA response
function as

R(u>) = Ro(u>) + RO(U>)VRQ(W) + ... (10.7)

where R0(U)) is the bare response corresponding to V = 0. The second step is to examine the
structure of the matrix elements of the successive terms in the basis |K,q >. We first find

(10.8)< K,q|JloVi*o|K',q' >= * ( q - ^)Jl0(K,q)B0(K /,q)V(q)/(2*)3,

where TZ0(K, q) is defined as

( 1 0 9 )

Similarly, by using the closure relation

l = | dK<*q |K ,q><K,q | , (10.10)

and the previous relation, we obtain

< K,q\RoVR0VR0]K1^q' >= 6(q - q')Ro(K,q)Ro(K',q)V(q)no(w,q)V(q), (10.11)

where U0(w, q) is the so called Lindhard function, defined as [3]

(10.12)

By induction the expression of the response function is found to be

(2^f < K, q|fl(o/)|K', q' >= (2r)3S(q - q>)6(K - K')J2o(K, q)+
(10.13)
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The response function is thus seen to have poles when 1 = 1I0V. The location of these poles
determines the eneigy w and the lifetime of the collective modes. For a more detailed discussion
see [3].

When exchange terms are included an additional contribution to the interaction matrix 6{q —
q')V(K — K') arises and the construction of the response function is more complicated. An
important exception is the case of zero range forces for which the direct and exchange terms have
the same structure. The case of a zero range force including a quadratic velocity dependence
can also be rather easily handled provided generalized Lindhard functions are introduced [4].

The Lindhard function Iïo occurs in a wide variety of problems. As an illustrative example we
now consider the problem of the determination of the mean free path of neutrinos in neutron
matter. In this case the optical potential F governing the propagation of a neutrino with a
momentum k is given by [5, 6, 7]

f(Ep){l - (10.14)

where GF is the Fermi constant, q = k — k', u = |k| — |k'|, E9 — p2/2m. Using the relation

1
(10.15)

we see that the integrand is related, up to a factor 1 — exp(—/7w), to the imaginary part of the
Lindhard function. Explicitely

-lmU0(q,w)dk', (10.16)

where q = k - k', w = |k| - |k'|. The imaginary part of the Lindhard function can be evaluated
analytically due to the presence of the S function. The result is

m2

(10.17)

with
TTUi)'

-"-V-S?' (1(U8)

ft being the chemical potential of the neutrons. In the range T ^. ft, which is relevant for
supernovae explosions (ft ~ 50MeV, T < 10MeV), the following approximate formula can be
derived
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where PF - y2m/i/h2. It is worthwhile noting that for neutron matter just above nuclear
density (e.g. pF = 300MeV, Jk = 5MeV, T = 10MeV, m = 940MeV) the previous equation
gives a mean free path of the order of 1.5 km. In contrast just below nuclear density, the
presence of nuclei allows coherent neutrino scattering which leads to a mean free path of the
order of 1 cm only [7].
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' III GIANT RESONANCES IN HOT NUCLEI

e

11 Photoabsorption by hot nuclei

Let us consider a nucleus in thermal equilibrium at temperature T. We describe it in the mean
field approximation by its one body density matrix p0. We suppose that at time t=0, it begins
to interact with an electromagnetic plane wave, described by the vector potential

£
A(r,t) = ez-sin(ky-wt). (11.1)

U)

In the long wavelength limit kR « 1, where R is the nuclear radius, the interaction hamilto-
iiian can be approximated by

n " Vext = -d.E(t)=-q£zcoswt (11.2)

where d — qz is the dipole operator, E the electric field —dA/dt and q the proton charge. To
calculate the response of the nucleus we use the results of the previous section. The one body

3 density matrix at time t can be expressed as

< m\p\n >=< m\po\n > +xmn(t) + <m(<) (11.3)

where the vector x is given by

\

and where dmn =< m\qz\n >. To obtain this relation we have first constructed a particular
solution of the evolution equation. In a second step we have subtracted, in order to satisfy
the boundary condition p(t = 0) = p0, a superposition of the solutions \Yn > exp(—iEnt) and
|Kn

+ > exp(iEnt) of the homogeneous equation. This formula can also be written as

" -I
j where the limit rj —> 0 has been performed. At sufficiently large times (but not too large for

first order perturbation theory to be valid) it is legitimate to make the substitution :
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The excitation of the system at time t is given by the expectation value of the matrix (Ae+FV) :

E(t) - E(t = 0) =< z(0l(Ae + FV)F\x(t) > . (11.7)

exercise 9.1

Why is it possible to obtain an expression up to second order in the external field S for the
energy while the change in the density matrix was calculated only up to first order in £1

answer

The mean field evolution equation preserves the eigenvalues of one body density matrix p. It
can thus be written at all times as

p(t) = e^pHpe-*, (11.8)

where ^ i s a one body operator

X = E < »lxl"» > ama"- (n-9)
mn

If we expand the one body density matrix up to second order in % a s

p{t) = PHF + Pi + P2 + ... (11.10)

we thus find that the matrix elements of the first order term i[XiPHF] automatically determine
those of the second order term. The contribution of P2 can thus be hidden in the above
expression for the excitation energy. This generates the term Ae in this formula.

Using the properties of the RPA solutions we thus find

E{t) ~ m = 2x £ I < QF[Xn > \2En{6(u, - En) + S(u, + En)) (11.11)
* n>o

The photoabsorption cross section is the energy absorbed per unit time by the nucleus divided
by the modulus of the Poynting vector of the incident plane wave :

G = e0c
2|E x B | = e0cS2/2. (11.12)

This procedure provides the following result :

<T(W) = ̂ a Y4 I < ««I*1!*» > I2EnS(En - a/), (11.13)
n>0
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where a is the fine structure constant g2/4Tt0ftc.

The strength function is 0-(u>)/4ir2au; i.e.

S(w) =< d\SsmR(w)\d > (H.14)

where R is the response function defined in the previous section. The present result misses a
factor 1 - exp(-/3u;) discussed in section 10 and reference [I]. This is because our calculation
allows both absorption and emission of photons from the hot nucleus and is not restricted to
absorption only.

12 sum rules at finite temperature

For nuclei at zero temperature the photoabsorption cross section calculated in the random
phase approximation satisfies the well known sum rule

= ±<HF\[d,[H,d))\HF>, (12.1)

where d is the dipole operator and \HF > the Hartree- Fock ground state. For a local in-
teraction without exchange terms only the kinetic energy operator contributes to the double
commutator and the result is

c 4ir2a. (12.2)

In this formula M is the nucléon mass while N, Z and A are the neutron, proton and mass
numbers respectively.

The above equations can be generalized to the case of photoabsorption at finite temperature.
Indeed from the RPA expression of the cross section we find

f ° <r(w)dw = 4T 2« £ I < d\F\Xn > \2En. (12.3)
f J° n>0

! t The right hand side of this expression is a special case of the moment of order k of the RPA
, i distribution of eigenvalues at temperature T, which for a given one body operator x ls defined

J mk{x, T) = £ I < x\f\Xn > [2E*. (12.4)
n>0

Note that in this equation the temperature dépendance of the right hand side is contained not
> only in the RPA eigenvalues and eigenvectors E and X but also in the occupation number
y matrix F.
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Let us now show that, in the random phase approximation at finite temperature, one has the
following sum rule

mi(X,T) = \ Trace {DHF(T)[X,[B,x}}} (12.5)

where DHF is the Hartree-Fock density matrix at temperature T. To establish this relation we
consider a small change of the density matrix defined by

D = exp(iex)DHFexp(-iex) (12.6)

where e is a small number. In this transformation the first order change in the one body density
matrix is

< m\S[x)p\n >= te < m\{x,p]\n >, (12.7)

i.e.
< m\6^p\n >= ie{fn - fm) < m\X\n >, (12.8)

while the second order change is given by

< m\6Wp\n >= - - < m\[X, [x,p]]\n > . (12.9)

The change in the grand potential A is thus, in the notations of section 8

AA=le2<x\F(Ae + VF)\x>. (12.10)

By using the completeness of the RPA solutions we can transform this formula into

AA = e2 £ En\ < X\F\Xn > \2. (12.11)
n>0

However the change AA can also be evaluated directly from the expression of the density matrix
with the result

AA = - - e 2 Trace {DHF[[HtX],x]h (12-12)

which establishes the sum rule (12.5).

For the dipole operator

d = £{r.-K,o(*.-,Pi) - RY10(R)], (12.13)
i=l

one has (for a local interaction without charge exchange terms)

which is exactly the zero temperature result.
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For the isoscalar quadrupole operator

there is in contrast a temperature dependence since

mi(Q,T) = ~ A Trace^DnHî1)}- (12.16)

13 Observation of giant resonances in hot nuclei

As was already mentioned in the introduction of this course giant collective oscillations were first
observed in the early eighties by the Berkeley group [2], This group used an 1150 MeV 136Xe
beam to produce deep inelastic collisions with a 181Ta target. Excitation energies of the target
nucleus of 40, 80, 120, 160, 200 MeV were selected and the photons emitted from these highly
excited nuclei were observed. These experiments revealed that the photon spectrum contains
in addition to the thermal spectrum N(E) = exp(—E/kT) a broad and well developed peak.
As an example we show in the figure below more recent data obtained at the GANIL facility
for very hot nuclei (T ~ 5MeV) formed in the Argon-36 + Zirconium-90 reaction at 27 MeV
per nucléon bombarding energy. This figure gives the number of photons emitted by a hot
Tin-115 nucleus as a function of the photon energy [3]. The dotted Lines are exponential fits to
the statistical and bremsstrahlung part of the spectrum while the upper right corner gives the

'.I
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difference between the sum of these two curves and the observed spectrum.
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Figure 13.1
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As for zero temperature the peak occurring around 15 MeV is interpreted as a collective dipole
oscillation in which neutrons oscillate against protons. As was mentioned in the introduction
the possibility of having giant resonances built on nuclear excited states was suggested in 1955
by David Brink in his thesis [4].

A large amount of information on giant resonances is by now available. It has first been
verified that there is a good evidence of thermalization of the nucleus in these reactions. This
has been checked by observing photons emitted from compound nuclei obtained by the fusion of
various systems e.g. 63Cu obtained in 4He+S9Co> 6Li+57Fe, 12C+S1V and 18O+45Sc reactions
[5]. Spectra obtained from these four reactions were found to be indistinguishable. The data
obtained by now indicate that, to a good precision, the energy of the giant dipole resonance is
independent of temperature while its width increases strongly at moderate excitation (about
130 MeV in Sn isotope) with a saturation for higher excitation energies [6, 7, 3, 8, 9].

\

14 The schematic model at finite temperature

The simplest description of giant resonances is through the schematic model of Brown and
Bolsterli [10]. We consider a simple version of this model in which N active particles occupy
2N levels, N with a single particle energy ej and N with an energy €2 > î as described in the
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figure below.

N levels £2

N particles p = (ei + e2)/2 (14.1)

N levels ei
The chemical potential is thus independent of temperature

/i = (ci+e a)/2, (14.2)

and the occupation numbers of the levels 1 and 2 are respectively

I' = i + Jcy)' <1 4 3>
and

A further assumption of the model is that the two body interaction is separable i.e.

< ph\V\p'k' >= XvpHv'^,, (14.5)

with vph = v^p. This equation can be written as

V = X\v X «I . (14.6)

For such a model the RPA matrix

MijJsl=<i,j\(&e+FV)\k,l>, (14.7)

is a 2 by 2 matrix since the indices (i, j ) can take only the values (1,2) and (2,1). The single
particle energy matrix reads

' i with e = £2 — Ci. The occupation number matrix is given by

with
/ = / , - / 2 = tanh(^il). (14.10)

)
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From these formulae we construct the explicit expression of the RPA matrix

The positive eigenvalue of this matrix gives the excitation energy E of the giant resonance at
temperature T

E = ±(e2 - a,.

As an illustration let us consider the case of lead-208 for which we take the distance between
shells to be €2 — ei=7 MeV. If we adjust the strength of the interaction to reproduce the energy
of the giant dipole state at zero temperature E= 14MeV we find

U H L = 3. (14.13)

With this value of the strength parameter the energy of the giant dipole is found to be

E = 12 MeV for T = 2.5 MeV
E = 10 MeV for T = 5 MeV (14.14)
£ = 8 MeV for T=IOMeV.

The energy of the giant dipole thus decreases slowly when temperature increases. This is in
contradiction with experimental observations which suggest a value independent of temperature.
The reason for this discrepancy is that we assumed all the particle states to have the same energy
€2 and all the hole states to have the same energy ei. As a result when temperature increases
the matrix Ae + VF tends to Ae i.e. collective effects decrease. In more realistic calculations
many configurations of the form pp' or hh' appear at non zero temperature since fp — fp> or
fh — fh' is no longer zero. These new configurations induce additional collective effects which
compensate the decrease of the matrix VF. As a result the location of the giant dipole state
remains unchanged as we will show in the next section.

15 Numerical solution of the thermal !RPA equations

For more simplicity we consider a density dependent effective interaction of the form

For such an interaction the single particle Hartree- Fock wave functions can be written as

y>,(r, <r ) = RnUi(T)Y1^O, ¥ > ) * , » • (15.1)
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In order to show how the angular reduction of the RPA equations is performed in this simple
case we introduce the following notation. We use a single index a to denote the set of quantum

) numbers
a = {np;lp;nh,lh}. (15.2)

Similarly we define
0 = {np;tp>;nh-,lh.}. (15.3)

) The notation a > 0 means that the single particle energy of the particle state is higher than
that of the hole state i.e.

t{np,lp) > e(nh,th). (15.4)

We also denote by â the set of quantum numbers in which particles and holes are interchanged

â = {nh,lh;nplp}. (15.5)

) For a spherical nucleus we decompose the RPA eigenvectors Xph = X^np^tp^m^nhtlhyfnh)
into their angular components as

** - <-»r nu+D ( \ th M
By using the orthogonality of the Wigner coefficients this relation can be inverted to give

With this decomposition we find that the RPA matrix is diagonal by block, each block being
characterized by the quantum numbers L and Af, and being independent of M. For instance
the linearized evolution equation for the amplitude Xa reads for a > 0 :

>i A , vLM i JTi \ * *\i>) vLM , ni4"/ vLM fi c D \

where
Ae0 = e(np> lp) - e(nh, lh),

The matrices A and B depend on the quantum number L only :

AL - J-T i i i i ( *P *h ^ \ ( ^P1 **' ^ )
A* ~ ^a^pitip-if yQ 0 o J ^ O 0 0 ) (15.10)

J where the notation I stands for (21 -f-1)1/2 and where / is the radial integral

1*0 = / Rnplp(r)Rnp>tp'(r)Rnhlf,(r)Rnh>lh'(r)

r V0 + *L(1 + ^w2 + v) °{r)}r2dr
 ( 1 5 ' n )
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Results of an RPA calculation for the dipole mode in calcium -40 are shown in figure 15.1.
This calculation uses a model space including Is, Ip, 2s, Id, 2p, If and Ig levels. It requires
the diagonalisation of a 30 x30 matrix (equation 15.8). The single particle wave functions
are chosen to be oscillator wave functions with a parameter b =1.8 fm and the single particle
energies were taken from reference [H]. The interaction is a simple delta force to = -700 MeV
x fm3, t3 = 0.

I
T.OIMeV
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Figure 15.1

In figure 15.1, each RPA state is represented by a line, the length of which is proportional
to the dipole strength Sn = | < d\F\Xn > |2. While at zero temperature all the strength is
concentrated near E =20 MeV it can be seen that at temperatures of T =2 MeV and T = 4MeV
the presence of new particle-particle and hole-hole configurations produces the appearance of a
wider spreading of the dipole strength. This effect provides a mechanism suitable to explain a
broadening of the giant dipole when temperature increases. The present calculation is however
too crude to reproduce the observed saturation in the increase of the dipole width at high
temperature. We wish to point out that the calculation we have described should be taken
as a pedagogical exercise only. More realistic calculations including spin orbit terms, pairing,
nuclear rotations and nuclear deformations can be found in the literature [12,13,14, 15,16,17]
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16 The level density parameter in excited nuclei

In section 3 we showed that the number of levels per unit energy interval in a nucleus of mass
A, p(E, A), can be evaluated from the approximate formula [18] :

In this formula the quantities appearing on the right side are calculated at the saddle point
a0, j30 such that

A = — log Z(ao,Po), £ = - ^ log Z{ao,po). (16.2)

The quantity £(ao,/?o) is the entropy

and D the determinant of the second derivatives of log Z(a,P) at the saddle point

d2logZ/da2 d2hSZ/dadl
d2 log Zfdadp ô2log ZIdP2

Applying these formulae to a Fermi gas at a temperature T much smaller than the Fermi energy
€f one obtains the well known Bethe formula [18]

j
= exp v2aE*, (16.5)

where E* = E — E0 is the excitation energy with respect to the ground state and a the so called
level density parameter

^ (16.6)

In this formula V{ep) is the density of single particle levels at the Fermi surface. For a Fermi

gES 3,4

To a given excitation energy E* one can associate a temperature T by the formula

E' = aT2. (16.8)

In terms of the temperature the entropy is

V- S = 2aT. (16.9)
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The argument of the exponential in Bethe's formula is thus the entropy of the nucleus as
prescribed by equation (16.1) .

Empirically the level density parameter a is found to be A/8 levels per MeV whereas the
Fermi gas value is a factor two smaller. Recently renewed interest in this parameter has been
reported. Indeed measurements of both temperature and excitation energy in hot nuclei have
been performed [19], which allow via the relation E" = aT2 a determination of temperature
dependence of the level density parameter a(T). Whereas the Fermi gas model predicts a(T)
to be independent of T, a sharp decrease in nuclei of mass A = 160 was found near T= 4 MeV
from a value a = A/8 levels per MeV to a = A/IS levels per MeV. Why is there such a large
deviation from the Fermi gas predictions ? It is the purpose of the present section to show that
the contribution of giant collective excitations to the partition function can provide part of the
explanation.

In order to be able to obtain analytic formulae we consider the schematic model of Brown
and Bolsterli. We specialize to the case of lead-208 for which we assume the difference e2 — ei
between shells to be 7 MeV. We include five collective states : the giant dipole 1~ observed at
14 MeV, the quadrupole state observed at 4.1 MeV, and the 3~ (2.6 MeV), 4+ (4.3 MeV) and
5~ (3.3 MeV). We adjust the strength An of the separable interaction in each channel in order
to reproduce these data at zero temperature.

In this model the change in the partition function due to collective modes can be worked out
explicitly through the formulae given above. The result is

(16-10)

where Ae = e2 — et and where the sum over n runs over the five collective modes listed above.
The coefficient Cn is related to the interaction strength by

Cn = 2-P- <v\v> . (16.11)
Ae

To obtain the correction to the Hartree-Fock level density parameter we divide the excitation
energy E" by the square of the temperature. This procedure gives

" En ^
+exp(/3En) - 1 " exp( /3Ae)- l } '
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As a function of temperature this formula leads to the following corrections to the Hartree-Fock
level density parameter (expressed in levels per MeV)

Aa = 3.23(T = 1 MeV), 2.97(T = 2 MeV), 1.77(3 MeV)
Aa = 1.10(4 MeV), 0.73(T = 5 MeV)

(16.13)

Compared to the Hartree-Fock value a//p ~ 10 — 15 levels per MeV [20], we see that collective
states increase the level density parameter at zero temperature by about 20 to 30 percent.
The increase however is not so pronounced at higher temperatures which explains part of the
observed experimental variation. Other effects have been invoked in the literature to explain
the remaining part of the variation with temperature of a(T) [21].
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