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Abstract 

Antenna coupling to the shear Alfven wave by both direct excitation and 
fast wave resonant mode conversion is modelled analytically for a 
plasma with a one dimensional linear density gradient We demonstrate 
the existence of a shear Alfven mode excited directly by the antenna. For 
localised antennas, this mode propagates as a guided beam along the 
steady magnetic field lines intersecting the antenna. Shear Alfven wave 
excitation by resonant mode conversion of a fast wave near the Alfven 
resonance layer is also demonstrated and we prove that energy is 
conserved in this process. We compare the efficiency of these two 
mechanisms of shear Alfven wave excitation and present a simple 
analytical formula giving the ratio of the coupled powers. Finally, we 
discuss the interpretation of some experimental results. 
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1.INTRODUCTION 

In the ideal MHO limit, the equation of wave motion in a one dimensionaly 
inhomogeneous magnetised plasma is of second order and has a continuous spectrum of 
eigenvalues (Hasegawa and Uberoi. 1982). For a fixed parallel wavenumberkz defined by 
the antenna, the equation exhfcits a resonance at the location which satisfies the AHven 
wave cSspersion relation,»» k z VA. where VA is the Alven speed, VA « Bn/(u0p)1 /2.Bois 
the steady magnetic field, p the plasma mass density and v the racSan frequency. The 
resonance is >eferred to as the AHven or perpenrJcutar ion cyclotron resonance and its 
location as the Alven resonance layer (ARL). Qualitatively this solution represents a fast 
wave which undergoes resonant absorption at the ARL. For tow enough damping, the 
power deposited at the ARL is independent of the damping mechanism (Hasegawa and 
Chen. 1974, Chen and Hasegawa.1974). 

If parafcel electron dynamics (PED) is included in the model (finite electron mass, paratel 
resistivity or finite electron thermal speed), the deferential equation of wave motion for 
fixed k z becomes fourth order and has four solutions, not a l of which need be physicaly 
admissfele. These solutions physicaly represent coupled fast-shear wave modes. One of 
these corresponds physicaly to the process of resonant absorption where the resonance 
is resolved by mode conversion of the fast wave to the shear AHven wave (Swanson, 
1989; Hasegawa and Chen, 1976). The shear AHven wave 's a short perpenolcular 
wavelength mode when either electron mass or thermal velocity are included in the model 
(Ross, Chen and Mahajan, 1982; Vaclav* and Appert, 1991). hi a colMsionless plasma, 
the effects of PED depend on the value of B. If (J»nvmj the kinetic Atven wave (KAW) is 
excited and propagates on the high density side of the ARL. If B«me/mj the shear wave 
is excited whose dtepersion is determined by finite electron mass. This latter wave 
propagates on the tow density side of the ARL and has consequently been referred to as 
the surface quasi-electrostatic wave (SQEW) (Stix T.H., 1980; Vaclav* and Appert, 1991). 
In the vicinity of the ion cyclotron frequency the SQEW is also referred to as the cold 
electrostatic ion cyclotron wave CESICW (Ono, 1993). Provided the shear wave does not 
interfere with itself after reflection at a boundary, it has been shown that the power 
transferred from the fast wave to the shear wave is the same as that calculated in the ideal 
MHD Rmrt for resonant absorption (Hasegawa and Chen, 1975). Shear Alfven wave 
exoitaton by fast wave resonant mode conversion (FWRMC) forms the basis of the Alven 
wave heating (AWH) scheme and, in the case of the KAW, has been observed and 
modeled with satisfactory agreement (Weisen et. al., 1989). Mode conversion to the 
SQEW has not yet been observed in experiments. 

In an infinite homogeneous plasma, the four modes which result when the PED are 
included in the model are a decoupled fast and shear Alfven wave propagating in each 
direction. In this Imit, both waves are excited directly by the antenna and there is no mode 
conversion. When excited by a localised antenna with a broad wavenumber spectnw the 
Fourier wavenumber components of the shear wave superpose to produce a tocaised 
beam guided along the lines of the steady magnetic field. WavefiekJ calculations by 
various authors for tocaJsed antennas in an infinite homogeneous plasma (Schoucri et. al., 
1985; Borg, 1987) and group velocity calculations (Borg,1987; Cross,1988a) 
demonstrate that this property remains substantially true even at finite frequency. 

The question naturally arises as to whether this directly excited shear Alven mode is 
expected to propagate in an inhomoyeneous plasma. If so, how is it coupled to the fast 
wave and what is the relative efficiency of this process compared with shear wave 
excitation by FWRMC? The above condition on 8 can be expressed as n(m*3) T ( e V ) « 
10 2 1 B 2 (T) so that for typical fusion plasma scrape-off layer (SOL) parameters, the SQEW 
propagates in the plasma periphery and the KAW in the plasma interior. The SQEW is 
therefore the most likely candidate for direct excitation by an antenna located in the SOL. 
The process of direct antenna excitation of the SQFW has in fact been noted in some, but 
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not all. numerical antenna-wave coupling simulations for AWH which include the PED 
(Ross ef. a/.. (1986) and Puri (I987a,i987b)). Here the aim is to optimise the antenna so 
that direct excitation is minimised, the mode conversion process dominates and power 
deposition occurs in the plasma interior. Detailed studies of the dwect excitation process 
have not been performed because of the difficuRy of Differentiating even quaitatively 
between the cfirectty excited and the mode converted SQEW. In particular, guided AHven 
beams formed by Fourier superposition of directly excited shear AWven waves have not 
been theoretically predated for a typical fusion plasma. Recently however Cross (1988b) 
has demostrated the existence of guided modes which form solutions in the MHD Imit. 

Experimental evidence for direct excitation is clear. Borg ef. at (1985,1987) have 
confirmed that a smal magnetic clpole loop antenna couples to a tocafsed shear Alfven 
wave beam which propagates for several transits around the circumference of a toroidal 
plasma along field ines intersecting the antenna before being scattered by imiters and 
other objects located in the SOL. Experimental results indicate that this wave can 
propagate in a narrow beam up to the ion cyclotron frequency above which it no longer 
propagates. The same results have recently been confirmed for an Alven wave heating 
antenna (Murphy. 1989). The WKB approximation (Fejer J.A. and Lee K.F., 1967) cannot 
be appied in these cases because the perpendfcular wavefield scale is of the same order 
as the density gradtent scale and the parallel wavelength much longer than the radfcjs of 
field line curvature. Nonetheless, conditions have been obtained in a laboratory plasma 
where the WKB approximation applies (Cno. 1979). Moreover, under special condttions, 
the shear Alfven wave propagation characteristics are quite simple. For example, in a 
cyindrical plasma with a racially symmetric density gradient, the axisymmetric shear Alfven 
mode can be excited directly by the antenna and propagates at a local Alfven speed 
(Cross and Lehane 1968, Cross, 1983). A detailed analysis of this case has been given by 
Sy (1984). 

In this paper we demonstrate the existence of a directly excited shear Alfven wave for the 
case of non-axisymmetry, k y * 0, under conditions where the WKB approximation does 
not necessarily apply. We address the problem using simple analytical techniques and 
restrict analysis to the low frequency imit, and a one dimensional linear density variation 
perpenolcular to a constant magnetic field. More ambitious would be to treat the cases of 
finite frequency and a curved magnetic field. We will also consider for the first time the 
relative efficiency of the direct excitation and the TOde conversion processes. We will 
present a simple analytical formula for the ratio of the directly excited shear wave to that 
excited by mode conversion which is vaBd for modest damping in a slab plasma. 

This paper is structured as follows. In section 2 we revise the problem of antenna couping 
to Alfven waves in a homogeneous plasma in order to obtain a basic intuition about the 
shear Alfven wave with finite electron mass. In section 3 we formulate the problem of 
Alfven wave propagation in an inhomogeneous plasma and discuss energy conservation. 
In section 4 we consider the antenna-wave coupling problem for an arbitrary 
inhomogeneity by considering two well known imits for which the exact solutions are 
known. In section 5 we present some results. Finally in section 6 we conclude with a 
discussion of the relevance of the results to experimental observations. 

2. ANTENNA COUPLING TO ALFVEN WAVES IN A HOMOGENEOUS PLASMA 

In this section we consider the limit where the frequency is much lower than the ion 
cyclotron frequency and finite electron mass is the dominant PED effect so that the 
SQEW propagates. The case of finite frequency has been treated elsewhere for a 
homogeneous plasma (Borg, 1987; Shoucri et. al. 1985). 
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We consider a plasma described by the following low frequency dekKhic tensor. 

£j_ 0 0 

(1) 

e a 0 

0 0 

0 

91 

Jl _ <u(<u + iVej) 
r <uci<Hce 

91 
OJ2 

VA = rpop 
-ffi-«l 
( D c i 

where vei is the etection-ton coBston frequency and t6d,ce respectiveV the ion, election 
cyclotron frequency. Here we are also assuming that c t » kzvthe where vy* is the 
electron thermal speed. The wave equation is given by, 

VxVxE = ktyioJo + ki e.E (2) 

where kg 2 is the vacuum wavenumber. For simpicity we consider the following antenna 
current distribution. 

Jo=JQz 
k y 

5(x - b) cxpijkzz + kyy - u)t| 
(3) 

where kz is the wavevector along the steady magnetic field and ky in the y - direction. The 
situation is depicted in Fig. 1a. The sheet current automatically satisfies charge 
conservation since Joy - -fczJOzty ha* been assumed. It is a straight forward matter to 
solve for the wavefekte of the fast and slow wave (Borg, 1987). For A 2 » k A 2 w h e r e A 2 * 
ky 2 + kz 2 , the results obtained for the E y components of the fast wave and SQEW are 
respectively, 

*~ 2ky[k?-ki] 
(4a) 

% " 2ks[k?-kA] 
(4b) 

Ey is related to E z for the SQEW by, 
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[k 2 - k A ] E, = icofioJoy + k y kJl + M E* 
(4C) 

where kA = w^A «the Alwen wave number and k « (A 2 +kx 2 ) 1 ' 2 «the total wavenumber. 
In equation (4b), the slow wavevector in the x-dkectton is given by, 

V T (4d) vr 
Notice that the fast wave is an evanescent vacuum field which cannot couple energy to a 
homogeneous plasma. This is very oHferent to the case of an inhomogeneous plasma as 
we shal see. The SQEW is backward propagating in the x-dkection and is launched solely 
by the z-directed elements of the antenna (Borg, 1987). Unlike the fast wave it also 
propagates down to very tow density where q » 0. The power per unit area radiated by the 
antenna into a SQEW propagating in one dfoecttor is given by 

p _ ks(k z - kA> kA jc |2 

(5) 2iiou>k?k 2 

Equation (5) can be showr to be in agreement with Strx's formula (Stix, 1992b) for the 
energy transported by a plasma wave when the dietectrk: tensor of equatkxi(l) is applied. 
The energy of the SQEW is transported by coherent particle motions. It is easy to show 
that in this low frequency limit, the SQEW has no magnetic field component bz along the 
steady field and that in the limit k j , » kA, has no magnetic field at all. In this tow density limit 
the SQEW therefore becomes electrostatic. For kz < kA the SQEW is evanescent. The 
SQEW has some other interesting properties. The ratio of the density perturbation to 
average density is given by (Donnelly and Cramer, 1986), 

i ( 0 H ^ dn/dx Ey + i(ob z 1 icoepen 9E, 
n n B B ™ & (6) 

where n is the equilibrium density. In a homogeneous plasma and for bz • 0 only the third 
term remains. Taking Pf = 10 kW/m2 in equation (5), kz » kA (in SI units) frequency * 
1 MHz,B«1Tinhydrogenandna10 1 8m' 3then, 

tt* 0.20k? 7 2 

n 
The SQEW can therefore have a very high density fluctuation level which increases with 
the imposed k z. 

As kA approaches zero the dispersion relation (4d) reads kzlk± » y where 
kj.2 • K S 2 + ky 2 a r K j t a s f 0 r the tower hybrid wave, the SQEW excited by a tocalieed 
antenna propagates along the magnetic field with a resonance cone of angle 0 «tan'1(y) 
(Ono, 1979). Similarly one may show using (4d) that the group velocity of the SQEW is 
directed mainly along the magnetic field of a homogeneous plasma. Either way, we obtain 
the well known result that a SQEW wavepacket is guided by the magnetic field. 

ft is of interest to know whether these properties remain valid for an antenna located in an 
inhomogeneous plasma for which the Imposed ky and k z are of the order of the spatial 
scale of the density and magnetic field. We aim to justify the assertion that direct excitation 
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of the SQEW by an antenna can be successfully modeled by the homogeneous plasma 
M l for plasma condtons typical of AWH in toroidal devices. 

3. ALFVEN WAVE PROPAGATION IN AN ̂ HOMOGENEOUS PLASMA 

We again consider wave propagation in the tow frequency i n * . In an inhomogeneous 
plasma, dfficuttes arise at finite frequency due to the appeararee of a cut-off. resonance. 
cut-off triplet in the MHD model fast wave dtepersion (Sttx, 1992a). At tow frequency, 
these critical frequencies merge together and compicate the asymptotic analysis of the 
fourth order model including the PEO. In what follows, we wil avoid this problem by 
seeking ful wave solutions in closed form to supplement the asymptotic formulae. 

3a THE DIFFERENTIAL EQUATION OF WAVE MOTION 

We consider the problem depicted in Fig 1b with Inear density profile and a 
homogeneous plasma SOL We let the Alven wavenumber be specfiedby, 

kA = kJ{l+x/A) (7, 
where kg is the value of the Altven wavenumber in the homogeneous plasma SOL region 
for x < 0. For x > 0 the foftowing differential equations for Ey and E 2 are obtained from the 
wave equation (2) after eiminating E x, 

(8a) 

(8b) 

'• we assume that A 2 » kA 2 for aR x such that kA2(x) < k z

2 then equations (8) can be 
rewritten to lowest order in k a

2 /A 2 as, 

M-H&-I*-9N Pa) 

AH - k A ] f* - X\l - ki)Ey = k y k z { ^ - A2E2) 
dx dx \ dx 2 I (9b) 

This is feasible for the density profile of Fig. 1b because the SQEW is evanescent at 
densities for which kA2(x) > kz 2. 

3b ENERGY CONSERVATION 

The x-component of Poynting flux is defined by, 

P x = - l -RcJE^bz - Ez'by) 
2po (10) 
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Alter subsuming for bz and by from Faraday's equation and ior E x from the x-component 
of the wave equation (2) one obtains. 

p x = s __L^m 
dx dx l dx dxJI 

(11) 

R may be shown that H (9a) is muKpied by Ez*ky/kz and is subtracted from equation (9b) 
muKpted by Ey* then the fotowing expression is obtained after integration. 

AT = —L_Im 
2wno 

(12) 

where 

T = - l 
2a>iio i I dx dx L dx dxJ 

(13) 

and xi and X2 are arbitrary x-values at which T is evaluated and AT * T(X2) - T(xi). In the 
absence of damping AT - 0. Since T - P x except for a term proportional to kA 2 we 
conclude from equations (12) and (13) that equations (9a) and (9b) conserve the Poynting 
flux to lowest order in k^/ky 2. 

Conservation of energy in the sense of equations (12) and (13) has to be satisfied by all 
solutions obtained to equations (9). 

4 SOLUTION OF THE WAVE EQUATION 

Equations (9) can be combined to yield the following tuirth order differential equation. 

&*»1#S-'MIM-I dX2 

dEy/dX 
(oc+l-X) 

where 6 * AA, X - kaA/y and 

X » a - x/A 

(14) 

a = [ki-kJ-2fA2]/k| 
In X-coordinates the ARL is located at X - 0 and the low density side of the ARL is located 
at X > 0 where the SQEW propagates. Many similar fourth order deferential equations have 
been obtained for various wave heating scenarii involving mode conversion (Stix, 1965; 
Bellan and Porkolab, 1974; Ngan and Swanson, 1977; Perkins, 1977; Faulconer, 1980; 
Swanson, 1989; Stix, 1992) 

The solution to equation (14) can be written down in closed form by employing the 
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method of the generaised Laplace transform (Swanson 1969). Before domg so however 
we approximate the right hand side of equation (14) by replacing et+1-X in the 
denominator by a constant D. We wW soon show that this term does not contribute in 
lowest order to the asymptotic expansion of Ey for large X. Consider the folovring 
representation of Ey. 

E,(X)=f dtE^etX 
JC ( 1 5 ) 

where C is an arbitrary contour in the complex t-ptane. We appry me dfferenfial operator of 
equation (14) to equation (15) and integrate the terms containing X once by parts. We 
choose the contour C so that the integrand vanishes at the endpoints where |t) -» ••. It is 
easy to show that this procedure leads to the blowing first order dHfereneal equation for 
the Laplace transform, 

* A*! t 2 - 8 2 D) ' 
This may be integrated directly and substituted back into equation (15) to yield, 

g>{4>(t)) 
Mx)=£* I 82 

(16) 

where 

- t (x + 4 W •<0 
X2I 3X2 2DX2 

In equation (16) we make the substitution t « - X|X + 6 2 /X 2 | 1 / 2 p to obtain the following 
integral representation of Ey(X), 

exp|Lw(p)) 

Pi 
!y(X)- J dp 

w(p)--{pign(x + £J + ^ + 

(17) 

-+-r and pe = 

Equation (17) is amenable to solution by asymptotic techniques. For large values of L the 
third term in the expression for w(p) can be neglected justifying our previous assumption 
of letting D be constant. We shall soon see however that energy conservation does 
depend on this equilibrium gradient term. For the following analysis we therefore 
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approximate. 

In order to soke equation (14) we need to invert (17) for dWerent contours in the complex 
niane unH a l nhmiratw mearrinoful sokiions are obtained. In practice ntiiainn (141 has 
tour Imarty independent solutions. We shal Ind that tor the problem depicted in Rg. 1b 
them are two solutions of Dhvsical stonificance. 
W W * ^ P ^ M ! • • ¥ W*P«PP»^P*PW W* pP"*W»PPlP^B* ** V |F"••^PPPPIVVt 

4a FAST WAVE RESONANT MODE CONVERSION TO THE SHEAR ALFVENWAVE 

In order to obtain the usual solution to equatton (14) oescr t^FWRMC we first consider 
the was known MHD solution. When X -> - , finite election mass effects are etntinated 
from the physics, the SQEW no longer propagates and equation (14) simples to the 
fotowtna second order dWenmttal enuatinn 

ffi\ dX' y (19) 

Equation (19) is recognised as the usual modWed Bessel equation describing the MHD 
emit (Hasegawa and Chen, 1974, Chen and Hasegawa.1974). This equation has the 
solution, 

Ey = EyOK()[-5X] 

where Ko is the McDonald function which satisfies E y - » O a s X - » - ~ a n d h a s t o b e 
analytical/ continued for X > 0 to give, 

E y = Ey 0[Ko(5X).mIo(6X)] 

This solution represents the fast wave of ideal MHD. As previously mentioned, the 
solution has a singularity at the ARL. X « 0. It may be shown that the power coupled per 
unit area by the fast wave to the ARL is given by (Hasegawa and Chen, 1974, Chen and 
Hasegawa.1974), 

P f = — y" (20) 
2 Ho to A A z 

To the best of the author's knowledge, the method of the generaised Laplace transfonn 
has not been applied to obtain the solution to equation (14) describing FWRMC. 
Moreover, it has never been shown analytically that the KAW (or the SQEW) actually 
tranports this energy away from the ARL. Given the vast difference in the physics of 
equations (14) and (19), it would provide an important test of the present calculation to 
show that the energy transported by the mode converted SQEW according to eqtatton 
(5) is indeed given by equation (20). This is the task to which we now turn. 

We first obtain the solution to equation (19) by the Laplace transform technique since this 
will enable us to infer directly the solution to equation (17). The Laplace transform has the 
foHowing simpWied form of w(p), 

w(p)« psgn(X) ( 2 1 ) 
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Wt make the substitution p - ipesinh(u) in equation (17) using (21) and define. 

Ey(X) = Ko(-5X) = l | ducxp|-i6Xsinh(u]) 
JC (22, 

Expression (22) is a wel known integral representation of the McDonald function where C 
denotes the contour depicted in Fig. 2a of the complex u-plane (Davits, 1978) 

After making the same substitution in equation (17) using (18) we obtain the foaowing 

^(X) = j du cxp{ LPB V(u)| 

V(u) = -i (sgn(X) sinh(u) - pB^sinh^uyj] (23) 
where | X | » &lk2 has been assumed. The contour C is similar to that of Fig. 2a and is 
depicted in Rg. 2b for the case where X > 0 and Fig. 2c for X < 0. The contour has to be 
chosen as usual so that the integrand of (23) approaches zero as M - * ••. The hatched 
regions indicate where this condition is satisfied. 

An aymptotic solution to integral (23) can now be obtained by the method of steepest 
descents (Bteistein and Handelsmann, 1975a). For ease of visualisation, the level curves 
of the real part of V(i:) are shown plotted in Fig. 3. This plot indfcates where the 
exponential in (23) is important and provides visual confirmation of the choice of contour. 
The saddto points of the real part of V(u) are the points in the complex u-plane where V(u) 
is stationary. These are given by sinh2(u) > 1/ps and cosh(u) « 0 and are marked by 
crosses in Figs. 2 and 3. The contour C has been deformed so that it passes through the 
saddto points of the real part of V(u) along the directions of steepest descent 

For X >0, the directions of steepest descent in Fig. 2b art jiven by arg(u) -x/4forsinh(u) 
«1/PB in each case and arg(u) « */2 for cosh(u) • 0. For X > 0, the first term of the 
asymptotic expansion vafid to largest order in Lpe » 8|X|isthen, 

Ej'(X) % / ~ % C X P f 3 X , X , 3 / 2 + 4 ) + ^ " ^ 

(24a) 

For X < 0. the directions of steepest descent are given by arg(u)« ±x/2 for sinh(u) 
•1/pfjand arg(u)-0 and x for cosh(u)«0. The solution is given by. 

E"(X) * v 3 ^ e x p I* 3 W X | 3 / 2 - * ) + 2 K d ' 8 X l 

(24b) 
Here we have replaced the asymptotic part for the fast wave due to the saddle points of 
cosh(u) - 0 by the McDonald function, but it must be borne in mind that equation (23) is 

11 



not vaBd near X > 0. Equation (24) ike equation (17) is in particular not singular at X - 0 as 
in the MHD case. For X > 0 there is an additional term with the SQEW wavenumber which 
propagates on the low density side of the ARL as expected. This wave is backward 
propagating since it propagates toward X « 0 when its energy propagates toward X » +••. 
For X < 0. the solution consists of an evanescent SQEW and the *ast wave represented by 
the McDonald function. As in the case of ideal MHD, the fast wave is described by the 
McDonald function of a negative argument for X > 0 and a positive argument for X < 0. 
Analytic continuation for X > 0 therefore produces the Ig-Bessel function required to 
describe a fast wave launched by the antenna. Solution (24) therefore represents the 
case of SQEW excitation by FWRMC. We now demonstrate that energy is conserved. 

Direct substitution of equation (24) into equation (14) proves that it satisfies the deferential 
equation to highest order, X 4 irrespective of the coefficie it of the exponential term in 
equation (24). Solution (24) also satisfies equation (14) to X 3 with the above coefficient 
provided we ignore the equiibrium gradient term o.. the right hand side of equation (14) 
a j previously assumed. It is also easy to check that if we substitute this coefficient for the 
SQEW into equation 5, we do not obtain equation 20. If on the other hand, we retain the 
equiibrium gradient term and use the form of w(p) given in equation (17), then one can 
only obtain an asymptotic expansion by assuming that k z - k a « kA- If in adoption XX 3 7 2 

» 1 nearx-0 (X-o) thenD- l andequatk>n(23)becomes. 

V(u) = -i sgn(X) sinh(u) - pi^sinh^uj/S + i p ^ s i n h ^ 
2\IXI 1 / 2 

(25) 

In this cas9 the asymptotic expansion for X > 0 is given by, 

E"(X)" JSfc e * l x | 3 / 2 + 4 ] + f ) • 2Kd-5X] 

(26) 

Since X - (kz2 - k a

2 - 2y 2A 2)/k a

2 « 1 we may write exp(X) « l + (kz2 - k a

2 - ̂ A 2 ) ^ 2 • 
(kz 2 -2r 2 A 2 Vk a

2 * k^/ka2. We therefore have exp(»2) - k z/k a. From equation (26) the 
ratio of SQEW to fast wave amplitude therefore becomes, 

Eyo(SQEW) _ 
Eyo(fast) 

nykj 
AfkMcaf2 

(27) 

and substitution into equation (5) is equal to equation (20) in the limit where A • ky. In fact 
it is possible to evaluate the coefficient of the SQEW exponential term in equation (24) 
assuming D - 0+1- X. Substitution of Ey -M /(X)expi(-2X|X|3 /2/3 •«-n/4) directly into 
equation (14) yields a simple expression for Y after setting the coefficient of X 3 to zero. 
The amplitude Y is only determined to within a multiplying factor by this technique but by 
comparison with equation (27) we note that, 

I X ) - ^ h. 4rc _ 
XX312 kA(x) A 

( 28) 
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satisfies energy conservation. Equation (28) indicates that the ampftude of the SQEW 
adjusts itsei at each value of X to keep the power flux of equation (5) equal to the value of 
equation (20). This agrees with the conclusions of Hasegawa and Chen (1975). 

This concludes the discussion of SQEW excitation by FWRMC. We have demonstrated 
the important result that the energy lost by the fast wave is transported away from the ARL 
by the SQEW. Energy conservation however requires the equiftrium gradtent term in 
equation (14). The FWRMC solution was obtained in analogy with the ideal MHD case of 
resonant absorption. 

4b DIRECT EXCITATION OF THE SHEAR ALFVEN WAVE 

A second solution to equation (14) can be obtained directly from equation (17). Firstly 
however we consider an approximate solution to equation (14) vafd in the imit where 
L P B 3 / 3 » 1 or 8 3 » X 2 . Equation (17) now simplifies to the following integral 
representation, 

ByJXj-J-f dpexp{Lw(p)) 

(29) 

mere w(p) is defined in equation (18). It is easy to show that the corresponding form of 
equation (14) in this approximation is given by, 

Idx2 / dX* I xVy\ 
(30) 

The first operator in equation (30) describes the fast wave of a homogeneous plasma. 
There is no resonant absorption in this model because the fast wave solution is not 
singular nor is there any mode conversion because the fourth order differential equation 
has separated into two decoupled second order differential equations. The second 
operator is the differential equation for the Airy function and describes a SQEW which 
propagates independently of the fast wave. Its solution is given by, 

(3D 

where Ai is the Airy function. The Ai - Airy function is chosen by requiring that the SQEW 
fields remain bounded as X -> —». This expression describes a standing SQEW which 
originates in the plasma boundary and propagates toward the Alfven resonance layer at X 
• 0 where it is reflected. It is clear that this solution is a WKB-like approximation for a near 
homogeneous plasma with the important difference expected from the dispersion 
relation of equation (4d) that the SQEW undergoes cut-off at the ARL. This follows 
because for k z < k a, kx becomes imaginary. The SQEW must therefore form a standing 
wave on the ' w density side of the ARL after being excited directly by the antenna. 
Solution of equation (30) by Green's functions for the geometry of Fig. 1b confirms this 
remark. In addition, besides the usual mechanism of SQEW excitation by z-directed 
current elements, the solution obtained indicates that x-directed ('radial feeders') of the 
antenna couple to the wave provided the antenna feeds are located in the density 
gradient. 
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As in the previous section, solution of equation (3C) by the method of the generaised 
Laplace transform reveals the contour integral required to solve equation (17). A contour 
integral representation of the Ai-Airy function is shown in Fig. 4a (Bleistein and 
Handetemann, 1975b) for the integral of equation (29). For X > 0 the contours Ci and C2 
have to be chosen and for X < 0 the contour C3 has to be chosen in order to generate the 
Ai-Airy function. The integrands in equations (17) and (29) vanish at |p| -> •• along these 
contours in the complex p-plane provided they approach infinity inside the sectors arg(p) 
€ [-K/fo/6], [IU2J5KI6) or f7x/6,3s/2]. The corresponding level curves are shown in Fig. 5. 
From Cauch/s theorem, either C1UC2 or C3 can be distorted onto the imaginary pans to 
obtain the following wel known integral representaion (Abramowitz and Stegun, 1970a), 

AIJ^X • gj=n?M»$ir „, «ji(, s g n ( x + g) . ,3/3] 

(32) 

The analogous contours for equation (17) are shown in Fig. 4b. These contours are the 
same except for the branch cuts arising from the branch point singularities at p - ±PQ in 
equation (17). An integral representation for equation (17) can also be obtained in a similar 
manner to that of equation (32) by evaluating the integral along the imaginary p-axis, 

roo 

Ey(X) = 2 | d p COS|L[Psgn(X)-jg/j]} 

Vp2 + p | 
(33) 

Not surprisingly, Ey in this case is a cross between the McDonald function of a positive 
argument and the Ai-Airy function of equation (32) (Abramowitz and Stegun, 1970a, 
1970b). Once again however there is no singularity at X • 0. It is important to note that the 
McDonald function has a positive argume.it for both X > 0 and X < 0. 

Unlike the fast wave function in equation (23), the fast wave solution here decreases on 
both sides of the ARL and is not suitable for representing a fast wave excited by an 
external antenna. Equation (33) is therefore a second linearly independent solution to 
equation (14). 

In Fig. 4b the saddle points of the integrand of equation (17) are given by p 2 • -1 and the 
asymptotic form of the McDonald function is obtained by evaluating the loop integral 
around the branch cut. The asymptotic solution for X > 0 is given by, 

E y D ( X ) " V ^ x 6 " 5 i n ! 3 x w 3 / 2 + 4 l - 2 K c [ M 

(34a) 

This solution is very similar to equation (31) and has a similar interpretation. The sine 
function represents a standing SQEW as mentioned above. The main difference is the 
additional fast wa. - ,erm which we have represented by the McDonald function although 
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the solution is again asymptotic and not valid near X • 0. This equation should be 
compared to equation (24a) describing a SQEW excited by FWRMC. From equation (34a) 
we see that the ampitude of the wave is determined by the boundary conoltions satisfied 
by the SQEW wavefields at the antenna because the McDonald function is exponentially 
small far from and on either side of the ARL at X « 0. This is important because in the 
presence of reasonable damping we may neglect the effect of the equiibrium gradient 
term in equation (14) on the amplitude term of the SQEW in equation (34a). In the 
absence of damping however, the same correction (equation 28) to the amplitude of 
equation (24a) as a result of the equilibrium gradient term is expected to apply to equation 
(34a) because equations (24a) and (34a) both satisfy equation (14). As we shal soon see. 
for the conoltions of a typical laboratory plasma, the SQEW term in equation (34a) 
dominates over the McDonald fast wave function. For X < 0 the saddte point is at p - - land 
the solution is given by, 

* X ) = V ^ H - i ^ / 2 - ? | - 2 K * * « 
(34b) 

Equation (34b) describes an evanescent SQEW for X < 0 as expected. We conclude that 
equations (34) represent a SQEW mode excited directly by the antenna. 

5 ANTENNA COUPLING RESULTS 

We have obtained two solutions to equation (14). Each solution represents an excited 
SQEW. Solution (24) which corresponds to the MHD limit case of resonant absorption 
describes a SQEW excited by FWRMC. Solution (34) corresponding to the WKB or a 
homogeneous plasma imit describes a SQEW excited directly by the antenna. Far from 
the ARL this wave propagates independently of the fast wave. 

It is relatively straightforward to use the asymptotic solutions (24) and (34) to equation (14) 
to calculate the total wavefield excited by the antenna of equation (3) for the situation 
depicted in Fig. 1b. The solutions in the SOL region consist of equations (4a) and (4b) 
plus two reflected waves from the interface at x > 0 each with an unknown constant 
multiplying factor. There are also two unknown constants multiplying the solutions (24) 
and (34) for x > 0. These four unknown constants are determined by four boundary 
conditions satisfied by Ey at the x > 0 interface. The boundary conditions which are 
derivable from equation (14) are that Ey and its first three derivatives are continuous 
across the x - 0 interface. 

A sample wavefield is shown in Fig. 6 for conditions typical of a medium sized tokamak. 
This calculation is for k a « 1.0, k z > 2.0, ky - 20 radians per metre, A * 0.05 m and for 
modest damping where y «(1 + O.OSi) x 10"3. The directly excited SQEW can be clearly 
seen near the antenna to the left and the asymptotic remainder of the mode converted 
SQEW to the right near the ARL. The equilibrium gradient term has been included in 
these calculations so that for the case of high damping the total power radiated by the 
antenna is equal to the sum of the direct SQEW and the mode converted SQEW. In the 
case of low damping, the SQEW propagating to the left of the antenna carries all the 
antenna radiated power. 

Fig. 7 shows the ratio of the power coupled by the antenna to the SQEW to that of the fast 
wave for the same conditions of Fig. 6 but as a function of various transverse 
wavenumbers, ky. These results are plotted as points. The increase of this ratio with ky is 
due to the decrease of the power coupled to the mode converted SQEW with increasing 
ky as a result of the fast wave cut-off. The lower mode numbers ky < 10 radians per metre 
are in fact typical of AWH. This reaffirms the conclusion that low non-zero pokiidal mode 
numbers (especially m • 1) are best for FWRMC. For localised antennas, the high ky 
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cannot be ignored and if desired can be preferentially excited. 

For this case of modest damping where the directly excited SQEW does not interfere with 
itself after reflection from the ARL and where the mode converted SQEW does not 
interfere with itself after reflection from the boundary, the above ratio ought to be simply 
given by that of the direct SQEW power as calculated for a homogeneous plasma from 
equations (4b) and 5 to the power calculated for the ideal MHO fast wave from equation 20 
and the geometry of Fig lb. For the case of Fig. 1b, the ideal MHD fast wavefield is given 
by. 

. , , » -i(Oî okzAJteexp(-Ab) Krj[(x-aA)A] 
m ' ky[kJ-ki]Q 

(35) 

where, 
Q = [KrjaAA) - Ki(aAA)] - in [irjjaAA) + Ii(aAAJ) 

and x m - b is the location of the antenna in Fig. 1b. The power coupled into the mode 
converted SQEW is then given by substituting the amplitude of equation 35 into 
equation 20. The final result is, 

PD.Ak y

2[kI-kA]|Qpexp(2bA) ^ 
PM 2rck sk z

2 

where PQ and P M are the powers coupled respectively to the directly excited SQEW and 
the SQEW after mode conversion. This ratio has been plotted over the points in Fig. 7. 
We conclude that the simple analytical result of equation 36 provides a good 
approximation in the modest damping imit. 

Although the model presented in Fig. 1b (or the case of a continuously linear variation of 
the density at the antenna) is probably the most reaistic SOL model for a one dimensional 
plasma, it is important to examine the nature of the wavefields excited by the same sheet 
antenna for other commonly used models of the SOL. We now consider the cases where 
the SOL is modelled by a low density plasma and by a vacuum region. We wish to 
conclude whether the antenna excitation efficiencies of the directly excited and the mode 
converted SQEWs predicted by these models are in agreement. The boundary 
commons assumed are that Ey, E z , by, bz are continuous across a plasma-plasma or a 
plasma-vacuum interface for the case of finite electron mass. We also assume for the 
moment that the damping is sufficiently large that the SQEW is damped between the 
boundary and the ARL. 

For the case of an infinite homogeneous plasma (equations 4a) and A 2 » k a

2 , the fast 
wave is a cut-off mode. For a low density plasma or vacuum region however, it is easily 
verified that the fast wave can propagate with k x

2 - -A 2. This mode is referred to as the 
surface wave (SW) and is discussed in detail by Cross (1988a) for a slab plasma and by 
Cross (1988a) and Ballico and Cross (1989) tor a cylindrical plasma. The effects of finite 
electron mass have been discussed by Cross and Miljak (1993). For a vacuum boundary, 
the surface wave satisfies the dispersion relation, 2 k z

2 • k a

2 - and an eigenmode 
resonance can be expected for antennas which possess this k z in their parallel 
wavenumber spectrum. For kz » ka in the SOL there is little difference between the '"Jt-
off fast wave and the SW solutions and for 2 k z

2 > ka 2 the SQEW is evanescent 
everywhere in the plasma. Consequently if mode conversion is possible within the plasma 
we do not expect the SOL model to make a great deal of difference. 
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It can also be shown that for A » k 2, kg and regardtess of which model is chosen, the ratio 
of dtoect SQEW to fast wave ampitude in the plasma is always given by -iA/ks where ks is 
given by equation (4d). The direct SQEW is therefore not strongly affected by the vacuum 
boundary in this model. 

If a reaistic damping is included in these calculations, the SQEW excited or reflected at the 
ARL undergoes interference with itself after reflection at the plasma vacuum interface and 
is observed to form high Q resonances (Ross, Chen and Mahajan, 1982; Donnety and 
Cramer, 1986; Li, Ross and Mahajan 1989). In the calculation* relevant to Fig. 1 however, 
the SQEW cannot undergo reflection because there is neither a vacuum bouncary, 
metalc antenna nor a conducting wall. Such resonances have never been observed 
experimentally and it may be that in a real plasma either the damping is higher than 
expected or the short wavelength SQEW is scattered by liriters and antennas located in 
the SOL 

In the case of a cylindrical plasma, the geometry acts to increase the ampitude of the SW 
inside the plasma so that the results of this paper underestimate the antenna couping 
efficiency for the mode converted shear wave. A reaistic treatment should also include 
the effects of finite frequency. We may conclude from the present results at modest 
damping however that the homogeneous plasma model may be used at finite frequency 
to estimate the power coupled to the directly excited shear wave, whilst a simple finite 
frequency MHD code for the same antenna can be used to calculate the antenna couping 
efficiency to the shear wave excited by FWRMC. 

6 DISCUSSION 

In this paper, we have established the relationship between the directly excited shear 
Alfven wave of a homogeneous plasma and that of a one dimensionaBy inhomogeneous 
plasma. In particular we now have a plausible theory of direct shear Alfven wave 
propagation in laboratory plasmas and a primitive comparison between this process and 
shear Alfven wave excitation by fast wave resonant mode conversion. 

Although the profiles shown in Fig. 6 indicate that the directly excited wave and the mode 
converted wave have a similar structure, it must be borne in mind that for a real antenna, 
the appearance of the two waves would be quite dfflercnt. Summation of the wavevector 
components fcrthe direct SQEW leads to a locaised structure whtah Images" the form of 
the antenna along the field Enes intersecting the antenna. The mode converted wave on 
the other hand will be influenced by the dispersion of the fast wave. The directly excited 
SQEW is therefore similar to that of an infinite homogeneous plasma. This also shows that 
the resonance cone predicted by cold plasma theory with finite electron mass and verified 
experimentally by Ono (1979) and the guided beams of Borg et. al. (1985,1987) are as 
expected for an inhomogeneous plasma. 

Work has only just begun to investigate the applications of slow waves to fusion plasmas. 
Ono (1993) has reviewed some experimental studies of slow waves and has suggested 
using the directly excited SQEW (CES ICW) to remove helum ash from the plasma 
periphery by selective edge heating. Recent experimental results also suggest that 
Alfven waves may be employed for efficient plasma formation in a stellarator (Lysojvan at. 
al. 1992,1993) where different couplers are required for plasma breakdown and high 
density formation. These applications rely on a good understanding of the properties of 
the shear Alfven wave and its excitation mechanisms. The shear Alfven wave may also 
influence transport given the large RF density perturbation predicted from equation (6). 
During Alfven wave heating experiments with excited powers in the range of 100 kW and 
<o/a>cl • 0.2, large RF edge density perturbations have indeed been observed with 
amplitudes comparable to the quiescent edge density (Borg et. al. 1993). 
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FIGURE CAPTIONS 

Rgurei. Slab geometries for a) the MMtetormgeneousr^ 
o^nsitygrad^wim a unites pfesnn scrape-off layer. 

Hgure. 2 Contours in the complex u-plane for, 
a) the representation of the McDonald function in equation (22). 
b) the solution of equations (23) and (25) for X > 0. 
c) the solution of equations (23) and (25) for X < 0. 
The sadrJe-poirNs are marked with crosses and the shaded regions 
represent the valeys along which the inversion integral has to be 
performed. 

Figure 3. The level curves of the real part of V(u) in equation (23). The symbols V and 
H refe. to valeys and nils respectively. The sadde points occur where V(u) 
has a stationary point, V(u) - 0. These are marked with crosses. 
a)ForX>0 
b)FbrX<0 

Figure 4. Contours in the complex p-plane for, 
a) the representation of the Ai-Airy function in equation (29). 
b) the solution of equations(l7)forX>0usingtheconoursCi UC2andX 
< 0 using the contour C3. 

Figure 5. The level curves of the real part of w(p) in equation (18). The symbols V and 
H refer to valleys and hills respectively. The saddle points occur where V(u) 
has a stationary point, V(u) - 0. These are marked with crosses. 
a)ForX>0 
b)F6rX<0 

Figured. A representative plot of the EywaveflekJ excited by the antenna with ka« 
1.0, kz « 2.0, ky - 20 radians per metre, A » 0.05 m and modest damping 
where Y « (1 + 0.05i) x 10'3.The geometry is that of Fig. 1b, the antenna is 
located at x »-b • -.027 m and the Awven resonance layer at x - .15 m. 

Figure 7. The unbroken curve is the ratio of the power coupled to the directly excited 
SQEW (PQ) to that of the SQEW excited by FWRMC (PM) as calculated 
from equation (36) for y • (1 + 0.05i) x 10"3. The points are the computed 
ratio of the power coupled by the antenna to the SQEW to that coupled to 
the fast dve for the same value of y - ( 1 +0.05i)xi0' 3 . 
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