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Abstract

Antenna coupling to the shear Alfven wave by both direct excitation and
fast wave resonant mode conversion is modelied analyticaily for a
plasma with a one dimensional linear density gradient. We demonstrate
the existence of a shear Alfven mode excited directly by the antenna. For
localised antennas, this mode propagates as a guided beam along the
steady magnetic field lines intersecting the antenna. Shear Alfven wave
excitation by resonant mode conversion of a fast wave near the Alfven
resonance layer is also demonstrated and we prove that energy is
conserved in this process. We compare the efficiency of these two
mechanisms of shear Alfven wave excitation and present a simple
analytical formula giving the ratio of the coupled powers. Finally, we
discuss the interpretation of some experimental resuits.




1.INTRODUCTION

In the ideal MHD limit, the equation of wave motionh in a one dimensionally
inhomogeneous magnetised plasma is of second order and has a continuous spectrum of
eigenvalues (Hasegawa and Uberoi, 1982). For a fixed paraliel wavenumber k; defined by
the antenna, the equation exhibits a resonance at the location which satisfies the Aliven
wave dispersion relation, @ = kz VA, where vA is the Aliven speed, va = Bo/(ugp)1/2, By is
the steady magnetic field, p the plasma mass density and o the radian frequency. The
resonance is *eferred to as the Alfven or perpendicular ion cyclotron resonance and its
location as the Alfven resonance layer (ARL). Qualitatively this solution represents a fast
wave which undergoes resonant absorption at the ARL. For low enough damping, the
power deposited at the ARL is independent of the damping mechanism (Hasegawa and
Chen, 1974, Chen and Hasegawa,1974).

I paraliel electron dynamics (PED) is included in the model (finite electron mass, paraliel
resistivity or finite electron thermal speed), the differential equation of wave motion for
fixed kz becomes fourth order and has four solutions, not all of which need be physically
admissible. These solutions physically represent coupled fast-shear wave modes. One of
these commesponds physically to the process of resonamt absorplion where the resonance
is resolved by mode conversion of the fast wave 10 the shear Alfiven wave (Swanson,
1989; Hasegawa and Chen, 1976). The shear Aliven wave s a shornt perpendicular
wavelength mode when either electron mass or thermal velocity are included in the model
(Ross, Chen and Mahajan, 1982; Vaclavik and Appert, 1991). in a collisionless plasma,
the effects of PED depend on the value of B. If B>>me/my the kinetic Aliven wave (KAW) is
excited and propagates on the high density side of the ARL. if B<<mg/my the shear wave
is excited whose dispersion is determined by finite electron mass. This latter wave
propagates on the low density side of the ARL and has consequently been referred to as
the surface quasi-electrostatic wave (SQEW) (Stix T.H., 1980; Vaclavik and Appert, 1991).
In the vicinity of the ion cyciotron frequency the SQEW is also referred 10 as the cold
electrostatic ion cyclotron wave CES ICW (Ono, 1993). Provided the shear wave does not
inerfere with itself after reflection at a boundary, it has been shown that the power
transferred from the fast wave to the shear wave is the same as that calculated in the ideal
MHD §imit for resonant absorption (Hasegawa and Chen, 1975). Shear Alfven wave
excitaton by fast wave resonant mode conversion (FWRMC) forms the basis of the Aliven
wave heating (AWH) scheme and, in the case of the KAW, has been observed and
modelled with satisfactory agreement (Weisen ét. al., 1989). Mode conversion {0 the
SQEW has not yet been observed in experiments.

in an nfinite homogeneous plasma, the four modes which result when the PED are
included in the model are a decoupled fast and shear Aiven wave propagating in each
direction. In this kmit, both waves are excited direclly by the antenna and there is no mode
conversion. When excited by a localised antenna with a broad wavenumber spectru™m the
Fourier wavenumber components of the shear wave superpose to produce a localised
beam guided along the lines of the steady magnetic field. Wavefield caiculations by
various authors for localised antennas in an infinite homogeneous plasma (Schoucri ef. al.,
1985; Borg, 1987) and group velocity calculations (Borg,1987; Cross,1988a)
demonstrate that this property remains substantially true even at finite frequency.

The question naturally arises as 1o whether this direclly excited shear Alfiven mode is
expected {0 propagate in an inhomogeneous plasma. if 80, how is it coupled to the fast
wave and what is the relative efiiciency of this process compared with sheaf wave
excitation by FWRMC? The above condition on 8 can be expressed as nm3) T (eV) <<
10 21 B2 (T) s0 that for typical fusion plasma scrape-off layer (SOL) parameters, the SQEW
propagates in the plasma periphery and the KAW in the plasma interior. The SQEW is
therefore the most likely candidate for direct excitation by an antenna located in the SOL.
The process of direct antenna excitation of the SQFW has in fact been noted in some, but




not all, numerical antenna-wave coupling simuiations for AWH which inciude the PED
(Ross et. al., (1986) and Puri (1987a,1987b)). Here the aim is 10 optimise the antenna so
that direct excitation is minimised, the mode conversion process dominates and power
deposition occurs in the plasma interior. Detailed studies of tha direct excitation process
have not been performed because of the difficully of differentialing even quaiitatively
between the directly excited and the mode converted SQEW. In particular, guided Alfven
beams formed by Fourier superposition of directly excited shear Aven waves have not
been theoretically predicted for a typical fusion plasma. Recently however Cross (1988b)
has demosirated the existence of guided modes which form solutions in the MHD Emit.

Experimental evidence for direct excitation is clear. Borg ef. al. (1985,1987) have
confirmed that a small magnetic dipole loop antenna couples 10 a localised shear Aliven
wave beam which propagates for several transits asound the circumtererice of a toroidal
plasma along field knes intersecting the antenna before being scattered by kmiters and
other objects located in the SOL. Experimental results indicate that this wave can
propagate in a narrow beam up to the ion cyclotron frequency above which it no longer

es. The same resulls have recently been confirmed for an Aliven wave heating
antenna (Murphy, 1989). The WKB approximalion (Fejer J.A. and Lee K.F., 1967) cannhot
be applied in these cases because the perpendicular wavefield scale is of the same order
as the density gradient scale and the paraliel wavelength much longerthanthe radius of
field line curvature. Nonetheless, conditions have been obtained in a laboratory plasma
where the WKB approximation applies (Cno, 19739). Moreover, under special conditions,
the shear Alfven wave propagation characteristics are quite simple. For example, in a
cylindrical plasma with a radially symmetric density gradient, the axisymmetric shear Aliven
mode can be excited directly by the antenna and propagates at a local Alfven speed
g:ross and Lehane 1968, Cross, 1983). A detailed analysis of this case has been given by

y (1984).

In this paper we demonstrate the existence of a directly excited shear Aliven wave for the
case of non-axisymmetry, ky # 0, under conditions where the WKB approximation does
not necessarily apply. We address the problem using simple analytical techniques and
restrict analysis 10 the low frequency imit, and a one dimensional linear density variation
perpendicular to a constant magnetic fielkd. More ambitious would be 1o treat the cases of
finite frequency and a curved magnetic field. We will also consider for the first ime the
relative efficiency of the direct excitation and the mode conversion processes. We will
present a simple analytical formula for the ratio of the directly excited shear wave 1o that
excited by mode conversion which is valid for modest damping in a siab plasma.

This paper is structured as follows. In section 2 we revise the problem of antenna couping
fo Alfven waves in a homogeneous plasma in order to obtain a basic intuition about the
shear Alfven wave with finite electron mass. In section 3 we formulate the problem of
Altven wave propagation in an inhomogeneous plasma and discuss energy conservation.
In section 4 we consider the antenna-wave coupling problem for an arbitrary
inhomogeneity by considering two well known kmits for which the exact solutions are
known. In seclion 5 we present some results. Finally in section 6 we conclude with a
discussion of the relevance of the results to experimental observations.

2. ANTENNA COUPLING TO ALFVEN WAVES IN A HOMOGENEOUS PLASMA

in this section we consides the limit where the frequency is much lower than the ion
cyclotron frequency and finite electron mass is the dominant PED effect so that the
SQEW propagates. The case of finite frequency has been treated elsewhere for a
homogeneous plasma (Borg, 1987; Shoucri ef. al. 1985).




We consider a plasma described by the following low frequency dislectric tensor.
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where vgj is the eleciion-ion collision frequency and acj ce respectively the ion, etection
cyciotron frequency. Here we are also assuming that ® >> kzVihe where \ne is the
electron thermal speed. The wave equation is given by,

VxVXE = iopolo + k§ e.E @

where kg2 is the vacuum wavenumber. For simplicity we consider the following antenna
current distribution,

Jo=Joz [0, ﬁ, 1] 3(x - b) expi‘kzz +kyy - (ot}
ky (]

where kz is the wavevector along the steady magnetic field and ky in the y - direction. The
situation is depicted in Fig. 1a. The sheet current automatically satisfies charge
consesvation since Jpy = -kz2J0z/ky has been assumed. it is a siraight forward matter fo

soive for the wavefisids of the fast and siow wave (Borg, 1987). For A2 >> ka2 where A2 =
ky2 + kz2, the results obtained for the Ey components of the fast wave and SQEW are
respectively,

-iopok,AJoeA*
= (4a)
& 2%,[12 - k3]
Ey = '(Oﬂokzkyjo:e'“‘”‘
2kgk2 - k3]
(40)

Ey is related 1o E for the SQEW by,




(k2 - k3] E, = ionoloy + k,k,(l +#)E,

(4c)

where ka = aivA is the Alfven wave number and k = (A2+ky2) /2 is the total wavenumber.
in equation (4b), the slow wavevector in the x-girection is given by,

2
ks = '_‘zz'_ka-kg
(4d)

Notice that the fast wave is an evanescent vacuum field which cannot couple energy to a
homogeneous plasma. This is very different to the case of an inhomogeneous plasma as
we shall see. The SQEW is backward propagating in the x-direction and is launched solely
by the z-directed elements of the antenna (Borg, 1987). Unlike the fast wave it aiso
propagates down to very low density where ey =~ 0. The power per unit area radiated by the
antenna into a SQEW propagating in one directior is given by

2 12412
p, = ks(kz - k;) ';A IE, 1
2"'0‘9 kz ky (5)

Equation (5) can be showr to be in agreement with Stix’s formula (Stix, 1992b) for the
energy transported by a plasma wave when the dielectric tensor of equation (1) is applied.
The energy of the SQEW is transported by coherent particle motions. it is easy to show
that in this low frequency limit, the SQEW has no magnetic field component bz along the
steady field and that in the imit k; >> ka, has no magnetic field at all. In this low density lmit
the SQEW therefore becones electrostatic. For kz < ka the SQEW is evanescent. The
SQEW has some other interesting properties. The ratio of the density perturbation to

average densily is given by (Donnelly and Cramer, 1966),

l(On m_z+1mg +1(°e05|l JE,
n B B ne &z (6)

where n is the equilibrium density. in a homogeneous plasma and for bz = 0 only the third

term remains. Taking Pt = 10 kW/m? in equation (5), kz >> kA (in S! units) frequency =
1 MHz, B = 1 T in hydrogen and n = 1078 m-3 then,

0~ 0.20k>2
n

The SQEW can therefore have a very high density fluctuation level which increases with
the imposed kz.

As ka approaches zero the dispersion relation (4d) reads kz/k| =ywhere

k12 = kg2 + ky 2 and, as for the lower hybrid wave, the SQEW excited by a localiced
antenna propagates along the magnetic field with a resonance cone of angle 8 = tan~1(y)
(Ono, 1979). Similarly one may show using (4d) that the group velocity of the SQEW is
directed mainly along the magnetic field of a homogeneous plasma. Either way, we obtain
the well known result that a SQEW wavepacket is guided by the magnetic field.

It is of interest 10 know whether these properties remain valid for an antenna located in an
inhomogeneous plasma for which the imposed ky and kz are of the order of the spatial
scale of the density and magnetic field. We aim to jusiify the assertion that direct excitation




of the SQEW by an antenna can be successfully modelied by the homogeneous plasma
§mit for plasma conditions typical of AWH in toroidal devices.

3. ALFVEN WAVE PROPAGATION IN AN INHOMOGENEOUS PLASMA

We again consider wave propagation in the low frequency mit. in an inhomogeneous
plasma, difficulties arise at finite frequency due to the appearance of a cut-ofl, resonance,
cut-off triplet in the MHD model fast wave dispersion (Stix, 1992a). At low

these critical frequencies merge m«wmmwmdm
MordumodelmlwimmePED in what follows, we will avoid this problem by
seeking full wave solutions in closed form to supplement the asympiobic formuiae.

3a THE DIFFERENTIAL EQUATION OF WAVE MOTION

We consider the problem depicted in Fig 1b with linear density profile and a
homogensous plasma SOL. We let the Aliven wavenumber be specfied by,

ki =ki{1 + x/A) o

where k3 is the value of the Alfven wavenumber in the homogeneous plasma SOL region
forx<0. Forx>0!helolowmdﬂeremalemaﬁonsbt5yamEzareobtamdfromtho
wave equation (2) after eiminating Ey,

i
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' we assume that A2 >> kA2 for all x such that kA2(x) < kz2 then equations (8) can be
rewritten to lowest order in k32/A2 as,
-|A2 + )E,]
(9a)

{_Ex AzE,] —kykz{
d[ 2 2]d§z 2 2k _ Id’g 2 }
- - -k =k -A‘E

dx?
This is feasible for the density profile of Fig. 1b because the SQEY is evanescent at
densities for which ka2(x) > kz2.

(8b)

3b ENERGY CONSERVATION
The x-component of Poynting flux is defined by,

P, =L RelEb, - E;b
X 2”0 { yvz y} (10)




ARer substituing for bz and by from Faraday's equation and ior Ex from the x-component
of the wave equation (2) one obtains,

- i D 414 s i 5]
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lnnybcstwmham(sa)ismllpiedbyEz kykz and is sublracted from equation (9b)
mullpliodbyEy then the following expression is obtained after inegration,

x2 2
AT = 2—ml-lglm I dx{" ;‘2'53' (12)

where A
=1 2 12l 9Er 4 k2679Ee -k i ER9Er E‘&}
T 2muolm{[k’ k"]E"EiZ b k’k‘[E‘ ix dx]

(13)

and x4 and x2 are arbitrary x-values at which T is evaluated and AT = T(x2) - T(x1). In the
absence of damping AT = 0. Since T = Py except for a term proportional to ka2 we
conciude from emations (12) and (13) that equations (9a) and (3b) conserve the Poynting
flux 10 lowest order in kaZ/ky2.

Conservation of energy in the sense of equations (12) and (13) has to be satisfied by all
solutions obtained to equations (9).

4 SOLUTION OF THE WAVE EQUATION
Equations (9) can be combined to yield the following 1curth order dilfferential equation,
__Ex #22 Qxﬁ) 5 X+5—)E [ ] dE,/dX
dx2 (x+1-X)

(14)

where 8 = AA, A = kaAfy and
X=a-x/A
=[k2 - k2 - 2PA Y2

In X-coordinates the ARL is located at X = 0 and the low density side of the ARL is located
at X > 0 where the SQEW propagates. Many similar fourth order differential equations have
been obtained for various wave heating scenarii involving mode convergion (Stix, 1965;
Bellan and Porkolab, 1974; Ngan and Swanson, 1977; Perkins, 1977, Faulconer, 1980;
Swanson, 1989; Stix, 1992)

The solution to equation (14) can be written down in closed form by employing the




method of the generaised Laplace transform (Swanson 1969). Before doing So hovever
we approximate the right hand side of equation (14) by replacing a+1-X in the
denominator by a constant D. We will soon show thal this term does not contribute in
lowest order to the asymplotic expansion of Ey for large X. Consider the following
representation of Ey,

E(X)= j dt Ejft) etX
C (15)
where C is an arbitrary contour in the complex {-piane. We apply the differential operator of
equation (14) to equation (15) and integrate the terms containing X once by parts. We
chooss the contour C so that the integrand vanishes at the endpoints where jtj —» «s. it is

easy 1o show that this procedure leads 1o the following first order differential equation for
the Laplace transform,

-~ 2 .
@1-1.{;2.;52-_&4_-.!.5,:0
dt lZ t2_82 D

This may be integrated directly and substituted back into equation (15) to yield,

_ | eelem)
Ey(X) fc dt N

(16)

2 3
o) = t(x +§—)+J—-—J2——
A2/ 322 2pA?
In equation (16) we make the substitution t = - Al)X + §2/A2|1/2p 1o obtain the following
integral representation of Ey(X),

- exp{Lw(p))
5 fc dp Vp?-p§

(7)

=- I X .83. Ls P2
O

I2}
L=A|X+§Er and pp=—->O0 —
+
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Equation (17) is amenable to solution by asympiotic techniques. For large values of L the
third term in the expression for w(p) can be neglected justifying our previous assumption
of letting D be constant. We shall socon see however that energy conservation does
depend on this equilibium gradient term. For the following analysis we therefore




approximate,
o o o 8), 2
) {" X z) +&] .

in order 10 solve equation (14) we need to invert (17) for different contours in the complex
mdeWMRMhM equation (14) has

four Enearly independent solutions. We shall find that for the problem depicted in Fig. 1b
there are wo solutions of physical significance.

42 FAST WAVE RESONANT MODE CONVERSION TO THE SHEAR ALFVEN WAVE

in order 10 obtain the usual solution to equation (14) describing FWRMC we first consider
the well known MHD solution. When A — «, finite electron mass effects are efiminated
from the physics, the SQEW no longer propagates and equation (14) simplifies 10 the
following second order differential equation,

-d-(xi‘E!) -8?XEy =0
dx\ dX (19)

Equation (19) is recognised as the usual modified Bessel equation describing the MHD
fmit (Hasegawa and Chen, 1974, Chen and Hasegawa,1974). This equation has the
solution,

Ey = Ey0 Ko[-5X]

where Ko is the McDonald function which satisfies Ey — 0 as X — - and has fo be
analytically continued for X > 0 10 give,

Ey = Ey0[Ko(8X) - ix 1o{5X]]

This solution represents the fast wave of ideal MHD. As previously mentioned, the
solution has a singufarity at the ARL, X = 0. it may be shown that the power coupled per
unit area by the fast wave 10 the ARL is given by (Hasegawa and Chen, 1974, Chen and
Hasegawa, 1974),

1 k2 [Eyoi?
Pf=—2 "02 (20)
2pp0AA

To the best of the author's knowledge, the method of the generalised Laplace ransiorm
has not been appiied to obtain the solution to equation (14) describing FWRMC.
Moreover, it has never been shown analytically that the KAW (or the SQEW) actually
tranporis this energy away from the ARL. Given the vast difference in the physics of
equations (14) and (19), it would provide an important fest of the present calculation o
show that the energy transported by the mode converted SQEW according to equation
(S) is indeed given by equation (20). This is the task 10 which we now fum.

Wae first obtain the solution to equation (19) by the Laplace transform technique since this

will enable us to infer directly the solution 10 equation (17). The Laplace transform has the
following simpiified form of w(p),

w(p) = - p sgn(X) (21)

10




We make the substitution p = ipgsinh(u) in equation (17) using (21) and define,

Ey(X) = Ko(-0X) = % f du exp}{-i 5X sinh{u}}
C (22)

Expression (22) is a well known integral representation of the McDonald function where C
denoles the contour depicted in Fig. 2a of the complex u-piane (Davies, 1978)

Aher making the same substitution in equation (17) using (18) we obtain the following
expression for Ey,

EN(X) = j du exp{ Lps V(u))
C

V(u) = -i [sgn(X) sinh(u) - pa2sinh3u)3] 23

where |X] >> 5242 has been assumed. The contour C is similar to that of Fig. 2a and is
depicted in Fig. 2b for the case where X > 0 and Fig. 2¢ for X < 0. The contour has o be
chosen as usual so that the integrand of (23) approaches zero as ju| — «=. The haiched
regions indicate where this condition is satished.

An aymptotic solution to integral (23} can now be obtained by the method of steepest
descenis (Bleisiein and Handelsmamnn, 1975a). For ease of visualisaion, the level curves
of the real pant of V(»:} are shown plotted in Fig. 3. This plot indicates where the
exponential in (23) is imporiant and provides visual confirmation ol the choice of conlour.
The saddie points of the real parnt of V(u) are the points in the compiex u-plane where V(u)
is stationary. These are given by sinh2(u) = 1/pg and cosh(u) = 0 and are marked by
crosses in Figs. 2 and 3. The contour C has been deformed $o that it passes through the
saddie points of the real part of V(u) along the directions of steepest descent.

For X > 0, the directions of steepest descent in Fig. 2b arc zven by arg(u) = x/4 for sinh{u)

=1/pg in each case and arg(u) = x/2 for cosh(u) = 0. For X > 0, the first term of the
asymplolic expansion vakd 1o largest order in Lpg = §|X] is then,

EMX) ». [ 48 expil- 2uXP2 + B + 2K -5X
y (X) Mx|3/2exp|{3 X +4’+Kd ]

(24a)

For X < 0, the directions of steepest descent are given by arg(u) = iw2for  sinh(u)
=1/pg and arg{u) = 0 and x for cnsh{u) = 0. The solution is given by,

M(y) o 1: [.20xi3/2 - &i .
EMX) ~ [ b ZuxP2 - o , +2K([-8X]
(24b)

Here we have replaced the asymptolic part for the fast wave due to the saddie points of
cosh{u) = 0 by the McDonald function, but it must be borne in mind that equation (23) is

11



not valid near X = 0. Equation (24) ke equation (17) is in particular not singuiar at X = 0 as
in the MHD case. For X > 0 there is an additional term with the SQEW wavenumber which
propagates on the low density side of the ARL as expected. This wave 15 backward
propagating since it propagates toward X = 0 when its energy propagates toward X = +e,
For X < 0, the solution consists of an evanescent SQEW and the fast wave represented by
the McDonald function. As in the case of ideal MHD, the fast wave Is described by the
McDonald function of a negative argument for X > 0 and a positive argument for X < 0.
Analytic continuation for X > 0 therefore produces the ig-Bessel function required to
describe a fast wave launched by the antenna. Solution (24) therefore represents the
case of SQEW excitation by FWRMC. We now demonstrate that energy is conserved.

Direct substitution of equation (24) into equation (14) proves that it satisties the ditferential
equation to highest order, A4 irrespective of the coefficie i of the exponential term in
equation (24). Solution (24) also satisfies equation (14) to A3 with the above coefficient
provided we ignore the equilibrium gradient term 0., the right hand side of equation (14)
as previously assumed. It is also easy to check that if we substitute this coefficient for the
SQEW into equation 5, we do not obtain equation 20. if on the other hand, we retain the
equilibrium gradient term and use the form of w(p) given in equation (17), then one can
only obtain an asymptolic expansion by assuming that kz = kg = KA. If in addition AX3/2
>> 1 nearx =0 (X = a) then D = 1 and equation (23) becomes,

V(u) = -i [sgn(X) sinh(u) - PBZSinha[u]B + iP%Sinhz[u]]

2MX112
(25)
in this case the asymptotic expansion for X > 0 is given by,
EMX) =, [—35_ exp{i[-luxﬁﬂ + ll] + K} - 2Kq[-5X]
AX |3/2 3 4 2
(26)

Since X = (kz2 - ka2 - 212A2)ka2 << 1 we may write exp(X) = 1 + (kz2 - ka? - 2y2A2)/k32 ~
(kz2 - 212A2)ka2 ~ kz2/kz2. We therefore have exp(X/2) = kz/ka. From equation (26) the
ratio of SQEW to fast wave amplitude therefore becomes,

Eyo(SQEW) _ x Yk
E,o(fast) Alk? - kg)m '
(27)

and substitution into equation (5) is equal to equation (20) in the limit where A = ky. Infact
it is possible to evaluate the coefficient of the SQEW exponential term in equation (24)
assuming D = a+1- X. Substitution of Ey =¥(X)expi(-2AX|3/2/3 + w4) directly into
equation (14) yields a simple expression for ¥ after setting the coeflicient of A3 to zero.
The amplitude ¥ is only determined to within a multiplying factor by this technique but by
comparison with equation (27) we note that,

¥(X)=, [ 48 g ky

AX372 ka(X) A
(28)
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satisfies energy conservation. Equation (28) indicates that the amplitude of the SQEW
adjusts itself at each value of X 1o keep the power flux of equation (5) equal 10 the value of
equation (20). This agrees with the conclusions of Hasegawa and Chen (1975).

This concludes the discussion of SOEW excitation by FWRMC. We have demonstrated
the important resul that the energy lost by the fast wave is transported away from the ARL
by the SQEW. Energy conservation however requires the equilibrium gradient term in
equation (14). The FWRMC solution was obtained in analogy with the ideal MHD case of
resonant absorption.

4b DIRECT EXCITATION OF THE SHEAR ALFVEN WAVE

A second solution 1o equation (14) can be obtained directly from equation (17). Firstly
however we consider an approximate solution to equation (14) valid in the Emit where
Lpg37/3 >> 1 or §3 >> A2, Equation (17) now simplifies to the following integral
representation,

EylX)= L f dp exp{Lw(p))
1pB C

(29)

*vhere w(p) is defined in equation (18). it is easy to show that the conesponding form of
equation (14) in this approximation is given by,

R

The first operator in aquation (30) describes the fast wave of a homogeneous plasma.
There is no resonant absorption in this model because the fast wave solution is not
singular nor is there any mode conversion because the fourth order differential equation
has separated into two decoupled second order differential equations. The second
operator is the differential equation for the Airy function and describes a SQEW which
propagates independently of the fast wave. Its solution is given by,

Ey = Ai{-x”’(x + i;)} N

where Al is the Airy function. The Ai - Airy function is chosen by requiring that the SQEW
fields remain bounded as X —» —w. This expression describes a standing SQEW which
originates in the plasma boundary and propagates toward the Alfven resonance layer at X
= 0 where it is reflected. i is clear that this solution is a8 WKB-like approximation for a near
homogeneous plasma with the imponrtant difference expected from the dispersion
relation of equation (4d) that the SQEW undergoes cut-off at the ARL. This follows
because for kz < ka, kx becomes imaginary. The SQEW must therefore form a standing
wave on the ' '~ density side of the ARL after being excited directly by the antenna.
Solution of equation (30) by Green's functions for the geometry of Fig. 1b confirms this
remark. In addition, besides the usual mechanism of SQEW excitation by z-directed
current elements, the solution obtained indicates that x-directed ('radial feeders’) of the
am‘e’nna couple to the wave provided the antenna feeds are located in the density
gradient.



As in the previous section, solution of equation (3C) by the method of the generaised
Laplace transform reveals the contour integral required 10 solve equation (17). A contour
imegral representation of the Ai-Airy function is shown in Fig. 4a (Bleistein and
Handelsmann, 1975b) for the integral of equation (29). For X > 0 the contours C4 and C2
have 10 be chosen and for X < 0 the contour C3 has to be chosen in order 10 generate the
Al-Airy function. The integrands in equations (17) and (29) vanish at |p] — = along these
contours in the complex p-plane provided they approach infinity inside the sectors arg(p)
€ [-x/6,w6], [n/2,5x/6] or [7x/6,3/2). The corresponding level curves are shown in Fig. 5.
From Cauchy’s theorem, either C1UC2 or C3 can be distorted onto the imaginary p axis 1o
obtain the following well known integral representaion (Abramowitz and Stegun, 1970a),

13 273412 [
Ai{-x”’(x + & } =2 X+ d cos{l.{t sgn(X + &) - t3/3]}
12 Tt 0 12

(32)

The analogous contours for equation (17) are shown in Fig. 4b. These contours are the
same except for the branch cuts arising from the branch point singularities at p = pg in
equation (17). An integral representation for equation (17) can also be obtained in a similar
manner 1o that of equation (32) by evaluating the integral along the imaginary p-axis,

00

EX)=2| dp COS{L[P sgn(X) - P3/3]}

Vp2+pf

Not surprisingly, Ey in this case is a cross between the McDonald function of a positive
argument and the Ai-Airy function of equation (32) (Abramowitz and Stegun, 1970a,
1970b). Once again however there is no singularity at X = 0. R is important to note that the
McDonald function has a positive argume. it for both X > 0 and X < 0.

0 (33)

Unlike the fast wave function in equation (23), the fast wave solution here decreases on
both sides of the ARL and is not suitable for representing a fast wave excited by an
external antenna. Equation (33) is therefore a second linearly independent solution fo
equation (14).

in Fig. 4b the saddle points of the integrand of equation (17) are given by p2 = -1 and the
asymptotic form of the McDonald function is obtained by evaluating the loop integral
around the branch cut. The asymptofic solution for X > 0 is given by,

EPCX) = - / iﬂ_ sinf2HX3/2 + ) - 2Kf8X]

(34a)
This solution is very similar 1o equation (31) and has a similar interpretation. The sine

function represents a standing SQEW as mentioned above. The main difference is the
additional fast we. . .arm which we have represented by the McDonald function although
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the solution is again asymptotic and not valid near X = 0. This equation should be
compared 10 equation (24a) describing a SQEW excited by FWRMC. From equation (34a)
we see that the ampiitude of the wave is determined by the boundary conditions satisfied
by the SQEW wavefields at the antenna because the McDonald function is exponentially
small far from and on either side of the ARL at X = 0. This is important because in the
presence of reasonable damping we may neglect the effect of the equiibrium gradient
term in equation (14) on the amplitude term of the SQEW in equation (34a). In the
absence of damping however, the same correction (equation 28) to the amplitude of
equation (242) as a resul of the equilibrium gradient term is expected 10 apply to equation
(34a) because equations (24a) and (34a) both satisty equation (14). As we shall Soon see,
for the conditions of a typical laboratory plasma, the SQEW term in equation (34a)
dominates over the McDonalkl fast wave function. For X < 0 the saddie pointis atp = -1 and
the solution is given by,

EP(X) = \/—EPE expl- 2xP/2 - T - 2K 8]

(34b)

Equation (34b) describes an evanescent SQEW for X < 0 as expected. We conclude that
equations (34) represent a SQEW mode excited direclly by the antenna.

5 ANTENNA COUPLING RESULTS

We have obtained two solutions to equation (14). Each solution represems an excited
SQEW. Solution (24) which corresponds 1o the MHD limit case of resonant absorption
describes a SQEW excited by FWRMC. Solution (34) corresponding to the WKB or a
homogeneous plasma fimit describes a SQEW excited directly by the antenna. Far from
the ARL this wave propagates independently of the fast wave.

it is relatively straightforward to use the asymptotic solutions (24) and (34) to equation (14)
fo cakulate the total wavefield excited by the antenna of equation (3) for the situation
depicted in Fig. 1b. The solutions in the SOL region consist of equations (4a) and (4b)
plus two refliected waves from the interface at x = 0 each with an unknown constant
multiplying factor. There are also two unknown constants mulliplying the solutions (24)
and (34) for x > 0. These four unknown constants are determined by four boundary
conditions satisfied by Ey at the x = 0 interface. The boundary conditions which are
derivable from equation (14) are that Ey and ils first three derivatives are continuous
across the x = 0 interface.

A sample wavefieid is shown in Fig. 6 for conditions typical of a medium sized tokamak.
This calcutation is for ka = 1.0, kz = 2.0, ky = 20 radians per metre, A = 0.05 m and for

modest damping where = (1 + 0.05i) x 103, The directly excited SOEW can be clearly
seen near the antenna to the left and the asymplolic remainder of the mode converted
SQEW fo the right near the ARL. The equilibrium gradient term has been included in
these calculations so that for the case of high damping the total power radiated by the
antenna is equal to the sum of the direct SQEW and the mode converted SQEW. In the
case of low damping, the SQEW propagating to the left of the antenna carries all the
antenna radiated power.

Fig. 7 shows the ratio of the power coupled by the antenna to the SQEW to that of the fast
wave for the same conditions of Fig. 6 but as a function of various fransverse
wavenumbers, ky. These results are plotted as points. The increase of this ratio with ky is
due to the decrease of the power coupled to the mode converted SQEW with increasing
ky as a result of the fast wave cut-off. The lower mode numbers ky < 10 radians per metre
are in fact typical of AWH. This reaffirms the conclusion that low non-zero pokidal mode
numbers (especially m = 1) are best for FWRMC. For localised antennas, the high ky
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cannot be ignored and if desired can be preferentially excited.

For this case of modest damping where the directly excited SQEW does not interfere with
itsell after reflection from the ARL and where the mode converted SQEW does not
interfere with itself after reflection from the boundary, the above ratio cught 10 be simply
given by that of the direct SQEW power as calculated for a homogeneous plasma from
equations (4b) and 5 to the power calculated for the ideal MHD fast wave from equation 20
and the geometry of Fig 1b. For the case of Fig. 1b, the ideal MHD fast wavefield is given
by,

E (x) = ~i@HokzAJo:exp(-Ab) Kol(x-0AJA]
w k [2- k3] Q

(35)
where,
Q =[KdaaA) - KiaaA)) - in [IdadA) + (oA
andx = - b is the location of the anienna in Fig. 1b. The power coupled into the mode

converted SQEW is then given by substituting the amplitude of equation 35 into
equation 20. The final result is,

Pp _ Ak2[i2 - k] JQF expi2bA)
Pu 21 ks k>
where Pp and Py are the powers coupled respeclively to the directly excited SQEW and
the SQEW after mode conversion. This ratio has been plotied over the points in Fig. 7.

We conclude that the simple analytical result of equation 36 provides a good
approximation in the modest damping imit.

(36)

Although the model presented in Fig. 1b (or the case of a continuously linear variation of
the density at the antenna) is probably the most realistic SOL mode! for a one dimensional
plasma, it is important 10 examine the nature of the wavefiekds excited by the same sheet
antenna for other commonly used models of the SOL. We now consider the cases where
the SOL is modelled by a low density plasma and by a vacuum region. We wish 1o
conclude whether the antenna excitation efficiencies of the directly excited and the mode
converted SQEWs predicted by these models are in agreement. The boundary
conditions assumed are that Ey, Ez, by, by are continuous across a plasma-plasma or a
plasma-vacuum interlace for the case of finite electron mass. We also assume for the
moment that the damping is sufficiently large that the SQEW is damped between the
boundary and the ARL.

For the case of an infinite homogeneous plasma (equations 42) and A2 >> ka2, the fast
wave is a cut-off mode. For a low density plasma or vacuum region however, it is easily
verified that the fast wave can propagate with kx2 = -A2. This mode is referred to as the
surface wave (SW) and is discussed in detail by Cross (1988a) for a slab plasma and by
Cross (1988a) and Ballico and Cross (1989) for a cylindricat plasma. The effects of finite
electron mass have been discussed by Cross and Miljak (1993). For a vacuum boundary,
the surface wave satisfies the dispersion relation, 2kz2 = ka2. and an eigenmode
resonance can be expected for antennas which possess this kz in their paraliel
wavenumber spectrum. For kz >> ka in the SOL there is fittle difference between the ~t-
off tast wave and the SW solutions and for 2kz2 = ka2 the SQEW is evanescent
everywhere in the plasma. Consequently if mode conversion is possibie within the plasma
we do not expect the SOL model o make a great deal of difference.
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it can aiso be shown that for A >> kz, ka and regardiess of which modei is chosen, the ratio
of direct SQEW fto fast wave amplitude in the plasma is always given by -IA/kg where kg is

given by equation (4d). The direct SQEW is therefore not strongly affected by the vacuum
boundary in this model.

¥ a realistic damping is included in these calculations, the SQEW excited or reflected at the
ARL undergoes interference with itselt after reflection at the plasma vacuum interface and
Is observed to form high Q resonances (Ross, Chen and Mahajan, 1982; Donnelly and
Cramer, 1986; Li, Ross and Mahajan 1989). In the caiculations relevant to Fig. 1 however,
the SQEW cannot undergo reflection because there is neither a vacuum bouncary,
nmalicarlenmmrammmwall Such resonances have never been observed

and it may be that in a real plasma either the damping is higher than
Matmmmsomnmmmmmwmmmwm

in the case of a cyfindrical plasma, the geomeiry acts to increase the amplitude of the SW
inside the plasma so that the resulls of this paper underestimate the antenna
efficiency for the mode converted shear wave. A realistic treatment should also include
the effects of finite frequency. We may conclude from the present results at modest
damping however that the homogeneous plasma mode! may be used at finite frequency
to estimate the power coupled to the directly excited shear wave, whilst a simple finite
frequency MHD code for the same antenna can be used {o calculate the antenna coupliing
efficiency to the shear wave excited by FWRMC.

6 DISCUSSION

In this paper, we have established the relationship between the directly excited shear
Aliven wave of a homogeneous plasma and that of a one dimensionally inhomogeneous
plasma. In parlicular we now have a plausible theory of direct shear Alfven wave
propagation in laboratory plasmas and a primitive comparison between this process and
ghear Alfven wave excitation by fast wave resonant mode conversion.

Although the profiles shown in Fig. 6 indicate that the directly excited wave and the mode
converied wave have a similar structure, it must be borne in mind that for a real anlenna,
the appearance of the two waves would be quite differcnt. Summation of the wavevector
components fcr the direct SQEW leads 1o a localised structure which "images” the form of
the antenna along the fieid kines intersecting the antenna. The mode converted wave on
the other hand will be influenced by the dispersion of the fast wave. The directly excited
SQEW is therefore similar 10 that of an infinite homogeneous piasma. This also shows that
the resonance cone predicted by cokl plasma theory with finite electron mass and verified
experimentally by Ono (1979) and the guided beams of Borg ef. al. (1985,1987) are as
expecied for an inhomogeneous plasma.

Work has only just begun to investigate the applications of slow waves to fusion plasmas.
Ono (1993) has reviewed some experimental studies of slow waves and has suggested
using the directly excited SQEW (CES ICW) to remove helium ash from the plasma
periphery by seleclive edge healing. Recent experimental results also suggest that
Allven waves may be employed for efficient plasma formation in a stellarator (Lysojvan e.
al. 1992,1993) where different couplers are required for plasma breakdown and high
density formation. These applications rely on a good understanding of the properties of
the shear Alfven wave and it excitation mechanisms. The shear Aliven wave may also
influence transport given the large RF density perturbation predicted from equation (6).
During Altven wave heating experiments with excited powers in the range of 100 kW and
Wi = 0.2, large RF edge density perturbations have indeed been observed with
amplitudes comparable to the quiescent edge density (Borg of. al. 1993).
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FIGURE CAPTIONS

Figure 1.

Figure. 2

Figure 5.

Figure 7.

Siab geometries for a) the infinite homogeneous plasma and b) the knear
density gradient with a uniform plesma scrape-off layer.

Contours in the complex u-plane for,

a) the representation of the McDonald function in equation (22).

b) the solution of equations (23) and (25) for X > 0.

c) the solution of equations (23) and (25) for X < 0.

The sacidie-points are marked with crosses and the shaded regions
meunmmevalaysabmmch' the inversion integral has 10 be
pe X

The level curves of the real part of V(u) in equation (23). The symbois V and
H refe, to valleys and hills respeciively. The saddie points occur where V(u)
has a stationary point, V'(u) = 0. These are marked with Crossés.
aForX>0

b)ForX<0

Contours in the compiex p-plane for,

a) the representation of the Ai-Airy function in equation (29).

b) the solution of equations (17) for X > 0 using the corours Cq1 U C2 and X
< 0 using the contour Ca.

The level curves of the real pant of w(p) in equation (18). The symbols V and
H refer to valleys and hills respectively. The saddie points occur where V(u)
has a stationary point, V'(u) = 0. These are marked with crosses.
a)ForX>0

b)ForX<0

A representative piot of the Ey wavefieid excited by the antenna with ka =
1.0, kz = 2.0, ky = 20 radians per metre, A = 0.05 m and modest damping

where v = (1 + 0.05i) x 10-3.The geometry is that of Fig. 1b, the antenna is
located at x = -b = -.027 m and the Aliven resonance layeral x = .15 m.

The unbroken curve is the ratio of the power coupled to the directly excited
SQEW (Pp) to that of the SQEW excited by FWRMC (Py4) as calculated

from equation (36) for y= (1 + 0.05i) x 10-3. The poinis are the computed
ratio of the power coupled by the antenna to the SQEW to that coupled fo
the fast .ave for the same value of y= (1 + 0.05) x 103,
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