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One of the interesting problems of the black hole physics is a microscopic explanation 

as the states counting of the Bekenstein-Hawking entropy of the black hole which is in 

four dimensions proportional to the area of the horizon. In quantum field theory one can 

define the "geometric entropy™associated with a pure state and a geometrical region by 

considering the pure state density matrix, tracing over the field variables inside the region 

to form the density matrix which describes the state of the field outside the region [i-3]. 

Taking this region to be a sphere in the flat space-time, the recent numerical study [3] 

shows that the corresponding entropy scales as the surface area of the sphere. Thus, no 

gravity is present but the entropy thus defined behaves typically for the black hole. In [3] 

it has also been observed that this quantity is quadi atically divergent when the ultraviolet 

cutoff (the size of the lattice), t —> 0. In two dimensions [3,5-8], the geometric entropy is 

logarithmically divergent 5 = - log j , where £ is the size of a box to eliminate infrared 

problems. 

The somewhat related definition of the black hole entropy by tracing states outside 

the horizon has been suggested in [4]. 

It has been argued in [5] that quantum mechanical geometric entropy is the first 

quantum correction to the thermodynamical entropy. In flat space, the appropriately 

defined geometric entropy of a free field is just the quantum correction to the Bekenstein-

Hawking entropy of Rindler space [5]. In the case of the black hole, the fields propagating 

in the region just outside the horizon give the main contribution to the entropy [1]. For 

very massive black holes this region is approximated as flat Rindler space. Therefore, one 

can expect that for the black hole the corresponding quantum correction to the entropy 

is essentially the same as for Rindler space. 

In [8] it has been shown that all these results can be obtained by using the known 

finite-temperature expression for the renormalized < 7 j > in the Rindler space. 

The main goal of this paper is to calculate the quantum correction to the Rindler 

and black hole entropy by means of the path integral approach of Gibbons and Hawking 

[9|. We consider at first the two-dimensional case and extend the results obtained to four 

dimensions. The one-loop effective action for matter in D=2 and its divergent part in 

D=4 are well known and expressed in terms of geometrical invariants constructed from 
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curvature. For general finite temperature different from the Hawking one there appears 

the well known conical singularity in the classical solution of gravitational equations. 

Therefore, we are faced with the problem of describing the geometrical invariants for 

manifolds with conical singularities. Fortunately, for the cases under consideration this 

can be performed. The extension of gravitational action to the conical geometries can 

also be found in [10]. 

Let us consider the canonical ensemble for the system of gravitational field (дц„) and 

matter (<f) under temperature T = 1/2JT/3. Then, the partition function of the system is 

given as the Euclidean functional integral 

Z(0) = jlV^Vil^txpl-n^g^)) (1) 

where the integration is taken over all fields (<,P,<7„„) which arc real in the Euclidean sector 

and periodical with respect to imaginary time coordinate r with period 2x0. The action 

integral in (1) is a sum of pure gravitational action and action of matter fields: 

I(4>,9) = I,r(g) + Im„,(9.9) (2) 

In the stationary phase approximation, neglecting contribution of thermal gravitons, one 

quantizes only matter fields considering metric as classical. Then, in the one-loop approx

imation one obtains: 

Z(0) = exp[-l3rlg,3)-1-\»detA9] (3) 

where the leading contribution is given by the metric which is a classical solution and 

periodical with period 2ж0 with respect to imaginary time т. For arbitrary 0 this metric 

is known to have conical singularity ' . Therefore, in general, the integration in (1) must 

include the metrics with conical singularities as well [II]. As it is well known, there exists 

special Hawking inverse temperature 0ц for which the conical singularity disappears. It 

seems to be reasonable to calculate thermodynamical quantities as energy and entropy 

for arbitrary 0 and then take the limit 0 —> 0ц. 

With respect to partition function (1) one can define the average of the energy: 

<E>=-±-dp\nZ(0) (4) 
1 In the strict sense, this metric is no more the solution of the Einstein equations. Nevertheless, it still 

gives the main contribution to the functional integral (1) in the class of metrics with conical singularity. 
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ami entropy 

>• = ( - . « . , + I ) In X(.i) (5) 

Hence, for the Hawking temperature we have 

SHII =(-*>.< + l ) l n Z M ) | . , = . , „ (6 ) 

As it follows from (3 ) , in the stationary phase approximation Z[ii) can he represented by 

the effective action 

In/(.У) = -l7. „{./). 

«?.//(.'/) = l,A'i)+G.t/(±). (7) 

where Grf/(&) = 1 |ц< /с /Л , is the one-loop contribution to the effective action due to 

matter fields. Then , from (<>) we obtain 

•Sm = (•«'..- ПбяЫи. , , , (8) 

where Grjf(A) is considered in the hack^ioiind classical metri< with conical singularity. 

Inserting (7) into (8) we obtain that the total entropy 

SHI, = Sft; + >7ш (9) 

is a sunt of classical entropy: 

>•«;; = ( • " > . < - 1 ) / , , ( io ) 

and quantum corrections: 

•^н =( .« ! . -Uf t / /U) (II) 

Using this general formulae, let us consider the case of two dimensional gravity inter

acting with scalar roil formal mai ler: 

' = / " : ; ( ^ y ) V / ' ' J - (12) 

Then , we get that. 

G r / / U > = ; - | | | . М - П ) (13) 

where • = V „ V " is the Laplace operator <l<'line<l with respect to metric with conical 

singularity. 



In two dimensions the description of manifolds with conical singularity is essentially 

simplified. We begin with the consideration of the simplest example of a surface like that 

described by the metric: 

ds2 = dp2 + {~)2p2dT2 (14) 

This space can be considered as an Euclidean variant of 2D Rindler space-time. Assuming 

that т is periodical with period 2ir$, let us consider the new variable ф = /3_1т which has 

period 2гг. Then, (14) reads 

ds2 = dp2 + q V ^ ! , (15) 

where a = (•§-)• It ,s the standard cone with singularity at p = 0. When о = 1 (/J = 0н) 

the conical singularity in (15) disappears. 

Having calculated the scalar curvature /?„„ for the conical metric (15) let us approxi

ma te [12] the cone by a regular surface determined in 3D Euclidean space by the equations: 

dsl=P t"1 ^2+а2рЧф2 (16) 

x = ареояф, у — арътф, г = \/1 - a2yjp2 + a2, and with the metric 

p2 + a2a2 

P2 + «2 

In the limit а —> 0, the metric (16) coincides with the metric of the cone (15). Calculating 

curvature for (16) and taking off the regularization (a -* 0) for the scalar curvature of 

the cone (15) we obtain (see also [13]): 

Rcm = 2-^±8(p). (17) 
Q 

where 6(p) is the delta-function defined with respect to the measure: 

f 6{p)pdp = 1 

This regularization of the cone allows us to use the results obtained for determinants 

of elliptic operators on regular surfaces and then, taking approximation (16), to obtain 

the relevant expressions for the surfaces with conical singularities. 

On general grounds, the one-loop effective action (13) contains the divergent and finite 

parts [14]: 

gcfl(D) = g<nJ(D) + g/m(n), (18) 
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for which, neglecting boundary terms, we have 2 : 

£»/(•) = ̂ / я ^г1о 8 ф* (19) 

6fin{0) = ~ J RO-'R^/gJ'z (20) 

where L is an ultraviolet cut-off. Let us proceed with the conical metric (15). As it follows 

from (17), the Euler number for the cone is the following: 

X = ^T У Я с м / ^ * = ( « - ! ) (21) 

and, consequently, for the divergent part of the effective action we get 

^ / ( n ) = ^ ( a - l ) l o g ( ^ ) s (22) 

In order to calculate the finite part (2D), let us consider the function ip„m which is the 

solution of the equation: 

°A»„ = flc», RCon = 2{a~l)S(p) (23) 

Eq.(23) can be rewritten as follows: 

(,-4(/>3>) + •&£%)+ = A"(a
a~

l) ?(*,*) 

where P(x, x') is the two-dimensional 5-function satisfying the condition 

(24) 

л2тг /+oo 
\ Ц\ S2(x,x')pdp = 1 

Jo Jo Jo Jo 
One can see that (24) is just the equation for the Green function. The solution is well 

known: 

Фссп= Mnp + u», (25) 
a 

where ui is a harmonical function , Ow = 0. Taking into account (23), (25) we obtain the 

following for the finite part (20): 

в,ы(а) = ^ J Па,пФсопу/Я<Рг 

- ( ^ - ^ l n e + i - ( a - l W 0 ) (26) 
12 a 244 



where ш(0) is the value of the function ш at p = 0. One can see that the "finite" part of 

the effective action is really divergent in the low limit of the integration over p. Therefore 

we introduced the regularization: the distance t to the top of the cone. In the limit t —» 0 

(26) is logarithmically divergent. Thus, the complete one-loop effective action on the cone 

takes the form t 

gef}{a) = ^ i o g ( ^ + l ^ l l o g t + ^ l w { 0 ) (27) 

We see that there are two types of divergencies on the cone. The first is the ultraviolet 

divergency related to the cut-off of Feyiv "an,diagrams on the energy L (what is equivalent 

to the introduction of some minimal distance L_1). The other divergency arises when the 

distance to the top of the cone goes to zero. One can expect that in the self-consistent 

renormalization procedure all the distances cannot be smaller than the fixed ultraviolet 

scale L~l. From this point of view, the identification e = i - 1 is fairly natural. Moreover, 

this identification turns out to be necessary when we compare (27) with results obtained 

earlier for determinants on the cone by means of the (-function [5] (see also [15]). Indeed, 

assuming с = L~* in (27) we obtain 

C-(D) = ̂ ( a - - ) l o g - ' (28) 

that coincides with that of obtained in [5]. 

Now we can calculate the corresponding correction to the entropy. Inserting (27) 

into (11) we observe that the second term in (27) doesn't contribute to the entropy (for 

0 = 0H) and 'be first term in (27) leads to 

5S„ = ilog(£)' = I l o 4 (29) 

where we assumed that u>(0) = 0. This coincides with result previously obtained for the 

quantum correction to the entropy of 2D Rindler space-time. 

Some remarks concerning the ultraviolet divergency of entropy (29) are in order. Ac

cording to general recipes of renormalization in the quantum field theory, one must add 

the relevant counter-terms to the "bare" action in order to cancel the divergency. In our 

case one must add the following term to the classical action: 
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rJH^~-•и 

which doesn't affect the classical equations of motion but contributes to the effective 

action: Л&// — s(a ~ ') a n ^ entropy: AS = .". The total entropy occurs to be finite 

but undefined. All this procedure seems to be reasonable. The entropy is determined 

up to an arbitrary constant. The above cancellation of the divergency means only the 

renormalization of this additive constant which does not influence the physics and can 

not be determined from the experiment. 

On the other hand, introducing the ultraviolet cut-off L in statistical description of 

the system we introduce a grain scale l.~'. This means that we define an elementary state 

of the system characterized by the size r = /„"'. The situation looks similar to the one 

that wc have in the classical statistical physics [Hi]. Quasiclassically, one can define the 

number of states in the region of the phase space (». </) as ДГ = м^ку { s K "umber of 

freedoms of the system) where i = (2тгД) is a scale characterizing the elementary state 

of the system. Then entropy 5 = In ЛГ is divergent when the Planck constant ft —t 0 

(i —• 0). Thus, the result (29) can be interpreted as an indication that there must exist a 

fundamental scale which plays the role of ultraviolet regulator and naturally characterizes 

(like the Planck constant h in standard statistical physics) the size of elementary state of 

quantum gravitational system in phase spare (concerning this, see also [17]). 

Let us now consider the 2D black hole with metric written in the Schwarzschild-like 

gauge: 

<t«2 = ф)Ит2 + -4^dx> (30) 
» ( • > • ) 

The metric is supposed to be asymptotically flat: ц(.г) —> 0 if r —> +oo. We assume that 

т in (30) is periodical with period 2ir,tf. Consider the new angle coordinate Ф = т/fl which 

has period 2ir. If one introduces a new radial coordinate p: 

J 0/(.г) 

the metric (30) takes the form 

H.S1 = rPgipW + ,lp' (32) 
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Let the metrical function g(x) have zero of the first order at the point x = хн. In the 

Minkowski space this point is event horizon. Near the horizon we have 5(1) = g'\Xlt(x — X/,) 

for the metric function. For p (31) we obtain 

P=-4r-(*-*k)m ' (33) 

in which it is assumed that the horizon is located at p — 0. For the function g(p) in the 

vicinity of this point we get: 

S(P) * С (34) 
''и 

where /?# = 2/g'Xh. The metric (32) can be rewritten in the form 

ds2 = [(4-)У**г + ''P2} + f{pW (35) 
PH 

where we directly extract the cone part of the metric with singularity at p = 0. The 

function /(/>) = 02g(p) — l-[f~)2p2 near the point p = 0 behaves as f(p) ~ p*. Now 

we may regularize the cone part of the metric (35) as before (16), calculate the scalar 

curvature and then take off the regularization (a —* 0) 3 . At the end, we obtain the 

following result for the curvature: 

R=2(a~l)S{p) + /?„„, a = A (36) 
a pH 

where the lust term is the contribution due to the conical singularity, while the second, 

regular, term takes the form: 

й ^ = 7"5(7,г' (37) 

One can see that Rreg (37) has at p = 0 the finite value determined by the term of the 

4-th order in the expansion of g(p) (or f(p)). 

In order to find one-loop quantum corrections in the background metric (30), (32), we 

have to find the function ф satisfying the equation: 

пф = 2J^Lz3.s(p) + Iircs (38) 
3At this nut stage, the important point is the behavior of the function /(/>) ~ p*. Due to this, the 

cross-terms like 6(p)f(p) and 6(p)f'(p) do not contribute. 
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where the Laplacian • for the metric (32) reads 

D = % + fA + lkdl (39) 

Assuming that ф is independent of ф we get that out of the point p = 0 the general 

solution of (38) is the following 

Ф = \пд + ь[ %, (40) 

where b and Л' > 0 are still arbitrary constants. In the limit p —• 0 the Laplacian (39) 

coincides with the Laplacian for the cone (24). Hence, in order to obtain the ^-singularity 

in the r.h.s. of eq.(38) the ф (40) has to coincide with the corresponding solution for the 

cone, фсоп, in the limit p —> 0: 

Ф -» Фсоп = 2 ( a ~ 1 } l n / > if P - 0 (41) 
ex. 

Due to (34) we get for the leading terms of (40): 

ф = {2-Ь0„)\ир (42) 

The condition (41) gives value of the constant b = 2/0. Finally, the solution of (38) reads: 

ф = lng(p) + \Г -^L= (43) 

or, equivalently, in terms of the coordinate x: 

2 [" dx 
Ф-. 

2 Г dx 
A"9 + JL W) (44) 

It is worth observing that the renormalized energy density of the scalar field in the 

space-time (30), as it follows from (20), is: 

<^>^=^(2д':-а'Ж + \тг) (45) 

For ф(х) (40) this reads 

<«>—£<*-£«-*» <46> 
• 



This expression can be obtained by integrating the conformal anomaly [18]. For Ь = 2//? 

this energy density at the space infinity (x —> oo) 

<TS>^^f <47> 
coincides with the energy density of massless bosons with temperature T = jjg. 

It should be noted that the choice of constant 6 in (40) means the choice of the 

quantum state of the scalar field in the space-time of black hole. Therefore, the fact 

that this constant is related to the temperature /3 of the gravitational system seems to 

be natural: the thermal states of the black hole * and quantum field in the black hole 

space-time are the same. 

On the other hand, we can see that (46) is divergent at the horizon (x = Xh) for general 

/? and becomes regular only if /J = /3# (see also [8]). Thus, the Hawking temperature 

/Зц is distinguished also in the sense that only for this temperature the renormalized 

energy density of the quantum field, being in the thermal equilibrium with the black 

bole, turns out to be finite at the horizon. Really, the infinite energy density means that 

something singular can happen at the horizon when the backreaction is taken into account. 

Therefore, for 0 ф 0н the backreaction must be essential for justifying the semiclassical 

approximation (when we consider (3) instead of the functional integral (1)). 

Before calculating the quantum corrections to the entropy of the 2D black hole, one 

would like to have some concrete description of 2D gravity. The simplest way is to use 

the string-inspired dilaton gravity with the following action [19]: 

/„ = - Jd'z^g[e-',*(-R + HV<tf + Q1)+iV-(e'I*^M*)] (48) 

where the last, boundary, term is added [20] in order to the on-shell action (48) for the flat 

space-time to satisfy the condition: 1дг(д = 1 )\m-,heii = 0. Then, from the field equations 

we obtain 

ds2 = g(x)dT2 + ~dx2, g[x) = 1 - 2me-Qs 

aw 
Ф = -~x (49) 

4This state is fixed when the integration in (1) is performed over the Luelidean msnifolds with the 
cyclic Killing vector dT with period 2*0. 
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The action (48), considered on the solution (10). takes the form [20] 

!,,= J ,1т<1,т[0,(<-г*дтд)] (50) 

Assuming that т is periodical with period 2JT;J. for (50) wc obtain 

/ „ = 2 i r f l e - » a , 9 ] + , c . - - l » - f ( с " 2 *] , , . (51) 

where X), is the point of the horizon. д(хь) = О- and 2/вц = [вгя)х» = Q- However, this 

naive calculation of the action doesn't take into account that for 3 ф 0ц there exists 

a conical singularity at r ~ .r̂ , with contribution (36) to the curvature. This leads to 

additional term in the action: 

•• ' l-^-Ml'-"), . 
I ' l l 

Therefore, the action (48) being considered on the classical metric (49) with S ф jiH 

is as follows: 

/gr = 2*7*[<-*4ffl+*. - 4 < - 2 * L - (52) 

Thus, the /J-depcndent terms, calculable on the horizon, are mutually cancelled in (52) 

and for the classical entropy of the black hole [20.21] we get: 

Scl°" = 1л-[<-2*1,.„ = Sirni (53) 

On the other hand, we obtain Л/ = 2mQ for the mass of the black hole. Hence, the 

entropy (53) can be written as : Srl"" = 2тг/У//Л/. 

Now let us calculate quantum corrections to (Д.1) according to the above considered 

procedure. 

From (36) we obtain that the Enter number for the metric (30), (32), when il ф /in, 

is the sum 

•^jRJTl<l2:=\, + \r,.„ (54) 

where the first term on the r.h.s. of (51) is the contribution due to the conical singularity 

while the second term is a regular contribution. As before, we have that 

\ = < - £ - - ! ) (55) 
i'li 
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To calculate the regular part, yrej7, it is convenient to use metric in the form (30). Then, 

we obtain R,^ = g" for the curvature. Consequently, for the regular term in (54) one 

gets 

X'rtS = т~ I g"dxdT 
47Г J 

в 
= -Ти (56) 

and the total Euler number (54) turns out to be independent of /3: \ = — 1. The divergent 

part of the one-loop effective action (19) is as follows: 

£ „ , ( • ) = - ^ I o g ( - ) 2 (57) 

For the finite part of the effective action (20) we get 

. = ft» + ftw (58) 

вст = ^(^)1а
+™Нр)Ф\Ш<1р (59) 

where (?„,„ is as follows: 

The integrand in (59) is non-zero only at p = 0 where ф = фсо„ and y/g = fljfp. Hence, 

ft,„ coincides with one we had for the cone (22): 

ge0n = - ^ ( a ~ ' ) 2 l n t (60) 

where the regularization, distance t from the horizon (p = 0), was introduced. 

The regular part of (58) 

*«* - 4 8 

does not contain divergencies in the low limit of the integration (the terms like e In e vanish 

in the limit e —* 0). In (61) we use the black hole metric in the form (30). For the concrete 

metric (49) we get that 

- / fl„,i/.<ir (.61) 
' Л . 

I ' Л Т\ = -Ч ]П!>М - * + i М»вА - 2m) 
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and ф(х) (44) takes the form 

^ = ( l - ^ ) l n f f - ^ + ^ l n ( e " A - 2 m ) (62) 

Inserting this into (61), after the calculations we obtain 

Collecting (60), (63) and (57), for the effective action we finally obtain: 

where a = j - . Identifying с = L~*, for the infinite part of the effective action we obtain: 

As one can see, the infinite part does not depend on the concrete form of the- black 

hole solution. Probably, the result (65) is worth checking by means the the alternative 

calculation, for example, with the help of the (-function. For the quantum correction to 

the entropy (53) for fi = fin we obtain: 

„ l . £ 1 , ,e«A-2m. 
^ = 6 l n 7 + l 2 , n < - ^ ^ > . <«> 

The divergent part of (66) coincides with the quantum correction to the entropy in the 

case of the Rindler space-time (29). Obviously, this justifies the approximation of the 

black hole space-time near the horizon by the Rindler space, which was considered earlier 

[1,5-8]. 

In terms of the classical mass M and the Hawking temperature /Зн the total entropy 

(9) can be written as follows: 

SBH = 2*faM + - 4£EL-J^ ] + £ In j (67) 

where we identified Л = S. 

In comparison with the Rindler space, for the black hole case we observe the finite 

correction to entropy (67) which logarithmically depends on the black hole mass M. This 

means, in particular, that the temperature of the system defined as T~l = dmS is no 

IS 



more Тн but possesses some corrections. This can be considered as an indication of that 

the backreaction must be taken into account. Indeed, the classical black hole solution 

does not give the extremum of the semiclassical statistical sum (7). The configuration, 

which is the minimum of the one-loop effective action G,/j, must be considered. Generally, 

this quantum corrected configuration may essentially differ from the classical one [22-24]. 

In any case, such thermodynamical quantities as temperature 0H, mass M and entropy 

must be re-calculated. Unfortunately, in general the quantum corrected field equations 

are not exactly solvable. Recently [25-27], this has benn considered for the RST model 

where the exact solution is known. It should be noted, however, that the backreaction 

may change only the finite part of the entropy while its divergent part, as it follows from 

our consideration, remains unchanged. 

Let us now apply our method to the 4D case. Assume that the gravitational field in 

four dimensions is described by the standard Einstein-Hilbert action: 

/_• = —— / d*xs/gh^ + boundary terms 16ir« J (68) 

where the gravitational constant к has dimensionality of length squared [P\. 

The Rindler space in four dimensions is described by the metric 

ds2 = £<1ф2 + dp2 + dx2 + dy2 (69) 
PH 

which for 0 ф &H can be represented as a direct product of the two-dimensional cone (15) 

on the 2D plane: C2 ® Я2. Applying the regularization procedure (16) to the cone part 

of the metric (69), we obtain that the 4D scalar curvature for (69) in the limit a —» 0 

coincides with the curvature of the 2D cone (17): 

a PH 

We are also interested in the spherically symmetric metric describing the 4D black 

hole 

ds1 = Ргд{р)йф2 + dp1 + r2(p)(de2 + s i n 2 ^ 2 ) (71) 

Near the horizon we have: g{p) = p- and r(p) = rk + -j^-, where r^ is the value of the 

radius, r at the horizon. For $ ф $н there again exists the conical singularity at the 
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horizon (p = 0). The part of the metric (71) in the plane (<t>.p) coincides with the 2D 

metric (32), (35). Regularizing the conical singularity at p — 0 as before we obtain that 

the complete Riemann tensor is a sum of the regular part (which is non-singular in the 

limit a —» 0) and the part coming from the cone: 

R\mi = ' C . *»J + T r j „a>i (72) 

The only non-trivial component of the contribution from the cone in (72) is the following 

(for finite a): 
, _ ,, '(l-n') 
«"«••С {р1-+„2Цр2 + „!„!) У,Л> 

Though the whole consideration can be generalized, we study here only the case when 

the regular part of the metric is Hicci-flat (lir'jf = 0). i.e. it is the solution of the Einstein 

equation in vacuum. Then, we obtain from (72). (73) that the scalar curvature for the 

metric (71) in the limit a —* 0 is also given by expression (70). 

The divergent part of the one-loop effective action for scalar matter described by the 

action 

/m.< = ^y'(V^N/srf4.r 

in four dimensions (neglecting the boundary terms) lakes the form (sec, for example, 

[28]): 

Sin/ = 5(1о8</<Ш)л. 

= -гГгЧЫ* + UiL* + B« log(-)2) (74) 

where L is the ultraviolet cut-off. The coellicieiils lik in (71) take the form (we omit the 

overall irrelevant coefficients dependent on the type of matter): 

Bo = j / VS*** 

is 



Considering (74) on the Rindler background (69). and using (70) we obtain 

ft"' = tbia~i)AhLl ~ 6^VL'' + {°~ ' J ' / W ' K c J l o g - (76) 

where Ah = J dxdy is the area of the Rindler horizon; V is the volume of the space (69) 

if /? = AH- As one can see, B4 is quadratic in curvature. For finite a it gives the last term 

in the effective action (76) with the function T(a.a) having the form 

T(a,a).= ^T(a) (77) 

where T(a) is a nonsingular function which takes finite value a t a = I. Thus, we obtain 

an additional (to the ultraviolet) divergency when we take limit a —* 0. Fortunately, the 

last term in (76) is proportional to (o — l)2 and does not contribute to the energy (4) or 

entropy (6) calculable at 0 = /?a-

From (76) we get the quantum correction to the entropy: 

*•" = &? ™ 
where the ultraviolet distance t = L~l was introduced. 

The result (78) is exactly the one obtained for the geometrical entropy [1,3]. One can 

give this the following interpretation. Though we start from the flat space-time, consider

ing system at the finite temperature /3, we obtain the statistical system in the effective 4D 

Euclidean space with the conical singularity. Therefore, the induced gravitational effects 

of the curvature play the role leading to the non-trivial effective action (74) and entropy 

(78). 

Notice that only the contribution coming from the scalar curvature Д'4 ' in the first 

power in effective action (74) leads to the quantum correction to the entropy of the Rindler 

space. This term takes the same form as the classical ("bare") gravitational action (68) 

but with the Z/2-divergent coefficient. The two-dimensional example learns us that an 

extra ultraviolet divergencies (in the limit t —> 0) can come from the "finite" non-local 

terms in the complete effective action which are omitted in (74). These terms are not 

exactly known in four dimensions. By means of methods different from ours, there recently 

appeared results on the heat kernel asymptotic expansion on the curved cone [29]. They 

allows one to obtain all divergencies due to the cone singularity: which could come both 
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from the infinite and finite parts of the complete effective action. Comparing our result 

for the Rindler space (76) with that of [29] we observe that divergency coming from 

the finite part is proportional to (a — 1)2ZA Renormalizing the infinities of (74), (76) we 

introduce the same counter-terms as for the manifolds without conical singularities. Thus, 

to renormalize the ^'-divergency of (74), (76) it is enough to renormalize the gravitational 

constant [30]: 

к"1 = «J1 + L2 (79) 

On the other hand, we must add new (absent in the regular case) local counter-terms 

(cf. [31]), determined on the horizon surface, in order to absorb the additional diver

gencies coming from the finite terms in the effective action. However, this divergency is 

proportional to (a — l)2 and hence does not contribute to the entropy. Therefore, the 

renormalization of the gravitational constant (79) is enough to renormalize the ultraviolet 

divergency of the quantum correction to the entropy (78). 

In the recent interesting preprint Susskind and Uglum [32] have also calculated the 

quantum correction to the entropy of the Rindler space which they consider as a infinite 

mass limit of the black hole space-time. In particular, it has also been observed that quan

tum correction to the entropy is equivalent to the quantum correction to the gravitational 

constant (for the discussion of this point, see also in [33]). 

The metric (69) for а ф 1 is similar to the metric of a cosmic string. In the cosmic 

string interpretation of the metric (69) our procedure of regularizing the conical singularity 

has the natural physical justification. It means that we consider the string with the finite 

radius "a" of the kernel. This description is more realistic while the infinitely thin cosmic 

string (in the limit a —> 0) is an idealization. Therefore, we could consider the parameter 

"a" in our above consideration as a "phenomenological" one which is small but finite. This 

assumption allows us to avoid an additional divergency in the effective action related with 

the limit a —> 0. 

Consider now the black hole described by the Schwarzschild solution. The metric takes 

the form (71). Near the horizon (p = 0) we have: 

4 / 
9(Р) = Ж~Ш' <8°) 
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where (>н = 4ЛГ, M is the mass of the black hole. 

The classical Bekenstein-Hawking entropy of the black hole is well known: 

SM? = J (81) 

where Ah. = 4irrjj is the area of the horizon sphere; for the Schwarzschild solution one has: 

rh = 2M. 

Calculating the quantum correction to this entropy we observe the new point in com

parison with the Rindler case. Though the regular part of the metric is Ricci-flat, the 

Riemann tensor й*е" ap is non-zero. From (72) we obtain that the term 

Я?е3 ajS^eon »" (82 ) 

contributes non-trivially to B< and to the effective action. The conical Riemann tensor 

in (82) is proportional to (a — 1) and hence (82) leads to an additional correction to the 

entropy of the black hole. 

In the limit a —• 0, the conical Riemann tensor й"0"п 0/J is proportional to the j-function 

£(/>). Hence, only the value of the regular Riemann tensor at the horizon is essential for 

calculating the integral over (82). From (71) and (80) we obtain: 

C * > = 0) = ^ (83) 

Substituting (72), (73) and (83) into the expression for B4 (75) in the limit a —» 0 we 

have: 

where flj is the coefficient Bt (75) calculated for the Schwarzschild solution if /9 = fin-

The infinite part of the one-loop effective action (74) then takes the form: 

+ ( ^ ) ! T ( a ) l o g £ _ T ^ f l o l o g £ (85) 

Finally, for the quantum correction to the entropy we get 
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where the ultraviolet distance с = /„"' was introduced. The entropy (86) is proportional 

to the horizon area as before. However, in comparison with the Rindler case we observe 

additional, logarithmically divergent, term in (SO) which is dependent on the mass of the 

black hole. 

Considering the entropy per the horizon area in the limit of the infinite black hole 

mass (Л/ —» oo), we obtain the entropy for the Rindler space. This probably could justify 

the approximation of the infinite mass black hole by the-Rindler space [1,32]. However, 

since the horizon area for the Sehwarzschild solution is .-1/, = 16зг2Л/2, we observe that 

the logaritmically divergent term in the complete entropy 

is independent of the mass. It takes the form which is very similar to that we had in the 

two-dimensional case (see (67)). The reason of different results for the Rindler space and 

the black hole lies obviously in the different topology of these manifolds. The topological 

numbers (like the Euler one) vanish for the (lal Riudler space while they are non-zero for 

the black hole and independent of the black hole mass. 

To renormalize the /,? and log L divergencies, in (85) we must add to the bare gravita

tional action not only the Einstein-like term hut also the term к\ I3.t quadratic in curvature 

with new coupling constant К]. The comparison with the exact results [29] shows that 

divergencies (both L2 and log/ , ) , additional to (Sf>) and coming from the "finite" terms 

in the complete effective action, are again proportional to (o — I)2 and they do not con

tribute to the entropy. Thus, we again obtain that the infinities of entropy (86) (but not of 

effective action!) are rcnormalized by the renoriualization of only the coupling constants 

к and Kt. 

Finally, several remarks are in order of discussion. Л.ч it has been noted in [32], 

only the quantum corrections but not the classical entropy have a clear interpretation 

in terms of the counting the states. To overcome this, wc may start from a zero bare 

gravitational action, assuming that the whole gravitational dynamics is determined by an 

induced matter effective action. Then, roughly speaking, the whole entropy of the black 

hole is a quantum correction. An interesting example of tin- induced gravity is given by 
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the superstring theory (see also [34]) which is probably free from ultraviolet divergencies. 

In the string theory, the space-time metric is not a primary object. It appears in the 

low-energy approximation as a "quantum condensate" of string excitations at energies 

E « (ar')~2 (see, for example [35]). Therefore, considering the low-energy effective 

action of the string, we obtain that already the "classical" entropy can be identified 

with the logarithm of appropriately counted number of such string states. However, this 

speculation needs further detailed investigation. 

I am very grateful to Dima Fursaev for numerous remarks and criticism. I also would 

like to thank Leo Avdeev, Evgenue Donets and Misha Kalmykov for very useful discus

sions. This work was supported in part by the grant RFLOOO of the International Science 
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