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One of the interesting problems of the black hole physics is a microscopic explanation
as the states counting of the Bekenstein-Hawking entropy of the black hole which is in
four dimensions proportional to the area of the horizon. In quantum field theory one can
define the "geometric entropy”associated with a pure state and a geometrical region by
considering the pure state density matrix, tracing over the field variables inside the region
to form the density matrix which describes the state of the field outside the region [i-3].
Taking this region to be a sphere in the flat space-time, the recent numerical study [3)
shows that the corresponding entropy scales as the surface area of the sphere. Thus, no
gravity is present but the entropy thus defined behaves typically for the black hole. In [3)
it has also been observed that this quantity is quadratically divergent when the ultraviolet
cutofl (the size of the lattice), ¢ — 0. In two dimensions {3,5-8], the geometric entropy is
logarithmically divergent S = 1 log %, where £ is the size of a box to eliminate infrared
problems.

The somewhat related definition of the black hole entropy by tracing states outside
the horizon has been suggested in [4].

It has been argued in [5] that quantumn mechanical geometric entropy is the first
guantum cosrection to the thermodynamical entropy. In flat space, the appropriately
defined geometric entropy of a free field is just the quantum correction to the Bekenstein-
Hawking entropy of Rindler space [5]. In the case of the black hole, the fields propagating
in the region just outside the horizon give the main contribution to the entropy {1}. For
very massive black holes this region is approximated as flat Rindler space. Therefore, one
can expect that for the black hole the corresponding quantum correction to the entropy
is essentially the same as for Rindler space.

In [8] it has been shown that all these results can be obtained by using the known
finite-temperature expression for the renormalized < 7§ > in the Rindler space.

The main goal of this paper is to calculate the quantum correction to the Rindler
and black hole entropy by means of the path integral approach .of Gibbons and Hawking
[9]. We consider at first the two-dimensional case and extend the results obtained to four
dimensions. The one-loop eflective action for matter in D=2 and its divergent part in

D=4 are well known and expressed in terms of geometrical invariants constructed from



curvature. For general finite temperature different from the Hawking one there appears
the well known conical singularity in the classical solution of gravitational equations.
Therefore, we are faced with the problem of describing the geometrical invariants for
manifolds with conical singularities. Fortunately, for the cases under consideration this
can be performed. The extension of gravitational action to the conical geometries can

also be found in [10}.

Let us consider the canonical ensemble for the system of gravitational field (g,,) and
matter () under temperature T' = 1/2r3. Then. the partition function of the system is

given as the Euclidean functional integral
2(9) = [PADowlerrl= (o901 m
where the integration is taken over all fields (¢, g, ) which are real in the Euclidean sector

and periodical with respect to imaginary time coordinate t with period 2r3. The action

integral in (1) is a sum of pure gravitational action and action of matter fields:

l(‘pyg) = yr(y) + lmq(((r" y) (2)

In the stationary phase approxirhation. neglecting contribution of thermal gravitons, one
quantizes only matter fields considering metric as classical. Then, in the one-loop approx-
imation one obtains:

2(8) = expl=l(5,9) ~ 5 In et _ 3)
where the leading contribution is given by the metric which is a classical solution and
periodical with period 273 with respect to imaginary tire 7. For arbitrary g this metric
is known to have conical singularity ! . Therefore, in general, the integration in (1) must
include the metrics with conical singularities as well [11]. As it is well known, there exists
special Hawking inverse temperature 3y for which the conical singularity disappears. It
seems to be reasonable to calculate thermodynamical quantities as energy and entropy
for arbitrary 8 and then take the limit 3 — fy.

With respect to partition function (1) one can define the average of the energy:

<E>= —il;t)gln 2(8) ()

'In the strict sense, this metric is no more the solution of the Einstein equations. Nevertheless, it still
gives the main contribution to the functional integral (1) in the class of metrics with conical singularity.



and entropy

S= (=34, 4 1) InZ(3) (5)
Hence, for the Hawking temperature we have
Spn = (=30 + D In Z{I)am, (6)

As it follows from (3), in the stationary phase approximation Z(3) can be represented by

the effective action

InZ(3) = -G ;4ln).

Gerplad = 1ola) + G (D). (M)

where G, ;1 (A) = LludetA, is the one-loop contribution to the effective action due to
11 2 ] I

matter ficlds. Then, from (6) we obtain
Sgie = (Fid = NG )]z, (8)

where G,/ (A) is considered in the backgronnd classical metric with conical singularity.

Inserting (7) into {8) we obtain that the total entropy

Sun = Sgit + Shy (9)
ts a sum of classical entropy:
Sl = (30 = WM, (10)
and quantum corrections:
Shu = (385 = )G, 71() (n

Using this general formulae, et us consider the case of two dimensional gravity inter-

acting with scalar conformal matter:
! , ,
Lt = / :;(VF)'\/.‘.I'/“: (12)
Then, we get that
|
Gorg(AY = 5 Inder(-11) (13)

where 0 = V, V% is the Laplace operator defined with respect to metrie with conical

singularity.



In two dimensions the description of manifolds with conical singularity is essentially
simplified. We begin with the consideration of the simplest examiple of a surface like that
described by the metric:

ds® = dp? + (—l—-)gpzd'r2 (14)
3y
This space can be considered as an Euclidean variant of 2D Rindler space-time. Assuming
that 7 is periodical with period 273, let us consider the new variable ¢ = 8~!'7 which has
period 2x. Then, (14) reads .
ds? = dp* + a?p?d¢?, (15)
where a = (Z,‘-i-) It is the standard cone with singularity at p = 0. When a =1 (8 = ()

the conical singularity in (15) disappears.

Having calculated the scalar curvature R, for the conical metric (15) let us approxi-
mate [12] the cone by a regular surface determined in 3D Euclidean space by the equations:
z=apcosd, y = apsing, z = /1 — a®\/p* + «?, and with the metric

7 _ p2+"202

s dp? + a®p*d¢? ) (16)

ds

In the limit a — 0, the metric (16) coincides with the metric of the cone (15). Calculating
curvature for (16) and taking off the regularization (a — 0) for the scalar curvature of
the cone (15) we obtain (see also [13]):

R = 22 Vg ' (17)
[0

where §(p) is the delta-function defined with respect to the measure:

+oo
/ S(p)pdp =1
o
This regularization of the cone allows us te use the results obtained for determinants
of elliptic operators on regular surfaces and then, taking approximation (16), to obtain

the relevant expressions for the surfaces with conical singularities.

On general grounds, the one-loop effective action (13) contains the divergent and finite

parts [14]:
ge//(D) = gin/(D) + g/m(D), (18)
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for which, neglecting boundary terms, we have ? :

6us(0) = g5 [ RVaFsIog(Z" (19)
Gin(0) = %/RD"R\/EJIZ (20)

where L is an ultraviolet cut-off. Let us proceed with the conical metric (15). As it follows

from (17), the Euler number for the cone is the following;

1
(= _/ Rran\/.ad?z = (0 - 1) (21)
4
and, consequently, for the divergent part of the effective action we get

Ging(0) = (e = 1) log( ) ()

In order to calculate the finite part (20), let us consider the function ., which is the

solution of the equation:

OtYeon = Reony Reon = g"(’]__126(’,) (23)

@
Eq.(23) can be rewritten as follows:

l)62(:1:,:1:') (24)

_ 1 4r(a —
(p7'3p(p3,) + ag—pzafs)ib =——"

where §*(z, z) is the two-dimensional é-function satisfying the condition

2x +wo
/ d¢/ & (z,2')pdp = 1
0 o

One can see that (24) is just the equation for the Green function. The solution is well
known:

Yeon = Z(Q—JL) lnp+w, (25)

where w is a harmonical function , Ow = 0. Taking inio account (23), (25) we obtain the

following for the finite part (20):

1
Grin(0) = or / Reontbeon/9d%2

1 (a-1)? 1
=i —(a — 26
B a lnc+24(a 1)w(0) (26)
A0ur convention for the curvature and Ricei tensor is R%,, = 8, — ..., and Ry, = R,



where w(0) is the value of the function w at p = 0. One can see that the "finite” part of
the effective action is really divergent in the low limit of the integration over p. Therefore
we introduced the regularization: the distance ¢ to the top of the cone. In the limit ¢ — 0
(26) is logarithmically divergent. Thus, the complete one-loop effective action on the cone
takes the form ,

L {a-1), L
Gers(0) = =15 log( ) +

1 {a—1)? (e-1)
7 a log e + n w(0) (27)

We see that there are two types of divergencies on the cone. The first is the ultraviolet
divergency related to the cut-off of Feyn'~an.diagrams on the energy L {what is equivalent
to the introduction of some minimal distance L=!). The o%her divergency arises when the
distance to the top of the cone goes to zero. One can expect that in the self-consistent
renormalization procedure all the distances cannot be smaller than the fixed ultraviolet
scale L. From this point of view, the identification ¢ = L~! is fairly natural. Moreover,
this identification turns out to be necessary when we compare (27) with results obtained
earlier for determinants on the cone by means of the {-function [5] (see also [15]). Indeed,

assuming ¢ = L1 in (27) we obtain
Guo(D) = (= 2 )log : (28)
e T 12 % u
that coincides with that of obtained in [5].

Now we can calculate the corresponding correction to the ientropy. Inserting (27)
into (11) we observe that the second term in (27) doesn’t contribute to the entropy (for

B = By) and the first term in (27) leads to

Lo 1, E

1
Shy = ﬁlog(

where we assumed that w(0) = 0. This coincides with result previously obtained for the

quantum correction to the entropy of 2D Rindler space-time.

Some remarks concerning the ultraviolet divergency of entropy (29) are in order. Ac-
cording to general recipes of renormalization in the quantum field theory, one must add
the relevant counter-terms to the "bare” action in order to cancel the divergency. In our

case one must add the following term to the classical action:



F / R /g -
which doesn’t affect the classical equations of motion but contributes to the effective
action: AG.;; = s(a — 1) and entropy: AS = s. The total entropy occurs to be finite
but undefined. All this procedure scems 10 be reasonable. The entropy is determined
up to an arbitrary constant. The above cancellation of the divergency means only the
renormalization of this additive constant which does not influence the physics and can
not be determined from the experiment.

On the other hand, introducing the nltraviolet cut-off L in statistical description of
the systein we introduce a grain scale L='. This means that we define an elementary state
of the system characterized by the size ¢ = L~'. The situation looks similar t; the one
that we have in the classical statistical physics (16]. Quasiclassically, one can define the
number of states in the region of the phase space (p.g) as AT = (%f%": ( s 13 number of
freedoms of the system) where ¢ = (2rh) is a scale characterizing the elementary state
of the system. Then entropy § = In Al' is divergent when the Planck constant b — 0
(€ — 0). Thus, the result (29) can be interpreted as an indication that there must exist a
fundamental scale which plays the role of ultraviolet regulator and naturally characterizes
(like the Planck constant & in standard statistical physics) the size of elementary state of

quantum gravitational system in phase space (concerning this, see also [17]).

Let us now consider the 2D black lole with metric written in the Schwarzschild-like

gauge:
ds® = g(a)dr® + L,{.,'I A (30)
g(r)
The metric is supposed to be asymptotically flat: g(r) — 0 if &+ — +00. We assume that

7 in (30) is periodical with period 2rg. Clonsider the new angle coordinate ¢ = /3 which

has period 2. If onc introduces a new radial coordinate p:

dr
S 3
p / 7D (31)

the metric (30) takes the form

ds® = Fg(p)dd® + dp? (32)



Let the metrical function g(z) have zero of the first order at the point z = z5. In the
Minkowski space this point is event horizon. Near the horizon we have g(z) = ¢'|,, (v —z4)

for the metric function. For p (31) we obtain

o (
—(r —x,)'/* C (39

=i

in which it is assumed that the horizon is located at p = 0. For the function g{p) in the

vicinity of this point we get:
2

glo) ~ & (34)
3
where 8y = 2/g; . The metric (32) can be rewritten in the form
B
ds* = [( E)’ﬂzdc‘*’ +dp?] + f(p)de? (35)

where we directly extract the cone part of the metric with singularity at p = 0. The
function f(p) = Bg(p) - /‘,T‘q‘;)zp2 near the point p = 0 behaves as f(p) ~ p*. Now
we may regularize the cone part of the metric (35) as hefore (16), calculate the scalar
curvature and then take off the regularization (¢« — 0) 3 . At the end, we obtain the

following result for the curvature:

_ 2 -1) _ _E_
R=- '__a §(p)+ Reeyy = B (36)

where the first term is the contribution due to the conical singularity, while the second,

regular, term takes the form:

% 15
By =57 = 52V, (37

One can see that R,., (37) has at p = 0 the finite value determined by the term of the

4-th order in the expansion of g(p) (or f(p)).

In order to find one-loop quantum corrections in the background metric (30), (32), we
have to find the function y satisfying the equation:

oy = 22Uy, 1 ., (38)

3At this last stage, the important point is the behavior of the function f(p)} ~ p'. Due to this, the
cross-terms like §(p)f(p) and 6(p)f’(p) do not contribute.



where the Laplacian O for the metric (32) reads

0=+ —a + o BQ 39)

Assuming that ¥ is independent of ¢ we get that out of the point p = 0 the general

solution of (38) is the following

v

dp

¢=lng+b/ —=, (40)
o VI

where b and A’ > 0 are still arbitrary constants. In the limit p — 0 the Laplacian (39)

coincides with the Laplacian for the cone (24). Hence, in order to obtain the é-singularity

in the r.h.s. of eq.(38) the ¥ (40) has to coincide with the corresponding solution for the

cone, Peon, in the limit p — 0:
¥ on =2y if o ()
Due to (34) we get for the leading terms of (40):

= (2 - b)Inp (42)

The condition (41) gives value of the constant b = 2/4. Finally, the solution of (38) reads:

—tngp+ 2 [ o (43)
or, equivalently, in terms of the coordinate z:
2 [ dz
¢ =Ilng+ = / _— 14
178 ). o (44

It is worth observing that the renormalized energy density of the scalar field in the

space-time (30), as it follows from (20), is:
< T‘Oo Zren= (2gz - g:‘wz ("?b;)z) (45)
For 1(z) (40) this reads

< Tg Sren= 2g (9;2 - b’)) (46)

481r yrm



This expression can be obtained by integrating the conformal anomaly (18]. For b = 2/8
this energy density at the space infinity (z — oo)
<T > () (a1)
2x'g
coincides with the energy density of massless bosons with temperature T = 1—:5
It should be noted that the choice of constant & in {(40) means the choice of the
quantum state of the scalar field in the space-time of black hole. Therefore, the fact
that this constant is related to the temperature 3 of the gravitational system seems to
be natural: the thermal states of the black hole * and quantum field in the black hole
space-time are the same. )
On the other hand, we can see that (45} is divergent at the horizon (z = z,) for general
# and becomes regular only if 8 = By (see also [8]). Thus, the Hawking temperature
By is distinguished also in the sense that on!y for this temperature the renormalized
energy density of the quantum field, being in the thermal equilibrium with the black
hole, turns nut to be finite at the horizon. Really, the infinite energy density means that
something singular can happen at the horizon when the backreaction is taken into account.
Therefore, for 8 # By the backreaction must be essential for justifying the semiclassical

approximation (when we consider (3) instead of the functional integral (1)).

Before calculating the quantum corrections to the entropy of the 2D black hole, one
would like to have some concrete description of 2D gravity. The simplest way is to use

the string-inspired dilaton gravity with the following action [19}:
I, =- / P2 /Gle (= R+ 4(VO) + Q%) + 4VH(c*V, )] (48)

where the last, boundary, term is added [20] in order to the on-shell action (48) for the flat
space-time to satisfy the condition: I,,(g = 1Mon~ssen = 0. Then, from the field equations

we obtain

ds® = g(z)dr? + E(—l;jdz’, glz) =1 —2me9"

0=-% (49)

4This state is fixed when the integration in (1) is performed over the Euclidean manifolds with the
cydlic Killing vector 8, with period 2x3.

10



The action (48), considered on the solutiou {19). takes the form [20]
ly = [ draslo i 0,9) (50)
Assuming that 7 is periodical with period 27, for (30) we obtain
Iy = 2mdle™0,q) e — ~1x%[c‘”},,.. (51)

where z, is the point of the horizon. ¢(+4) = 0. and 2/8y = [8,9]);, = @. However, this
naive calculation of the action doesn’t take into account that for 3 # gy there exists
a conical singularity at r = r, with contribution (36) to the curvature. This leads to

additional terni in the action:

rsm =,
Therefore, the action {48) being considered on the elassical metric (49) with g # gy
is as follows:
I, = 200[c gy — Ax[c™?,, (52)
Thus, the B-dependent terms, calculable on the horizon, are nmtually cancelled in (52)

and for the classical entropy of the black hole [20.21] we get:
gelan — »Iﬂ[(‘_Zo],.h = 8xm (53)

On the other hand, we obtain A = 2mQ for the mass of the black hole. Hence, the

entropy (53) can be written as 1 8% = 2n gy M.

Now let us calculate quantum corrections to (53) according to the above constdered

procedure.
From (36) we obtain that the Euler number for the metric (30), (32). when 3 # 3y,
is the sum .
]l;/ R/GA 2 = \oom + \rea (54)
where the first term on the r.his. of (54} is the contribution due to the conical singnl=rity
while the second term is a regular contribution. As belore, we have that
I
\von Z(E‘ 1) (55)

11



To calculate the regular part, '+, it is convenient to use metric in the form (30). Then,
we obtain R,., = ¢ for the curvature. Consequently, for the regular term in (54) one
gets
Xreg = L _(j”dIdT
7 4r

8
BAn

(56)

and the total Euler number (54) turns out to be independent of 3: x = —~1. The divergent

part of the one-loop effective action (19) is as follows:
1 L
Ging(O) = ——108(;;)2 (57)
For the finite part of the effective action (20) we get

w=— [ RORGE: = L [ Ry
Grin = 96#/RD Rvad'z = 96#/&!‘/‘6’{12

= g:nn + gre_q (58)
where gw,.' is as follows:
-1 +
Gom = i) [ Ste0/aTo1ds (59)

The integrand in (59) is non-zero only at p = 0 where ¥ = Y., and /g = S5'p. Hence,

Geon coincides with one we had for the cone (22):

_1(a-1)?
Geon = B = Ine (60)

where the regularization, distance ¢ from the horizon (p = 0), was introduced.
The regular part of (58)

Gres = 55 / :w Ryepthdz 1)
does not contain divergencies in the low limit of the integration (the terms like ¢ ln ¢ vanish -
in ihe limit € — 0). In (61) we use the black hole metric in the form (30). For the concrete
metric (49) we get that '

lA-,%:-)- = —%"]ng(z)—z+ éln(eq" —2m)

12



and y(z) (44) takes the form
% + BEQ_ In(e9* — 2m) (62)

Inserting this into (61), after the calculations we obtain

v=(1- g

) (63)

@ 1 €94 — 2m
ba =g~ 5, —

Collecting (60), (63) and (57), for the effective action we finally obtain:

1(a-1)p a 1, e _2m
[n] =1 2 4 1 — - — lg(—
Gurs@) =~ (27 + 58t & L

) (64)

2m
where a = -ﬁ%. Identifying e = L7, for the infinite part of the effective action we obtain:

_I_(a’+l)ln£

12 a " (65)

As one can see, the infinite part does not depend on the concrete form of the- black
hole solution. Probably, the result (65) is worth checking by means the the alternative
calculation, for example, with the help of the {-function. For the quantum correction to
the entropy (53) for 8 = By we obtain:

1. -2m
B = b 2+ D2 (66)

The divergent part of (66) coincides with the quantum correction to the entropy in the
case of the Rindler space-time (29). Obviously, this justifies the approximation of the
black hole space-time near the borizon by the Rindler space, which was considered earlier
[1,5-8].

In terms of the classical mass M and the Hawking temperature Sy the total entropy

(9) can be written as follows:

(Z)e?s —M 1 %
Sn = 21rﬂyM+— [—-———-]+Eln:— (67)

where we identified A = I.
In comparison with the Rindler space, for the black hole case we observe the finite
correction to entropy (67) which logarithmically depends on the black hole mass M. This

means, in particular, that the temperature of the system defined as 7! = 3yS is no

13



more Ty but possesses some corrections. This can be considered as an indication of that
the backreaction must be taken into account. Indeed, the classical black hole solution
does not give the extremum of the semiclassical statistical sum (7). The configuration,
which is the minimum of the one-loop effective action G.y;, must be considered. Generally,
this quantum corrected configuration may essentially differ from the classical one [22-24).
In any case, such thermodynamical quantities as temperature Sy, mass M and entropy
must be re-calculated. Unfortunately, in general the quantum corrected field equations
are not exactly solvable. Recently [25-27], this has benn considered for the RST model.
where the exact solution is known. It should be noted, however, that the backreaction
may change only the finite part of the entropy while its divergent part, as it follows from

our consideration, remains unchanged.

Let us now apply our method to the 4D case. Assume that the gravitational field in

four dimensions is described by the standard Einstein-Hilbert action:
. )
Iy = 1675/‘{‘:\/5“ + boundary terms . (68)

where the gravitational constant x has dimensionality of length squared [}

The Rindler space in four dimensions is described by the metric

ds* = Edqﬁz + dp? + dz? + dy? (69)

By .
which for @ # fu can be represented as a direct product of the two-dimensional cone (15)
on the 2D plane: C* ® R?. Applying the regularization procedure (16) to the cone part
of the metric (69), we obtain that the 4D scalar curvature for (69) in the limit ¢ — 0

coincides with the curvature of the 2D cone (17):

R =22l 0 2 (10)

‘We are also interested in the spherically symmetric metric describing the 4D black
hole

ds® = F%g(p)de® + dp” + r*(p)(d6? + sin® 0dp?) (M)

Near the horizon we have: g(p) = 5%— and r(p) =ry + 61:7’ where r,, is the value of the

radius.r at the horizon. For # # By there again exists the conical singularity at the

14



horizon (p = 0). The part of the metrie (71) in the plane (6. p) coincides with the 2D
metric (32), (35). Regularizing the conical singnlarity at p = 0 as hefore we obtain that
the complete Riemann tensor is a sum of the regular part (which is non-singular in the

limit @ — 0) and the part coming from the cone:

Rnum‘i = Rmn vad + Rrrg LY (72)

The only non-trivial component of the contribution from the cone in (72) is the following
(for finite a):
4l2(l - 02)

¢ e
Reon rep (p* + «?)(p® + a%a?) (73)

Though the whole consideration can be generalized. we study here only the case when
the regular part of the metric is Ricci-flat (R]? = 0). i.e. it is the solution of the Einstein
equation in vacuum. Then, we obtain [rom (72). (73) that the scalar curvature for the

metric (7!) in the limit @ — 0 is also given by expression (70).

The divergent part of the one-loop effective action for scalar matter described by the

aclion

st = 3 [ (91 i
in four dimensions (neglecting the boundary terms) takes the form (see, for example,
[28]):
Ging = -l-(lug del0).

= ;.“301 + B L2 + B, Iog(—)z) (74)

where L is the ultraviolet cut-ofl. The coellicients # in (71) take the form {we omit the

overall irrelevant coeflicients dependent on the type of matter):

BD;%/\/_EJ‘:
Bz=—(l—i/ll“)\/§d‘r

— L 2 my Jie ad —I—D -
B, —/(72R lSOR""R + -4—1 L 0 R)/gd'r (75)
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Considering (74) on the Rindler background (69). and using (70) we obtain

P P 1_ O 1 g L
Gins = gzl = DALY = VA" + (0 = 1)'MT(a)log (76)

where Ay, = [ dzdy is the area of the Rindler horizon; V is the volume of the space (69)
if 8 = By. As one can sece, By is quadratic in curvature. For finite a it gives the last term

in the effective action (76) with the function T(a.a) having the form
Lo
T(a,a) = 57 (a) (77)

where T(a) is a nonsingular function which takes finite value at o = 1. Thus, we obtain
an additional (to the ultraviolet) divergency when we take limit a — 0. Fortunately, the
last term in (76) is proportional to (a — 1)? and does not contribute to the energy (4) or
entropy (6) calculable at 8 = By.

From (76) we get the quantum correction to the entropy:

e (78)
where the ultraviolet distance ¢ = L~! was introduced.

The result (78) is exactly the one obtained for the geometrical entropy {1,3). One can
give this the following interpretation. Though we start from the flat space-time, consider-
ing system at the finite temperature 3, we obtain the statistical system in the effective 4D
Euclidean space with the conical singularity. Therefore, the induced gravitational effects
of the curvature play the role leading to the non-trivial effective action (74) and.entropy
(78).

Notice that only the contribution coming from the scalar curvature R in the first
power in effective action (74) leads to the quantum correction to the entropy of the Rindler
space. This term takes the same form as the classical ("bare”) gravitational action (68)
but with the L?-divergent coeflicient. The two-dimensional example learns us that an
extra ultraviolet divergencies (in the limit ¢ — 0) can come from the "finite” non-local
terms in the complete effective action which are omitted in (74). These terms are not
exactly known in four dimensions. By means of methods different from ours, there recently
appeared results on the heat kernel asymptotic expansion on the curved cone [29]. They

allows one to obtain all divergencies due to the cone singularity: which could come both

16



from the infinite and finite parts of the complete effective action. Comparing our result
for the Rindler space (76) with that of [29] we observe that divergency coming from
the finite part is proportional to (a — 1)2L%. Renormalizing the infinities of (74), (76) we
introduce the same counter-terms as for the manifolds without conical singularities. Thus,
to renormalize the L?-divergency of (74), (76) it is enough to renormalize the gravitational
censtant [30]: '

T =xpt + L7 (79
On the other hand, we must add new (absent in the regular case) local counter-terms
(cf. [31]), determined on the horizon surface, in order to absorb the additional diver-
gencies coming from the finite terms in the effective action. However, this divergency is
proportional to (@ — 1)* and hence does not contribute to the entropy. Therefore, the
renormalization of the gravitational constant (79) is enough to renormalize the ultraviolet
divergency of the quantum correction to the entropy (78).

In the recent interesting preprint Susskind and Uglum [32] have also calculated the
quantum correction to the entropy of the Rindler space which they consider as a infinite
mass limit of the black hole space-time. In particular, it has also been observed that quan-
tum correction to the entropy is equivalent to the quantum correction to the gravitational
constant (for the discussion of this point, see also in [33]).

The metric (69) ft;r a # 1 is similar to the metric of a cosmic string. In the cosmic
" string interpretation of the metric (69) our procedure of regularizing the conical singularity
has the natural physical justification. It means that we consider the string with the finite
radius "a” of the kernel. This description is more realistic while the infinitely thin cosmic
string (in the limit @ — 0) is an idealization. Therefore, we could consider the parameter
"a” in our above consideration as a "phenomenological” one which is small but finite. This

assumption allows us to avoid an additional divergency in the effective action related with

the limita — 0.

Consider now the black hole described by the Schwarzschild solution. The metric takes

the form (71). Near the horizon (p = 0) we have:
) 1
P24
= e 80
9(P) =G~ 358 (80)
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where 8y = 4M, M is the mass of the black hole.

The classical Bekenstein-Hawking entropy of the black hole is well known:

A
clas __ _’l
ok = Ar

| (81)

where Ay, = 4xrf is the area of the horizon sphere; for the Schwarzschild solution one has:
ry=2M. )
Calculating the quantum corraction to this entropy we observe the new point in com-

parison with the Rindler case. Though the regular part of the metric is Ricci-flat, the

Riemann tensor R}, _; is non-zero. From (72) we obtain that the term

R RS

reg aff” ‘con uv

(82)

..I

contributes non-trivially to B, and to the effective action. The conical Riemann tensor
in (82) is proportional to (a — 1) and hence (82) leads to an additional correction to the
entropy of the black hole.

In the limit @ — 0, the conical Riemann tensor R}, ; is proportional to the §-function
8(p). Hence, only the value of the regular Riemann tensor at the horizon is essential for

calculating the integral over (82). From (71) and (80) we obtain:

mﬂﬂ Np(P = 0) =

L

4
7 (83)

Substituting (72), (73) and (83) into the expression for B, (75) in the limit @ — 0 we

have:
_BRrA(l-a)e®+at1)  (a-1) '
=T, po +—0 T(a) + aB? (84)

where BY is the coefficient B, (75) calculated for the Schwarzychild solution if § = 8.

The infinite part of the one-loop effective action (74) then takes the form:

o _{e=1), ., aVLl' (a-1e®+a+) Ay L
Gint = gz ML - G2 21607l M %,
(a-1)? L o« L
i T(a)log p ——-16”282105 " (85)

Finally, for the quantum correction to the entropy we get

An, |1 1
T Zre? * TBonbA7
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where the ultraviolet distance ¢ = L=! was introduced. The entropy (86) is proportional
to the horizon area as before. However. in comparisou with the Rindler case we observe
additional, logarithmically divergent. term in (836} which is dependent on the mass of the
black hole.

Considering the entropy per the horizon arca in the limit of the infinite black hole
mass (M — o0o), we obtain the entropy for the Rindler space. This probably could justify
the approximation of the infinite mass black hole by the-Rindler space [1,32]. However,
since the horizon area for the Schwarzschild solution is 4, = 1672M?2, we observe that
the logaritmically divergent term in the complete entropy

/ 1%
i Ble” s (87)

o -
Shy = +

18re2 ~ 15
is independent of the mass. It takes the form which is very similar to that we had in the
two-dimensional case (see (67)). The rcason of different results for the Rindler space and
the black hole lies obviously in the different topology of 1]1(:5(‘ manifolds. The topological
numbers (like the Euler one) vanish for the flat Rindler space while they are non-zero for
the black hole and independent of the black hole mass.

To renormalize the L? and log /. divergencies, in (83) we must add to the bare gravita-
tional action not only the Einstein-like term but also the terin 5113, quadratic in curvature
with new coupling constant ;. The comparison with the exact results [29] shows that
divergencies (both L? and log L), additional to (85) and coming from the "finite” terms
in the complete effective action, are again proportional to (a = 1)? and they do not con-
tribute to the entropy. Thus, we again obtain that the infinities of entropy (86) (but not of
effective action!) are renormalized by the renormalization of ouly the coupling constants

x and &;.

Finally, several remarks are in order of discussion.  As it has been noted in {32),
only the quantum corrections but not the classical entropy have a clear interpretation
in terms of the counting the states. To overcome this. we may start from a zero bare
gravitational action, assuming that the whole gravitational dynamies is determined by an
induced matter effective action. Then, roughly speaking, the whole entropy of the black

hole is a quantum correction. An interesting example of the induced gravity is given by

19



the superstring theory (see also [34]) which is probably free from ultraviolet divergencies.
In the string theory, the space-time metric is nol a primary object. It appears in the
low-energy approximation as a "quantum condensate” of string excitations at energies
E << (o)} (see, for example [35]). Therefore, considering the low-energy effective
action of the string, we obtain that already the “classical” entropy can be identified
with the logarithm of appropriately counted number of such string states. However, this

speculation needs further detailed investigation.

I am very grateful to Dima Fursaev for numerous remarks and criticism. [ also would
like to thank Leo Avdeev, Evgenue Donets and Misha Kalmykov for very useful discus-

sions. This work was supported in part by the grant RFL0O00 of the Internationai Science
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TipHHHUNACTCE NOARKMCKD Ha NpEenpHHTH, coobmenna Obvennnennoro
HHCTHTYTa SACPHBIX HCCNEeRoBaHi H «Kparkne coobuenns OUSIHs.

VcTanosiena CACAYIOWNS CTOMMOCTL NOANHCKH HA 12 MECILCE HA K3AHHA
OHSH, sxnouas nepecuiiky, NO OTALAbHLIM TEMATHUCCKKM KATETOPHIM:

Hunexc Tematnka Llena noanKcky
Ha rof
1. OxcnepuMeHTaNbHAR (PHIHKA BHICOKHX IHEPrHil 915 p.
2. Teopernueckasg (PHINKA BHICOKHX IHSTHIA 2470 p.
3. OxcnepuMeHTANLHAY HEeATPOHHAS DH3NKA 365 p.
4. Teoperrueckas GpHINKa HH3KUX FHepruil 735 p.
5. Maremaruka 460 p.
6. Sinepuad CEXTPOCKONHS H PHIAHOXHMHS 275 p.
7. ©®nauxa TAXENAHX HOHOB 185 p.
8. Kpuorenuxa 185 p.
9. Yckopurenn : 460 p.
10. AsroMaTHsaung o6paGoTki IKCHEPHMEHTATLHBIX JAHHBIX 560 p.
11. Buuncantennuas MATEMATAKAE H TEXHHKA 560 p.
12. Xnmug 90 p.
13. Texunxa GH3INUECKOrO 3KCNEPUMEHTA 720 p.
14. Hcenenosanus TBEpALIX TEA B XHAKLCTER AACPHBIMH METORAMH 460 p.
15. OxcnepuMeHTansHag HHINKA GAEPHBIX peaxuul
NPH HH3KHX IHEPrHUEX 460 p.
16. JoanmerpHs 1 pH3NKa NMHKTH 90 p.
17. TeopHs KOHACHCHPOBAHHOTO COCTORHHS 365 p.

18. Hcnoabaosanue peayabraTos
H MeToA0B QYHAAMEHTANALHBIX PHIHUECKHX HCCAEAOBARHH

B CMEXHBIX O6/IACTAX HAYKH H TEXHHKH 90 p.
19. Buoguanxa 185 p.
«Kparkue cooSmennns OUSIU» (6 Buinyckos) 560 p.

INoanncxa Moxer 6biTh ochopmaeHn ¢ maboro MecaLa roaa.
INo Bcem Bonpocam oq)opwleuus noanKCKH cAeayer ofpowaTbcs B Wana-
TenbckThit otaen OUAH no nnpccy 141980, rll,yﬁua. Mocxosckoit o6nactu
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