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1. INTRODUCTION

Perturbations, depending on the spectral parameter (usually energy of system) arise in a
lot of physical problems (see papers [1- 16] and Llefs. therein). In particular, such are
the interaction potentials between clusters formed by quantam particles (i 6].

The perturbations of this type appear typically [I 4], {11 16] as a result of dividing
the Hilbert space H of physical system in two subspaces, H = ‘H; -i- Ha. The first one,
say Hy, is interpreted as a space of “external” (fur exampic, hadronic) degrees of freedon.
The second one, H;. is associated with an “internal™ (for example, quark) structure of
tbe system. The Hamiltonian H of the system looks as a matrix,

_ A[ I}|2
(1.1} H= [ By As
with A4,, 4,, the channel Hamiltonians (self-adjoint uporulurs) 4nd Bu. Ba = By, the
coupling operators. Reducing the spectral problem HU' = =7 = {u;. 4y} to the

channel a only one gets the spectral problem

(1.2) [Aa + Va(Nuo = 2y, 0 = 1.2,
where the perturbation

(1.3) Va(z) = ~Basl Ay — 2) ' Bou. S 20

depends on the spectral parameter = as the resolvent (A, ~ )71 of the Hamiltonian A4,
In niore complicated cases V,(z) can indude alvo lincar tetms in respect with = Other
types of dependency of the potentials V,(z) on the spectral paramieter z give, in a general
way, the spectral problenis (1.2) with a complex spectrinm,

The present paper is a continuation of the author’s warks {17 19) devoted o a
study of the possibility to “remove™ the eneigy dependence from perturbations of the
type (1.3). Namely, in {17 - 19] we construct such new potentials B, that spectrum of
the Hamiltonian H, = A, + W, is a pait of the spectrumn of the problem (1.2). At the
same Llitae, the respective eigenvectors of I, become also those for (1.2). Hamiltonians

Fl, are found as solutions of the non-linear operator equativus
(1.4) I, = A, +\,(1,)

first appeared in the paper [9] by M.A.Braun in counection with consideration of the
quasipotential equatior. The operator- value function V, (1) of the operator variable Y,
Y : ‘H, — H,, is defined by us in such a way {see Sec. 3) that cigenvectors ¢ of Y,
Y ¢ = zy, become autumatically those for 1,(Y) and V(Y ) = V ().

In Ref. [17]. the case is considered in details when one of the operators A, is the
Schrodinger operator in L(R™) and another une has a discrete spectrum only. The re-
ports (18], [19] announce the results concerung the equations (1.4) and properties of
their solutions /{, in a rather moure general situation when the lHamiltonian H inay
be rewritten in terms of a two-channel variant of the Friedrichs model investigated by
O.A .Ladyzhenskaya and L.D.Faddeev in Refs. [20]. [21]. In Ref. [16] the method {17
19] is used to construct an effective cluster Hamiltanian for atoms adsorbed by the metal
surface.

In the present paper, we specify the assertions frutn [18]. {19] aud give proofs for them.
Also, we pay attention o an important circomstance disclosing a nature of solutions of
the basic equations (1.4) Thing is that the potentials W, = V,(//,) may be presented in
the form W, = B,3Qg., where the operators Qa, satisfy the equations (3.13) (sce Sec. 3).
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Exactly the sam. .:quations arise in the method of construction of invariant subspaces
for self-adjoint operators developed by V.A.Malyshev and R.A.Minlos in Refs. (22}, [23].
It follows from the results of |22}, [23] that operators H,, a = 1.2, deterniine in fact,
parts of the two-channel Hamiltonian H acting in corresponding invariant subspaces (sce
Theorem 2 and comments to it).

Recently, the author came Lo know about the work? “Spectral properties of a class of
rational operator-value functions” by V.M.Adamjan and H.Langer studying the operator-
value functions written in our notation as Fo(z) = = — Aa £ B,,(Ay - 2)'B,.. In
particular Adamjan and Langer show in this work that a subset of eigenvectors of 17, can
be chosen to form a Riesz Lasis in H,. There is a certain intersection of then results and
ours from Refs. {17 -19). However the methods are different.

The paper is organized as follows.

in Sec. 2 we describe the Hamiltonian H as a two-channel variant of the Friedrichs
model {20]. [21]. We suppose that both operators A,, a = 1.2, may have continuous
spectrum.  When properties of objects connected with this spectrum (wave operators
and scattering matrices) are considered in following sections. the conpling operators 13,
in (1.1} are assumed to be integral ones with kernels 13,504, u). the Holder functions in
hoth variables A, p.

In Sec. 3 the equations (1.4) are studied. Asin Refs. [22]. [23] we supposc that specuia
a(Ay) and a(A;z) of the operators A; and A; are separated. dist{o(A,},0{4;)}} > 0.
Existence of solutions of Eqgs. (1.4) is established only in ti:c case when the Hilbert-
Schmidt norm (| B, g}l of the coupling operators satisfies the condition

IBasllz < Jdist{a(A).o(4)}.

In Sec. 4 the eigenfunctions systems of the operators 1, are studied and theorems
of their orthogonality and completeness are proved. We show here in particular that
spectrum of the Hamiltonian H is distributed between the solutions /= Ay + £,,Q5
and H; = Ay + Bu@Qia, Qu = —@3,. of the basic equations (1.4) in such a way that J,
and H, have not “common” cigenfunctions {" = {u,.u;} of H: stinultancously. component
u; can not be eigenfunction for H,, and component wu,, for H,.

In Sec. 5 we introduce new inner products in the Hilbert spaces H,. o = 1.2, making
the Hamiltonians /, self-adjoint.

In Sec. 6 we give a non-stationary formulation of the scattering problem for a system
described by the Hamiltonians H, constructed. We show that this formulation is correct
and scattering operator is exactly the same as in initial spectral problem.

At last, in Sec. 7 we discuss the questions concerning a use of two-budy energy-
dependent potentials in few-body problems.

2. INITIAL SPECTRAL PROBLEM AND
TWO-CHANNEL HAMILTONIAN

Let A, and A; be self-adjoint operators acting, respectively, in “external™, H;, and “in-
ternal”, H, Hilbert spaces. We study the spectral problem (1.2) with perturbation V,(z)
given by (1.3). We suppose that B, € B(H,,H3) where B(H,, H;) is the Banach space
of bounded linear operators acting from #{, to Hj.

Note that method developed in the present paper works also in the case of more

2Unpublished.



general perturbations® V, (=) :== —R,(z) containing linear terins,
(2-1) Ro(z) = Noz + Bos( Ay — Nz — -")-|”4':..

with N,, sclf-adjoint bounded operator in H, such that N, 2 (6~ 1}, where 6 > 0 and
I, is the identity operator in H,. Thing is that the equation (1.2) wath V,(z) = —R,(z)
can be casily rewritten in the form (1.2).(1.3). Tu do this. one has only to make the
replacements u, — ), = (Jo + Na)'?uy, A, = A, =L+ V) Y2400+ N) V% and
B.s — Bo3; = (l.+ .’\;,)"“B,,_;([u + N3)"Y2. Lheretore we shall consider further only
the initial spectral problem (1.2)(1.3).

We shall assume that operators A,, @ = 1,2, may have continuous spectra o,. To deal
with these specira we accept below some presuppositions i respert with A, restricting
us to the case of a two-channel variant of the Friedrichs inodel [20], [21]. Note that these
presuppositions are not necessary for a part of statements (Lemma 1, Theorems | 3
and 5) which stay correct also in general case.

The presuppositions are following.

At first, we assume that Hamiltouian M is defined in that representation where
operators .1,.a = 1,2, are diagonal. We suppose that continuous spectra @’ of the
operators A, = 1.2, are absolutely continnons and consist of a finite nuniber of finite
{and may be one or two infinite} intervals (e 05, - < al < ! < +oc. J =
1.2,. ...ty o <0G, At second, we suppose that discrete spectra @ of the operators
Aa. oo = 1 2, do not intersect with o, ad (e, = . aud consist of a finite number of
points with finite multiplicity. In this rase the space H, mav be preseat as the direct
integral [25]

{(22) H,= i PG (Ndr = & G (A / T GalAda, A, = a‘,Ua'a' - R.
¥ vl \h:

The space H, consists uf the mneasurable functions f, which are defined on o, and have
the values f,(A) from corresponding ililhert spaces G,(\). By ¢ | -} we denote the inner
product in H,,

(far9a) = Zf (foAhgu(M) = 3 (oAb unin) / dM[.1A), 9o (M),

AEon \eng e

where (-, -) stands for ianer product in G,{A) B. -1 we denote norm of vectors and
operators in G,(\) and by || - I, the noimn in H,. Opcrator A, acts in M, a~ the
independent variable multiplication opcrator,

(2.3) (ALLNA) = A LA =12

It’s domain D(A,) consists of those fuuctions f, € M, which satisfy the condition

i A% |fo(A}? < oc. For the sake of simplicity we assume that G,(}) does ot depend

A€oa
on A € 65, i.e. Go(X) =G for each X € 0. Henee, f DG NN = Lyl . G) = HS. By

MRemember that if N, > 6 then Eq (2.1) gives a general form ol £ function on H,, Le an analytic at
Imz # 0 B{Hg.Ha)-value function with positive unaginary part for = Iin:z > 0 {see paper (24) and
Refs. therein).



F.(d)A) we denote a spectral measure {25] of the vperator A4,, A, = f AlS,(dA). 1n the
diagona! representation considered, the spectral projector £, acts on f€ H, as
(2.4) (Ea(A)HA) = a(Mf(A)

for any Borelian set A C o,. Here, \ 4 is a characteristic function of A, \4(1) = 1if
A€ A and ya(A)=0if A Z A,

Let B;',:’ be a class of functivns I defined on 0, x 05, a,,3 = 1.2, forcach A C o, €
7, as operator F(A, j1) 1 Ga(u) — Ga(A). with || F lja< 2o, where

I E = sup (L4 AN + 1P HF(A, )i+

n€napg
A€o,
(Aop) — F(N.
+  sup {(1 + Iul)"u—,i—ﬂ' + 0+ A >
T €y {’\ - A '
A NEay
N |F(A ) — f‘(\_;i)_| . FF(A ) — (N o) —ﬂl—ﬂ_’)htl_(iﬂ’—)’]
lp = ' I - NP = '

With the norm {| - ||z this class will constitnte a Banach space. We introduce also the
3anach space My, (0g,) of functions f defined on o, with the norm

A
17 = sup @@+ P00+ sop LT o

et
e,

Tlie value f(A) of the function [ € Mg, (7,) is an operator 1 G,{ ).

Let B, be an integral operator with a kernel B, (A ) from the space 8,20 2 ). 2 <
¥ < 1 We assume that £3,5(A. j0) s a compact aperator, 3, ,0X oy 0 G lp) = G, (M), for
ca. L M€ a, pu€ayand Bz pu) =00 A belongs 1o the buandary of o or g belongs o
the boundary of o5.

With this presuppositions the Hamiltonian H tnay be considered as a2 two-channel
variant of the Friedrichs model [20]. [21]. Investigation of H repeats aliost literally the
analysis from Rel. {21]. Therefore we describe here only final results which are quite
analogous to {20], [21]. These results are following,

The operator H is self-adjoint on the set DM} = Dy vy} - D(1,). Continnous
spectrum of H is situated on the set o (H) = a; Ua, Let H he the part of H acting
in the invariant subspace corresponding to contitmons spectrum. The operator HT ts
unitacy equivalent to the operator Hy = AV = A with 407 0 1.2 the restriction
of vhe operator Ag on HE. Namely. there exist wave operators 70 and (7000 8

{%) it)
u 1 . . . . .
( Tt ) = s- lim eHleHot Wwith 1he followine troporties HEOGD = (vt

R
FOEE) = p Y E = P Here. P s an orthogonal projoctor on subspace
corresponding to the discrete spectrum a(H) of the operator H.

The kerne! ugf,)(,\./\') of the uperator Wil - tepresents an cigenfunction of
the continuous spectrum of the problem (1.2) fo Vol N a e satisfies the

integral equation

(2.5) wEAN) = £98(A = M) = [(A, = N 300 0 0V saomd )N,



where [ is identity operator in G5. A € a,,. For each concrete sign (plus or minus) and
for each X' € a5, X & o4(H) the function WENA MY s an unique solution of eq.(2.5) in
the class of the distributions

p (£)(\) = Y T -
(2.6) JEO0) = 180 = XY+ 77 T € Mo,

where % <¥ <0, % < 9" < 4. At the same time

uDAN) = —[(Aa = N T B LA N F£a,

is the problem (1.2) eigenfunction correspon-ling to \' € o§.
The functions u’(,jf.), a, 3 = 1,2, can be explicitly expressed in terms of kernels of the
operator

0 By, ]

Tizy=8- - oty =
I'tz)y =B - B(H y BB [H“ 0

Corresponding furmulae read as
Toalp. NV £10)

__ T .. AI I"
" Mg &y €0,

uSE A X) = 850 [E6(N ~ M) -

with f-matrices 1
Tas = Bog [z~ Ayt Buu(A, - 27 Bas] ™' By

and l
T3, = Bsa {z — Ao+ BaplAsi— = I’IH‘(,,] T(r-Ay) =
=(z—-A;) [: —Ag+ Byl A, - 27! B,,,;J_l Baa. 3 #a.

Considering the equation for 7'(z). 7(z) = B~ B(A-:)7'T(z), A = A, 4;. one shows in
the same way as in [20], [21] that for all z € C\a(H). cach kernel T3a.{p. A.z). a, 3 = 1,2,
belongs to the class Bf,:, with arbitrary .4’ such that '.!! < <9, % <4 <. In
respect with variable z, the kernel of Tja(z) is continuous in the B2, norm right up to

the upper and lower borders of the set o (H} \ a,(H).
Scattering operator S = U1/ for a system described by the Hamiltonian H is
unitary in HS. 1t's kernels sga(p, A}, a4 = 1.2, are given by expressions

Q.7 Spalpte A) = (st = A) [0 £ — 274 Tgalge, A A + 40)].

By U;,7=12,..., we denoLe_ eigenvectors. I, = {u(l")._ u.(l")},‘ U, € DHj. || U; ||=1,
and by zj, z, € R, the respective eigenvalues of the operator H discrete spectrum o4(H).
The component ¥ a = 1,2, of the vector U, is a solution of Eq. (1.2) at 2 = 2;. If

z; €05 then (Bgar)(z;) = 0.

3. BASIC EQUATION

The paper is devoted to construction of such operator H, that it’s each eigenfunction
Uy, H, ua = zu,, together with eigenvalue z, satisfies Eq. (1.2}. This operator will be



found as a solution of the non-linear operator equation (1.4). To obtain this equation we
need the following operator-value function V,(Y') of the operator variable Y :

ValY) = Ba,,/Ea(d;zjlj,;,,(\"—p)",
78

Y : Ho = H, . We suppose here that (Y — jul)™! € Lo(05,B(Ha,H,)) if u € o5.

This means that o5 has not to be included into the spectrum of the operator V. Integral

QUT) = [ Es(dp)BsoT(n) for T € Loo(o, B(H,, Ha)), 1Tl = Ea—sup ||T'(u)ll < oo,
]

u€og
is constructed in the same way as integrals of scalar functions over spectral measure (see
Ref. [25], p.130). Namely as a limit value, in respect to the operator norm in B(H,, Ma),
of respective finite integral sums for piecewise-constant operator-value functions approx-
imating T in Lo {05, B(Ha, H,)). We show the existence of this integral at least in the
case when the Hilbert-Schmidt norm || B, 4]|2 is finite.

LEMMA 1: Let T € Loo(0a, B(Ho, M,)) and || Bag lla< 5. Then the integral Q(T) czists
being a bounded operator, Q(T): Ho — Hs, || QUTY | <P T llow- Il Bia ll2-

ProofF. We prove the Lemma in the diagonal representation (2.2). (2.3). By (2.4) we
have

(Qf)n) = Zf Bpo(pe. M(T () f)(A)d A
for any f € H,. It means that

QN W) sj; dX - | Bualpe AP j; DT @) YA =

A€oa RY-.

= i dA|Bga(p, AP - WT () < x dMBaa (g, M - IT GO - AP
A€Ca A€o,

Hence, integrating over p € o5 we come to the relation

QS IP<N Bao W3- T W3- £ NP

which completes the proof.

Let us suppose that (H,~pul)™! € Lo(05, B(Hs.Ha)). We note that if Hoyr, = 29,,
then automatically

Va(Ho)to = "B/Ea(dﬂ)lf,;n(: - o, =

ay

(31) = oﬁ(z - Aﬂ)_lBﬂau'n = Va(z)u'o-

It follows from (3.1) that H, satisfies the relation /1,1, = (Aa + Va(I1,) )¢ and we can
spread this relation over all the linear combinations of H, eigenfunctions. Supposing that
the eigenfunctions system of H, is dense in H,, we spread this equation over D(A,). As
a result we come to the desired basic equation (1.4) for I, (see also Refs. [9], [17--19]).



Eq. (1.4) means that the construction of the uperatur #, cotes to the searching for the
operator

(32) Qo = / Esldi) BoalHy — )",

"

Since H, = A, + B,sQs.. we have

(3.3) Qsa = /Eﬂ(dmljaom, + Boilae — ). d# .

on

In this paper we restrict ourselves to the study of Eq. (3.3) solvability only in the case
when spectra @, and o3 are separated,

(3.4) dy = dist{oy,0;) > 0.
Using the Lernma | and the contracting mapping Theorem, we prove the following:

THEOREM 1: Lef My,(8) be a sef of bounded opcrators X, : Ha — M,, satisfying
the inequatily |\ X)) < § with 6 > 0. If this & and the norm ][Hm;“? salisfy the condilion

§ Bagll2 < 5 min{—lﬁ,l—f—gg}, then Eq. (3.3) is uniquely solvable in Myp(8).
PROOF. let
(3.:5) F(X) = [ Ealdi)Bao( e + BoaX = )"

s

with X, the operator from B(H.,, Hp).
Firstly, consider conditions when the function I maps the set Al,(8) into itsell. We
suppose here that B, and X are such that

(4.6) W BLsil2ll Xl < bfiBaslla < &y

and consequently, | Bog Xl € do. This means that spectium of the operator A, + BagX
does not intersect with the set a5. Hence, the resolvent (Ag + B, X — 4) 7! exists and is
bounded for anv u € 73, Thus, by Lemma 1 we have

WA < 1 Baglla - Ea- sup i( 4a + Bos X = )|,

u€ag
Due to identity
(Aa + BagX — )™ = 14 {Ay = ) BagX) " (40 -

and inequality || Bagil < [[Bagllz we make estimation

i
Ao+ BopX —p)7' < £ ‘
(Ao + BagX — u)™'ll 1= (A — ) T Bagll i X

”(-’10 - I‘)-'” <

I
dy  dg - I Baallé

3.7 <
( ) 1 - a’"Bnﬂl"Zo



Therefore, the set M,(8) will be mapped by F into itself if || B,sl]2 and é are such that

1

3.8 Bogllz - ~——=—— < 6.
( ) " ﬂ"2 do — " Boﬂ||26

Secondly, study conditions for the function F to be a contracting mapping. Now, we
consider the difference
F(X) - F(Y) = / Ep(d)Bsa [(Aa + BasX — p)™" = (Aa + Bagl — p)™%) =

o8

= / Es(d) Boo(Aa + BorX ~ 1) Bap(V — X)(Aa + BagV — u)™".
o8
Again, by Lemma 1, we have
IF(X) = FOO)) <
< NBuglf - sup N(Aa + BapX = ™1 - s e + Boah” = ™1 WY = Xl

LF

With (3.7) we come to the estimate

IF(X) = FOO) < D Baall - ' Y - X

do — || Basll26)?

The function F becomes a contracting mapping if

" Bnﬂ”%
(39) (@ = 1 Bogliaf? < "

Solving system of the inequalities (3.6), (3.8) and (3.9) we find

. é 1
|| Bagllz < do min {W m}

and this completes the proof of Theorem 1.

COROLLARY 1: Equation {3.3) is uniquely solvable in the unit ball M, (1) C B(H,,Hy)
for any B,g such that

]
(3.10) | Bagllz < ,Edo-

. . . 6 1 ] _
To prove the inequality (3.10), note that max min { ik —l—+—5} = g (at é=1).

Hence, if (3.10) takes place then the function (3.5) is a contracting mapping of the unit

ball M,(1) into itself.

REMARK. In the proofs of Lemma 1 and Theorem 1| we did not use the assumption about

finiteness of the numbers n, of intervals included in continuous spectra o2 of the operators

Aqs, a = 1,2. Really, these assertions take place in the case of arbitrary spectrum a,.
Finiteness at least of one of the numbers n; and n; will be used at the moment. If

n; and/or n; are finite and

(3.11) | BasQpell < do = dist{a1,02}, a=1,2,3#a.

3



we can state that

(3.12) H(Aa + BosQpa — = 12, atany u € o4, 3 £ a,

w7 g
=53 I/ I

with some Co3 > 0, Cop ~ 1/(do~ || BosQuall}). OF course this estimate is essential only in

the case when g is unbounded. It follows immcdiately from Eq. (3.3) that if », and/or

ny are finite then Qs,f, € D(Hg) = D(A,) for any f, € H,.
In this case we can rewrite the cquation (3.3; in symmetric form

(3-13) QoA — AgWaa + Q3. 18..4Q.c, = By,

To make this, it is suflicient to calculate the expression Q. 11, — A;Q.:, for both parts
of eq.(3.3) having in mind that we apply it 10 f, € D(#,). Did, we have

Qualla — ApQa = Qs e + BusQia) - 1isQue = Quul, - AsQa, + Qpul3usQia-

On the other hand,

Qanlly — 43Q 45, = /[En(dy)B,q,,(ll,. — )T - g Eal i) Ba,(H, — 1) = B,

One finds immediately from Egs. (3.13). o = 1.2 that if s, gives solution I, = A, +
B.iQs. of the problens (1.1) in the channel o then

(3.14) Qor=—Q5, = / M= 7 By Ealdy)

Ta
gives analogous solution /I, = A, + Ba3@pa in the channel 3.

THEOREM 2: Let Qpa, Qsa € B(Ho, Ha), be a solulion of Eq. (3.17) salisfying together
with Qpo = —Q45 the conditions (3.12). Theu the rensform H' = Q@ THQ with Q =

[g Q}z ] reduces the operator H fo the block diagonal form, W' = diag{H,, II,}
21 2

where H, = Ay + BoapQpa. a,8 = 1,2. 3 # a. At the same time. the operators O, =

ls 0 reduce the Humillonian H, H = Ao Hos , 1z triangular form, H®) =
an Ig BJn .'\3
H. Bag
O;'HO, = [ o el ]
o ¢ 0 H;

PROOFS of both statements are done by direct substituting Q and O, into the definitions
of H’ and H!®) and using the equations (3.13) .
We have to note only that operator Q is reversible since, according to (3.14),

(315) Xoa=1la— QaﬂQBa = I, + QOBQ;[] >l a=12,

and ¥t 0 ; 0
-1 _ | h &z
(3.16) e = [ 0 I X! ] [ ~Q2 12 ] )



COROLLARY 2: Subspaces Hl®) = O,(Ho & {0}) = {f : [ = {fu.Sa) € N, fa €
Ha, f3 = Qoafa} are orthogonal, HM) 1L H?), and reducing for H. H (D(H)(#H'*)) €

Hla),

Really, if f € H?), g € H'D and [ = {fo,Qsafa), 9 = {Qa095.95}, then {f,g) =
{farQas95) + (Qaafar98) = 0 since Qo = —Q75. The invariance of H(®), a = 1,2, in
respeci with H follows from the equality HQ = QH'.

Assertions quite analogous to the Theorem 2 and Corollary 2 one can find in Refs. [22),

[23). Solvability (for sufficiently small || Bog|l) of the equation (3.13) was proved in [22], {23
by rather different method also in the supposition (3.4).
REMARK. It follows from Theorem 2 that operator Q = QX2 with X = diag{X), X2)
is unitary. Consequently, the operator H” = @"HQ = X"/?H'X ~!/2 becomes sclf-adjoint
in H. Since H” = diag{H}, H{'} with H) = . a2 H, X', the operators H!, a =12,
are self-adjoint on D(A,) in H,. Morcover the operators H) = Q. diag{H2,0} - Q=
Q-diag{H,,0}- @ represent parts of the Hamiltonian H in the corresponding invariant
subspaces H(" and H(? (see also Refs. [22], [23]).

Unfortunately, eigenvectors ¥, of the operators H; differ from those for the initial

spectral problem (1.2): ¢", = X2 .

LEMMA 2: Let the kernel Bp,(pu,A), B # a, of the operator Bp, belong to the class Bf:
with 0 > % and Qp, be a solution of Eq. (3.3) salisfying together with Qug = —Qj, the

conditions (3.12). Then
(a) the operator Qg, is an integral operator, Qo : Ho — My, with a kernel Qga(ss, A)

belonging to Bf," ;
(b} the potenticl W, = B,sQp, is an integral operator, W, : H, — H,, with a kernel
Wa(), X') belonging to B}?.
PROOF. At the beginning we prove the asscrtion (h). According to (3.14),
3.17) W, = -Baa/w:, A BaoEaldh)

with H, = Ag + W3 = Ag + QapBog. Since the incqualities (3.12) take place we write
WCH; =)' = ll(Hs = )7 < Caa
for any A € o,. In the diagonal representation (2.2).(2.3), the equation (2.17) turns in
Wa(A, ¥) = —Bog(h, - NH; = ) Baal( - ).
It means that
IWa(X, M) < iBap(As - Niseo - ICHG = 2)" Il - 1 Baal - A)llwg <

(3.18) < Cﬂa"Baﬁ(Av : )"7(5 : "Bﬂﬂ( : *’\')"Na'
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Here, || Bap(A, - Min, = [i IB,‘;(A,;ndeﬂ] . Since 0 > {; we have [[B,a(A, - )in, <
s

“—:(%—”-, |Blls with some c(8), c(8) > 0, depending cnly on 0. Analogously,

XY} T .\ qo’
1Bsal -  A'Miniy = lIBaal X, - NI, < T+P |1 Blla.

where che operator Bog( A, pt), Bag(A 1) : Calst) — Ga(A). is adjoint Lo Bso(s. A).
Estimations similar to (3.18) may be done also for W, (A", A ) =W (A A"}, A, A" € a¢,
A€ og, [Wa(AA") — Wo (A M), A € 040 A" X € 0f. and [W,(A. XY — W (A" \)-
Wo (A A™)+Wo (A" A™)], A, N A%, A" € a5, in tevins of the nars [[Haa( A, - )= Hoa(X", - lix,
and | Bga( -, A") — Bga( -, N)lin,- Estimating the latter through [[Baslle we come to the
inequality
"lVo“U;: L A0y, - "”au";::

with 0 < ¢(8) < 0o. Therefore, we have proved the assertion (b).
To prove the statement (a) we note that according (o (3.3),

Qso = /Ea(dﬂ)Bao ((Aa ~ )" = (4 = p) ' WA, - p)7']

s
or, in the diagonal representation (2.2),(2.3).

Bga{u M) Baolp - WMo = p)"'Wo( . A)
A=-p A—p '

Qﬂa(l‘o A) =

Repeating literally the last part of the proof of the asseetion (b) we come to the incquality

|

HQuollgse < sup  m—-a ( Mallyps +

LA wEos 'A _l’l ul”
A€,

)]
+cl0) - HBoallgge - sup (o = ™Il W, lsgs } 0 < (8) < +oo.
u€ag
Consequently Qg, € Bf: and

1
"Qﬂa"ﬂ S Z : {"Bﬂo"l’ + C(”)Ca,;c,1ﬂ : " ”f'n":j} ) 0< (‘(0) < +00.

This completes the proof of Lemma 2.

COROLLARY 3: If By € BS2, 0> &, then the solution of Eq. (3.3 described by Theo-
rem 1 belongs to the class Bf: , too.

This statement is based on the fact that the mentiz~~d solution satisfies aulomatically
the conditions (3.11) and, hence, the conditions (3.12).
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4. EIGENFUNCTIONS AND THE EXPANSION THEOREM

In the preceding section, we have proved the existence (in the univ bali M, (1} C H,)
of a solution 5, of the basic equation (3.3) only in the case when spectra gy, a5 of
the operators Ay, 4, are separated, dist{o;,0;} = d, > 0. and {£31,l]s - 1By, < 'ij*.
May be. however. Fgs. {1 1) and (3.3) have solations alsa in other cases. That is why
we study the spectral propetties of the operator H, = A, + 3.,0.,, not suppusing that
| Basil: < 5!# ani using p.ore general requirements (3.12) onlv. with O . wnice pusitive
numbers. a.d - 1.2, 3 £ a. Of course, we assurine again that the coudition (3.4)
takes place. Remember that the requirements (3.12) are sufficient for existence Wf the
operators Vo001, As well. the equations (3.13) and (3.14) take place and the . crtous
of Theurem 2 and Lenima 2 are valid.

S let us sappose that Qg, and Q.5 = —@73, are solutivas of Fas. (3.8 and (3.13)
satisfving the conditinis (3.12). It follows from Lemma | that @3, € Ba,H . H ) o well
as Qon € Bos(H ;. Ha). If Ba, € B;,:“, 4> % then. according to Lema 2, Q. € By
and Qa4 € B;f .

By Theoren 2. the operator H' = diag{//,. #,} is connected with the (self-adjoint )
operator H by a similarity trausforin. Thus. the spectra a( /) and ot ;) of the uperators
H,. a = 1,2, are real and o{(H;}Ja(1l;) = oiH) Continuons spectrum o (1) of the
each operator f{, coincides with that of the uperator A, a1, = 7., since dae o
Basll2 < +oc. the potential WV, = B,,Q4. is a compact operator. Sinev o, ()7, = @
we have 7.(11;)(o.(H,) = 0. We show now that the diserete spectra adi,). 0 1.2,
satisfv a sim*lar condition.

Let us suppose that o4(f,) # 8. = € a,(1l.,) and ¢, is the corresponding cigenfunc
tion of Ha. Hav, = 2v,, 1o € D, ) = DA, ). Then, according to coustruction of H,.
we have Hot, = (Ag + Va(Ho))e = (As + Valzhes, == sva. Thus if = € ag0df,) then
= becomes automatically a point of the discrete spectrum of the initial snectral problem
(1.2). At the same time v, becomes it's eigenfunction.

Let us further denote the cigenfunctions of the uperator M., discrete spectrum by
y",(,”, wl(,’) = ug”, keeping for them the same numeration as for eigenvectors of {7, U, =
{uf,’), ufa”}, of the Hamiltonian H. HU/, = z)l/}, z, € c4(5). We assumc that in the case
of multiple discrete cigenvalues, certain =, may be repeated in this nuineration. By 44
we denote the set 44 = {I',,j = 1.2,...} of all the cigenvectors 7).

()

Let 22 be such a subset of 47 that it's elements have the operator H, cigenvectors ¢

in the capacity of the channel a components: &4 = {{,: £, = {u"!. "}, u¥' = w¥").

By Theorem 2, we have U |JU§ = .

THEOREM 3. Let Hz = Ag + BpoQas. corrcspond (for | Bs.0l2 < +95¢) to the same
solution Q.5 = —Qj, of Egs. (3.3) and (3.13) as I, = Ay + B,3Qs.. and the cond:-
tions (3.1z) are valid. Let z; € cs(H,) and Hoaul = :,uf,’) with u¥?), the channel a
component of the eigenvector U, = {uf;",u(L;')} of the operator H, HU, = z,U,. Then
either z, & a4(Hg), B # a, or (if z, € a4(H3)) the veclor uf,,” s not an eigenvector of Hg.

COROLLARY 4: UAUZ = 0.
Statement of Theorem 3 means that discrete spectrum o4 H) is distributed between

discrete spectra o4(Hy) and o4(H,} in such a way that operators /, and H; have not

12


http://tli.it
http://I3.il

“common” eigenvectors U, = {u!),u{’}: simultaneously, component u!”

eigenvector for H,, and u(,j) with the same J, for /1;.
PROOF of the Theorem will be given by contradiction.

Let us suppose that W& = u is an eigenvector of M, corresponding to z, i.e.

can not be

(41) (Aa + BaBQBa ;)0‘(” =0.

If z; € 0, = 0(A,) then automatically =, ¢ o4(!{3) since due to conditions (3. 1‘2)
we have o(Hg)[)o(As) = 0. Thus in the case when z, € o, the assertion of Theorem is

valid.
Let ~; € o(A,). In this case we can rewrite Eq. (1.1) in the form

(4.2) !l’t(,” = —(As - 51)—1 BaJQﬂDd'n(z”'

Let y;aj) = Qpa¥¥’. It follows from (4.2) that

(4.3) v + QoalAa ~ 5,)7 'Y = 0.

We will show that the vector y(” is a solution of the initial spectral problem (1.2) in the
channel g at z = z, and U, = {l,l"(,”,y},”) is an eigenvector of H, HU, = 2,U,. To do
this, we act on both parts of Eq. (4.3) by /{5 — =, remembering that, according to (3.14),
Qsa = —QLs = — [(Hj — A)7' Bsa Eo(d)). We obtain

(H; - 2§ + / (Hj = 2,)(H; — M)7"(5, = A) " Bsa EaldA) Bagyl’ = 0.

Ca

Using the identity (H — z)(H — A"z = A)"' = (= XA)~' = (H - X)~! we find

(H; - 2,)95 + /[(:, =) = (= ) BaaEa(dA) Basyy' = 0

Ta

or, and it is the same,

(4.4) (Hj = 2,095 = Bag(Aa — 2,)7 Bosvy! + QaaBagyy’ = 0.

However H; = Ag — QpaBop. Hence the relation (4.4) turns in equation (1.2) for the
channel 3,

[45 = Bpol Ao = 2,) ™ Bois = 2,Ju5" =
So, we have proved that ym is a solution of the initial problem in the channel 3 and we
did deal with an eigenvector U, = {um ug‘”} of the operator H having the components
ul) = 9§ and uf) = g0,
Let us show that y(’ ) can not be an eigenvector of H corresponding to the eigenvalue
z;. Actually, due to (4.3) we have

(y(” + QBa(Aa - :J)-lB .’iyzij)~ y‘(aj)> =0.

13



On the other hand
a = 1P + (Aa — 2,)7 Baawl), Q5av5").

If y(” is an eigenvector of Hg, Haym = z,ym. then

Qv = —Qanyy' = / ElldN) Bas(thy = N ') = (A, - =)' Bagyy!

Ca

It means that O 0 (
a = |l 1P + 1(Aa = 27" Bagy 1”2 Hlyg 1%

Since a = 0 we get y(’) 0 and, due to (4.2), ¥’ = 0. However, by supposition, ¥¥' # 0.
Thus, we come to a contradiction and y(’ ) can not be an eigenvector of Hs. And so, if
z, € gu(H,) and Hou¥' = z,u¥’ then uf,” is not an eigenvector of H;. The proof of
Theorem 3 is completed.

Let us pay attention to the continuous spectrum of /{, assuming here that 8, ; € Bf:,
0> %, v> 1 and consequently, Qus € Byo. 0.3 = 1.2, 3 # a.

Consider at A’ € a5 the integral equations

4.5 PENANY = T8N = X) = [(Aa = N F10) T THLuE (A N). o = 1,2
where as usually W, = B,5Qga. Since W,, € B7°. the integral operator with the kerncl

e "’q’:‘m is compact in Mpy, § < @ < 0,0 < 7 < 7 (cf. Refs. [20]. [21]). If

X & 04(H,) then Eq. (4.5) for v as well as for :{™ is unignely solvable (sce Ref. [21])
in the class of the form (2.6) distributions.

Denote by W&, Wi¥) . 3¢ — 2, the integral operator with the kernel dv.(,*)(z\, ).
The operator ¥ is bounded and ¥*'D(AY) C D(i1,) {20}, [21]. It follows from
(4.5) that ¥ has the property H,¥{¥ = ¥ A Thus, Qs ¥ (*’( M) = (M- Ag)™!
Bal,‘P(*'( X). Substitution of this expression in (4.5) shows that v{*! satisfies (2.5). Due
{o the uniqueness of Eq. (2.5) solution at A’ ¢ o.,(H) we have v{¥(A, X) = u'2(2, A}
"This means that each elgenfuncnon uEAN), N e 05, A" € a4(H) of the initial spectral
problem problem (1.2) is also an eigenfunction of #,.

Consider the functions $¥’ = w(’) Q. gum and

PEN) = ()= QuanlE) (- X)), X € 6l Let W, WP . He . M., be the

integral operator with the kernel du(,*’(l, X').
THEOREM 4: The functions ¢! {with j such that U, € UZJ) are eigenfunctions of edjoint

operator H3, H, = A, + Q3,Bp,, discrete spectrum, H;ll.v‘(,” = 211/."(,”. Uperalors P
have the property H'lil(*) = ¥ AL At the same time the orthogonality relations take

place: (9, P} = &, WEFGE) = Lalye LA = 0 and WYY = 0. Also, the
Jollowing completeness mlations are valid.
(4.6) 3 U + WP = 1, =12,

JiU,eus



PrOOF. Show for example that - .
4.7 [[;:d.c(.l) = :ld"(,”
(remember that z;, € R). We have

H2pY = (Ao = QusBan) (0! — Qupu’) =

(4.8) = (Ao — Qoo Ba)¥? — (A0Quis — QauBusQos)uy’-
Note that A, = H, — B,3Qsa and, hence,
(4.9) (Aa - QaﬁBﬂa )"'E;.l) = z)'f"f,” - (BaﬂQBa + QQEBDG )d.((:,'

Second term in the right part of (4.9) may be casily expressed through u},”. Actu-
ally, u (’) = —(Ag - z;)” 185,08 (we use again the property a(l,}(Nos = & following
ﬁmnwlm) Since Egs. (3.2) and 1,0 = =z,u!" take place. we find Qo008 = B,pul!
Consequently, -

(BosQpa + QasBoa )V = BsaQusatr’ + Qaisl Az — 2,)(As = 2,) ' Baayd! =

= Bpotl’ = QonlAs — =, 5.

Substituting the expressions obtained into (4.9) and then into (4.8), we get
H0W = 208 — Qug’) + [~ Bos + Quisdis = AaQos + QuilsoQualuy’.

According to the equations (3.13)}, the expression in the square brackets is equal Lo zero
and we come to (4.7).
The equalities H;vi-.-f)( LX) = NeEN-, X) XN € o, are proved quite analogously.
The orthogonality relations (u/'f,’),u-m) oo WEEF WY = 0 and WEGY) = 0 are
trivial. Proofs of the relation W §{*) = 4, IH( . aml the equality (1.6) are very similar.

Both these proofs are based on use of properties of the wave operators {/1¥). As a sample,
we give a proof of the completeness relation (1.6).
Consider the operator

A= Y el )+ ead; =

PRI
(4.10) = Y el - Qo) + W ¥ ~ (Qosuse)|-

U eud

For convenience, we omil signs “+" in notations of yi = uﬁ;', u},? and ¥ taking in
mind for example the case of sign "+". We have from (4.10):
A= Y PG v - YT e Quand)) - Yo, Qe
2V eud 2:U,€ted
It follows from the completeness relations {/{#1{'(#} = | — P fur wave operators {/(*) that
(-, u").

4.11) Vollj, = Uaally, = —lUaglizg — )
z,€0(H)
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Since 13,55 = (Qastips)” = uj,;, we can write with a help of (4.11) that

A= g, +topugs+ D v e+ Y wl Qaaul).
U eud 2 € oqlH)
U, g
In the last sum, the conditions 2, € o4(H) aud U, ¢ U? mean realiy that we deal with
any j such that U € U4. This follows from the equalities Wf JUg = 4 and U O U} = 8

(sec Theorem 3 and Corollary 1), For U, € UZ, the vector uf,” is cigenfunction of Hj,

“,(7}) = l",f,”~ and Q«.,allfyj) = Qaﬁu"(;j = ul?. Thus. A turis in

A= Ul +tagufy+ Y ulN ) = (U 4 Py,
z,€0q(H)

Sinee ("7 4 P = [ we find A = 4, and this completes the proof of Theorem 4.

Theorem 4 means in particular that pait Ii] of operator lf, acting in tie invariant
subspace corresponding to il’s continuous spcetrum o, 15 similar to the opcrator AL,
1 = P A" and spectrum o, is absolutrly cantinuous.

5. INNER PRODUCT MAKING NEW HAMILTONIANS SELF-ADJOINT

We introduce now a new inaner product .. ], in Ho. [fa-galo = (Xafo.90)- fo .90 € Ha.
with X, defined as it Theoremn 2. X, = 1, +@ 14 5 @ = 1.2, The vperator X, is positive
definite. X, > 1,. This means that [, .], satisfies all the axioms of inner product.

THEOREM 5: The operator /.. a = 1,2, is sclf-adjoint on D(A,) in respect with the
inner product [ ., . a.

PRroOOF. It follows from Theorem 2 that operator H' is self-adjoint in H = H, & H; in
respect with the inner product [., .], [f,4] = [X [, g] with X = diag{X,, X;}. Did, since
Q'=Q X' =X"!1Q" wehavefor f.g € D(H') = D(H) = D(A,) 4 D(A;):

H'f,g) = (XQT'HQf,g9) = (¥ - N'Q'HQ/f.q9) =

= (/. Q'HQq) = (/, X - X"'Q"HQg) = [/. H'g]
tHere. we used the fact that in the case of (3.12), @Qf € D(A;) & D(A) il f € D(A)) &
DiAY).
Taking elements f. g in the equality [H'f,¢] = [f,H'g] in the form [ = {f1,0},
g = {g1,0} or £ = {0, f2}, ¢ = {0,492} with one of the components equal to zero and
Tar9a € D(A,), @ = 1,2, one comes to the statement of Theorem.

REMAREK. This Theorem may be proved also in another way making use of the equality
(5.1) I+ QusQop = z UZL:)( .. L’.‘(’J)) + @:)@ﬂ;
5: U etid

which is valid for both signs “+” and “—". In this case, a self-adjointness of H, in
respect with [-, -], follows from the fact that it’s spectrum is real and also ‘rom relations
H2uB g = A0 = §ENE" Y, The equality (5.1) itself is proved by
calculating it's right part in the same way as it was done when the completeness relations
(4.6) were established (see proof of Theorem 4).
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6. SCATTERING PROBLEM

We establish now that operators ¥4 and W) play the same important role describing
a time asymptotics of solutions of the Schrodinger equation

d
(6.1) ld—tf,.(t)— o, [
as in the usual self-adjoint case [20], [21].

THEOREM 6: Operator U, &! = exp{i Hot ) oxpl—iAS) converges strongly if t — Foo, in
respect with the norm || - |2 corresponding to the inner product {-, -lo in Ho. The limit

is equal to s— lim U,(t) = W&,
t—Fx

Since the norms || - [|¥ and || - |j in Ha ave equivalent, |f]| < [1/IX < (1 + [|Qasll -
@521} 21l the same statement takes place also in respect with the initial norm || - ).

THEOREM 7: For any element f§7) ¢ H¢ one can find such unigue element fc(.o’ that
solution f,(t) = exp(—iH, t)f(o) of Eq. (6.1) satisfies the asymplotic condilion

Jim | fa(t) = exp(=iaAl) [ 1E= 0

There czisls the unique clement fi*) € He, sueh that

lin || fo(0) = exp(=iAD) 1| = 0

t—too
Elements f =) and £ are connected by the relation fi) = S04 i),
Sted = wlIT el = B = e el

We do not give here proofs of the Theorems 6 and 7 hecause they are exactly the
same as in the case of one-particle Schrédinger uperator in Ref. [26]

Theorem 7 gives the non-stationary formulation of the scattering problem for a system
described by Hamiltonian //,. Morcover S1°) is a scattering operator for this system.

THEOREM 8: Scalfering operalor S cornerdes with the compontnt =4 of the scaltering
operator S, S = U=1UX) | for a system described by the beo channel Hamiltonian H.

PROOF. Let us show that operator 51 has \h( kernel s, (A V) given by Eq. (2.7). To
do this, remember that P = gl - Q,,az ! (see Theurem 4}, Therefore,

S = (W — uQua) W = W QWY = Tl ).

Here, we have used the properties Wi o Qry = ~-Q.5and Q,;"\I",” = uffn) estab-
lished above. Since
ul= )-ul+)+u( )= 4 (1-(—1-[-‘+)) = Sau.

Use s, =

we come to the statement of Theorem. The proof of Theorem 7 is completed.
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A kernel of the scattering operator $%°) may be presented also in a usual way (2.7)
in terms of the t-matrix t,{z) = W, ~ W,(H, — z)"'W/,, taken on the energy shell. Note
that ¢,(2) differs from T,o(2) introduced in Sec. 2. Did. easy calculations show that

(62) to(z) = Buﬂ[’ﬁ + Qﬂa(Aa - 2)-‘BnJ]—,Qﬁn-
Using the basic equation (3.13) one can rewrite (6.2} in the form
talz) = Thalz) + la(z)

where

fa(z) = Bug[Ag - Bja(Aa — :)_]Hogl-lQag(Aa -z} #0.

However the additional term {,(z) is evidently disappearing on the energy-shell due to
presence of the difference 4, — z as an end factor. Actually, in the diagonal representa-
tion (2.2),(2.3). A, ~ z acts as the factor A~ : vanishiug at = = X +i0. Therefore, kerncls
of t-matrices {, and T,, coincide on the energy surface, ’

Note also that in our case of[ o5 = @. lence we have s, = 0 and Stal — 5 o is
umtary.

7. ON USE OF THE TWO-BODY ENERGY-DEPENDENT POTENTIALS
IN FEW-BODY PROBLEMS

There is a rather conceptual question (see for instance Refs. [7], [10]) concerning a
use of the two-body energy-dependent potentials in few- body non-relativistic scatiering
problems. Lvidently this question is strongly related to the subject of the paper and
we will discuss here three approaches seemced to be reasonable when one tries to embed
energy-dependent potentials in few-body equations.

A customary way to embed such potentials into the center-of-mass frame N-body
Schrodinger equation consists in the following. Namely, one replaces (see papers [6], [¥],
[12], [13] and Refs. therein) the pair energy :,,, argument of the potential V, (z,),
t # j, describing interaction in two-body subsystem {z,j} (i, stand f{or numbers of par-
ticles, i,j = 1,2,...,N) with the difference Z ~ T, between total energy Z of system
and the kinetic energy operator T, of particles, supplementary to the subsystem {t.;}.
For ‘he resolvent-like energy dependent potentials (1.3) this replacement is quite cor-
-rect from mathematical point of view sitice one can reconstruct underlying multichannel
(for instance, four-channel if N=3) self-adjoint Hamiltonian [12]. {13]. Reducing the
spectral problem for this Hamiltonian to the external channel only one gets the N -body
Schradinger equation exactly with the pair potentials V,,(Z ~ 77)). Thus one can guar-
antee that spectrum of this equation is real and the scattering problem for the N--body
system can be based.

However the replacements z,, — Z — 1}, mcet serious conceptual objections for-
mulated in concentrated form by E.W.Schmid [10]. Did, it follows from the energy
conservation law that {c obtain a share of total energy belonging to subsystem {i, j}, one
has to subtract from Z not only T, but also a potential energy of interaction between
particles ¢, and the rest particles of the system. This idea shows really a first way for
the correct (in the context of Ref. [10]) embedding two-body potentials into N-body
equations: one has to redefine pair potentials as solutions V,, of the foilowing system of
equations:

(7.1) Vo=Vo(Z-T,~ Y V)
{e' s} {a}



where {%, j} runs all the pair subsystems. So, the usual embbedings V;,(z,;) — ViAZ-T};)
may be considered only as a zero approximation to solutions V;;{Z) of the system (7.1).
Unfortunately, this system may be treated relatively easy only in the case of linear de-
pendence of the potentials V;;(z;;) on the (pair) energies z;. One can show in this case
that operator-value functions Vi;(Y) of the operator variable Y, Y : Ly(R3V-1)
Lo(R*N-1) may be defined in such a way that solutions of Eqs. (7.1) generate only
real spectrum for the N-body Schrédinger equation?). In the case of the resolvent-like
energy dependence (1.3) of pair interactions onc meets serious obstacles in solving the
system (7.1) connected with a strong non-linearity of it's equations. Also, no underlying
self-adjoint Hamiltonian is still found.

Another way to deal with the two-body energy-dependent potentials in few-body
problems is to replace them with energy-independent ones. In fact, in the present work we
realized namely this idea which was pronounced by B.H.J.McKellar and C.M.McKay [7].
Did, let us denote now a “share” of the total energy of the N-body system belonging
to the pair subsystem {:.;}, by k;,. Then this h;, has to satisfy the operator equation
following from the energy conservation law, too,

(7'2) h,'_, = Ilf;)) + v, + Vu(,‘u)~

where h.('_?) stands for the kinetic energy operator of the pair {i,j} and v;,, for an energy-
independent part of the pair interaction. Remember that the equation (7.2} in nota-
tion (1.4) was a main subject of the present work. If solutions k;, of equations (7.2) be
known, one could substitute the {energy-independent) operators W,; = V,,(h*) in the
N-body Hamiltonian treating them in conventional way as additional energy-independent
potentials. It should be noted however that the potentials IV, are not totally equivalent
to the potentials Vj;(z) given by (1.3) since the Hamiltonian k;; being solution of (7.2),
reproduces only a part of spectrum of the Schrédinger equation

(7.3) (R + vy + Vi () = 29

(see Sec. 4). Forbidden eigenstates correspond normally Lo the spectrum generated by
respective internal Hamiltonian [17]. There is also another question: is the spectrum
of the N-body Hamiltonian real if potentials W, are substituted in? Thing is that
Hamiltonian h;; becomes self-adjoint only in respect with a new inner product in La(R3)
(see Sec. 5). One can overcome this difficulty replacing h,; with similar Hamiltonian
;= Xl»lj/zhi_,-Xl.;‘/z where Xj; is analog for k;, of the operators X, introduced in Sec. 3.
Writing h{; in the form A{; = hf?) + V), one gets a new pair potential V;, which is already
self-adjoint in respect with the standard inner product in L;(R3?). Thus, one may use
then the potentials V; being sure that the N-hody Hamiltonian constructed is Hermitic.
Emphasize that potential V; gives the same two-body spectrum and phase shifts as the
potential v;; + Wy, because h:-j is obtained from h;; by similarity transform. It follows
from Theorems 7 and 8 that the phase shifts given by V| coincide also with those for
Eq. (7.3). Therefore, the operator V;; turns out one of the phase-equivalent potentials for
the two-body subsystem concerned.

So, we have discussed three different approaches to embedding the two-body energy-
dependent potentials in few~-body problems. Certainly, the approaches based on solving
the non-linear equations (7.1) and (7.2) do not seem to be too attractive from the com-
putational point of view. However, in the cases when the internal Hamiltonians of pair

UThe author prepares a paper devoted to this subject.

19



subsystems have a finite discrete spectrum only and the coupling of channels is relatively
small (see Corollary 1 to Theorem 1), the approach based on solving Egs. (7.2) could be
quite realized pumerically.
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