
ИЯФ! 
ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ 

им. Г.И. Будкера СО РАН 

V.V. Sokolov, P. von Brentano 

MIXING PHASES 
OF UNSTABLE TWO-LEVEL SYS EMS 

BUDKERINP 93-95 

НОВОСИБИРСК 



Budker Institute of Nuclear Physics 

V.V. Sokolov and P. von Brentano 

MIXING PHASES 
OF UNSTABLE TWO-LEVEL SYSTEMS 

BudkerlNP 93-95 

NOVOSIBIRSK 
1993 



Mixing phases 
of unstable two­level systems 

V. V. Sokolov 

Budker Institute of Nuclear Physics 
630090, Novosibirsk 90, Russia 

P. von Brcntano 

Institut fur Kernphysik 
Universitat zu Koln, D­50937 Koln, Germany 

A B S T R A C T 

An unstable two­level system decaying into an arbitrary number 
of channels is considered. It is shown that the mixing phases of the 
two overlapping resonances can be expressed in the terms of their par­

tial widths and one additional universal mixing parameter. The latter 
satisfies a sum rule following from the Bell­Steinberger relation. Some 
applications to & doublett of 2 + resonances in 'Be and to the p­o/ sys­

tems are considered. The mixing phases in the 2т and 3* channels are 
found. The mixing energy shifts are also calculated for both systems 
considered. 
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Introduction 
The simplest quantum mechanical two­level model turns out to be a very 
useful concept in many different fields of physics starting from the magnetic 
resonance [1], resonance interaction of atoms with light [2] and the laser 
physics, and up to the fascinating physics of the neutral kaons system [3]. In 
its most primitive form of the stable two­level system, this model finds explicit 
elementary solution given in standard textbooks on quantum mechanics [4]. 
It can be also treated in a beautiful way in terms of the instanton physics [5]. 

In applications the interaction of the two­level system with other degrees 
of freedom always plays however an important role and the simple consider­

ation mentioned above becomes insufficient. The system is then in fact an 
open system and transitions into other states have to be taken into account. 

Generally speaking the density matrix [5] should be used for description 
of an open quantum system. But if the states coupled to the system under 
consideration are sufficiently simple and controllable (they are called "the de­

cay channels" in this case) the S­matrix approach has proved to be adequate 
and useful. The unstable system appears in this approach on an intermedi­

ate stage of a resonance scattering process and then decays into some open 
channel. 

The matrix of the amplitudes of such resonance reactions has a simple 
structure [6,7] 

ПЕ) = А
т

-~^ Л (1) 

being a product of the matrices of amplitudes of formation of the intermediate 
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system, its propagation and the subsequent decay. If, in general, the system 
contains in the given energy region N resonance levels coupled to M channel 
states the matrix Л is a rectangular N x M­matrix composed of the tran­

sition amplitudes «4£, between internal states | m > (m = 1,2,..., N) and 
channel states | с > (c = 1,2,. ..,M). These amplitudes can be considered 
within limited energy intervals distant from thresholds as energy­independent 
quantities. They are real provided that T­invariance holds. 

The evolution of the intermediate unstable system is described according 
to eq. (1) by the non­hermitian matrix 

n = H-l-W, (2) 

which can be considered as an effective Hamiltonian [6­8]. This Hamiltoni­

an acts only within the intrinsic N­dimensional space but acquires, due to 
elimination of the degrees of freedom of motion in the energy continuum, 
an antihermitian part. The hermitian part H is the internal Hamiltionian 
with a discrete spectrum whereas the antihermitian part W originates from 
on­shell self­energy contributions corresponding to open decay channels. By 
this, one gains the ability of a discretiied treatment of the intrinsic dynamics 
of systems embedded in continuum. 

Both the matrices H and W are real and symmetric in T­invariant theory. 
The effective Hamiltonian ti is therefore also symmetric. Due to unitarity 
of the scattering matrix, the antihermitian part W is expressed [6­8] in the 
specific factorised form 

W = AA
T (3) 

in terms of the same transition amplitudes .4£, which appear in the reaction 
matrix (1). All parameters of the resonance scattering amplitudes У" are 
hence presented in the effective Hamiltonian (2)­(3). This effective Hamilto­

nian plays an important role in the theory of resonance reactions [8]. 
The eigenenergies and eigenstates of the effective Hamiltonian are of spe­

cial interest. They are found from matrix equation 

W* = Ш , (4) 

where £ is the diagonal matrix of complex energies Em — Em — j T m with 
Em and Г т being the energy and width of m­th resonance state. Such states 
form the columns of the N x N matrix *. Inasmuch as the matrix of effecrive 
Hamiltonian И is symmetric, the matrix of eigenstates Ф can be chosen to 
be complex orthogonal [8] 
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Ф
Т

Ф = фф
т = 1 . (5) 

Note that the normalization of eigenstates 5^ m Ф т о = 1 following from (5) 
differs from the condition £ m |Ф Т О |

2 = 1 osed in the elementary particle 
physics [3] and corresponds to that usually adopted in the theory of nuclear 
reactions [9]. We found this choice to be more convenient for our purposes. 

Contrary to (5), the matrix 

U = Ф+Ф (6) 

is not the unit one. Decaying states are not, in general, orthogonal. It is easy 
to prove [8] that 

tf£­£
+

tf = ­ г Ф
+

И
г

¥ = ­ г Д " Л
т

. (7) 

This is a matrix version of the well­known Bell­Steinberger relation [3]. Unlike 
A, the tilted matrix 

A = Ф
Т

Л (8) 

is complex due to complexity of the eigenvectors of the effective Hamiltonian. 
The complex n atrlx elements A^ play the role of the decay amplitudes of 
unstable states. The on­ and off­diagonal elements of eq. (7) are 

i » _ .a 

* •» = 7} У. An = Z_i m i V4 
с с 

E ­ ^ ^
= i

( ^ ­
£

m ) ^ m n . (10) 
с 

The quantities Г т are the partial widths by definition. 
The matrix of the eigenstates Ф is used to represent the reaction ampli­

tudes eq. (1) in the explicit resonance form 

T"'(E) = ^ ^ ^ . (И) 
TO 

Only one term in the sum (11) dominates in the vicinity of a given reaction 
energy Б provided that resonances are well separated i.e. the widths of 
resonances are much less than spacings between them. It can be easily seen 
that in this case all eigenstates of the effenctive Hamiltonian are real, the 
matrix (6) coincides with the unit matrix and the ?.tnplitudes A\ = ­i/TJ^ 
are real. The energy dependence of cross­sections has therefore the standard 
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Breit­Wigner form defined by the energy of the resonance and its partial 
widths. 

In the opposite case of overlapping resonances, the amplitudes 

Д5. S v / r ^ y t e ' < (12) 

are complex and the reaction energy spectrum is formed by a non­trivial 
interference of different terms in the sum (11) corresponding to these reso­

nances. This spectrum can not be analysed in term of energies and partial 
widths only. The mixing phases a.c

m play in this analysis an important role. 
In what follows we will consider the decay properties in the special case 

of a system with only two overlapping resonances. Various aspects of this 
problem have attracted attention before this work [7,10,12,13,14]. Recently, 
these properties were discussed in the frame of the effective Hamiltonian ap­

proach in a number of papers [15­17] by one of the authors in the special case 
when only one decay channel is open. In the present paper, we extend this 
consideration to an arbitrary number of open channels. We will show that, 
for any number of channels, the mixing phases a°n can be eliminated from 
the decay energy spectrum of an unstable two­level system and this spectrum 
is expressed only in terms of energies and partial widths of resonances and 
one additional universal parameter which satisfies a sum rule following from 
the Bell­Steinberger relation (10). 

Two­level system 
1. The orthogonal matrix of eigenvectors of a 2x2 symmetric matrix coincides 
with the well­known matrix of rotation in a plane provided that this symmet­

ric matrix is real. The matrix Ф depends then on the only real parameter, the 
angle of rotation in the plane. To diagonalise a complex symmetric matrix 
one needs a complex orthogonal matrix which still can be presented in the 
same form of plane rotation 

* = (
 C

°f* **) (13) 
^ ­ s m x cosx J 

but with complex angle x — Xa + »Xa­ The imaginary part xa plays an im­

portant role describing the special mixtures of the originally bounded states 
which forms the unstable (resonance) states under consideration. Another 
parametriiation which is frequently used in particle physics [3,7,10­13] looks 
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like 

Ф = , ' f
1 - ; ) . (н) 

After corresponding renormalization of eigenvectors the two parameters can 
be connected by the simple formula e = tan x­

The complex decay amplitudes A^ are therefore 

A\ = c o s x ^ ­ s i n x ^ , , 1 5 > 
X\ = sin x­^i + cos x-A? • 

Since the quantities A^ are real, all phases ajj, are governed by the parameter 
X2 only­ I* leads to two conditions 

s\nhx2{ReA{)» cosh хг{1тА1) = О, 
coshxa( /m^) + sinhx2(^eiS) = 0. 

l *• = ­ tanh xa. 
RtA\ RtAl 
RtA\ lmA\ 
RtAl Im­45 

(17) 
= ­ 1 

are therefore channel­independent. Using the definition (12) and the fact 
that in the two­resonance case 17ц = U22 (see eq.(6) and eq.(21) below) one 
easily obtains the equations 

tan a\ tan a | = — tanh
2

X2. 
(T{ ­ tanh

2 хгГ^) tana\ + (Г| ­ tanh
2 Х2П) tan a\ = 0 , 

which give" 

­ , rS­ tanh
2

X2r; , , 
tan

2 a\ = ­3 *
2 ' tanh

2 xa , 
r 5 ­ t a n h

2

x 3 r 5 

, e r f ­ t a n h
2

x j r | . , * ' 
tan

a a% = ­* r­^­
2

­ tanh
2 Xs • 

2 r | ­ t a n h
2

x j r i 

One of the combinations of the partial widths in the fractions in r.h.s. 
of eqs. (19) is certainly positive. For eqs. (19) to be consistent, the other 
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combination must be also positive. It should be provided by the value of \2 
which is not a free parameter but is deteimened by the sum rule given below 
(see eq. (24)). 

The absolute signs of tana£, are left uncertain by eqs. (19) though we 
can see from the first relation in eqs. (18) that they ate opposite for the two 
resonances. The cross­section and the decay energy spectrum are expressed 
in the terms of sine and cosine of the phase differences <x\ — a.% which can be 
restricted to the interval [0, it]. The sine is positive in this mteival whereas the 
cosine can be positive or negative depending on whether the phase difference 
is less than - or exceeds this value. Only the absolute value of the cos(af—aij) 
is fixed howevei by eq.(18). With all this taken into account, we arrive from 
the eqs. (18), (19) at 

sin(ati ­ ac

2) 

cos(a\ ­ oij) 

Two solutions symmetric with respect to the value | are given by (20) for 
each phase difference a\ — <*\. One can not choo.se one of them on this stage. 

Let us now make use the Bell­Steinberger relation (10). With the paramet­

rixation (13), the non­orthogonality matrix (6) is 

/ cod.3» ***?») ^ ( 2 1 ) 

\̂  ­»einh2xa cosh 2хз / 
The relation (10) is therefore equivalent to the two conditions 

£ N / F f r T s i n ( a i ­ a $ ) = ­ i ( r 1 + r 3 ) t a n h 2 X 2 l (22) 
С 

£ v f f r f « > » (
e

i ­ « j ) = ( B i ­ £ 2 ) t a n h 2 x i . (23) 
e 

The first of them is identically satisfied by eq. (20) whereas the condition 
(23) gives the eon­trivial sum rule which can be reduced after some algebra 
to 

E S t ^ r j Г $ ­ i smb.»2 X , ( I f ­ Г5)
1 = (Br ­ Et)smh2X>. (24) 
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1£l±Iiu n h 2v 
" 2 ^ T W

t a n h 2 X 3 > 

у/(Г\ ­ tanh
2 х»Г§)(Г§ ­ tanh

3 ^Tj)
 ( 2 0 ) 

(l + tanh
2

xa)vTtrf 
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Here, the signs Sc in front of the square roots are still uncertain in accordance 
with the second equation (20). However, since the value of physical parameter 
X2 is unique, all signs in (24) should be as well determined in selfconsistent 
way by the same sum rule. Some additional information can be also used 
in a concrete situation (see, for example, discussion of the p — u> mixing 
below), The numeration of the resonances is chosen in such a way that 
(J?2 — Ei) > 0. The equation (24) defines the parameter хз '

n the terms of 
the spacing between the resonances and their partial widths. 

2. The effective Hamiltonian H of two­resonance system being a 2x2 
complex symmetric matrix is determined by 6 real combinations of the S­

matrix parameters. In general, it can be represented in the form 

where two initial "unperturbed" resonances with complex energies e m — | 7 m 

are mixed by the internal interaction \6t as well as by the external interaction 
with amplitudes / £ , via the continuum; 

T r ^ E W : cos/3 = £ * ^ P . (26) 

The six elements of the matrix (25) are connected by the formula 

П = * £ *
T (27) 

to the complex energies of the two resonances £j and f j (4 real parameters) 
and the complex angle x introduced in the previous point (2 real parameters). 
Five of these parameters, the energies and widths as well as the imaginary 
par* xii

 a i e invariant under arbitrary real orthogonal transformation of the 
intrinsic basis. As we have shown above, the parameter xa is defined by the 
energy spliting and partial widths of resonances. Contrary to this, the sixth 
parameter, the real angl' xii depends on the choice of the basis of intrinsic 
motiop >­• choice is dictated by physical reasons. We stress that the real* 
decay :•.­., ;•• » .4J, are akto basis­dependent; decays of actual resonances 
are dt о л ,j the complex amptitades ,*£,. 

1 • iule choices of the intrinsic basis are of special interest. One can 
diagonause by some real orthogonal transformation either the hermitian or 
the «att­kexmitiaa part of H . In the first cue 6e = 0 and two unperturbed 
resonances are mixed by a purely imaginary interaction via the continuum 
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("external mixing"). The condition Se — 0 fixes angle xi
 t o satisfy the 

condition 
л p P 

tan 2Xi = ­ ­ y ~ Y
t a n h 2

*2 • (
2 8

) 

The five remaining matrix elements in (25) can then be easily expressed 
in terms of the complex energies £i and E2 and of the parameter %г of "physi­

cal" r­sonance states. One gets 

( * i ­ * 2 )
2 = [ ( E i ­ ^ 2 ) 4 j ( r 1 ­ r 2 )

2

t a n h
3

2 x 2 cosh
2 2 X 2 , 

( 7 1 ­ 7 2 ) = T­­ r — г i . 
[(Si ­ E%? + 1 (1\ ­ Г 2 )

2 tanh
2 2 X 2 j cosh

2 2 X 2 

7! 7a cos
3 я — 

( E i ­ ^ ' + K r j ­ r , )
2 

/3 = j Ь ; i- r s i n h
2

2 X 2 , (30) 
[ ( £ l ­ £ ; 3 )

2 + i ( r 1 ­ r J )
2

t a n h
2

2 x , ] 

whereas the two equalities • . 

tt + £3 = Et + Ej, 7 i + 7 2 =Г1 + Г 2 (31) 

provided by the invariance of matrix trace. 
In the second case, cos/3 = 0 and the initial resonances are mixed by a 
1 internal interaction ("internal mixing"). The angle Xi is now given by 

are 

real 

tan 2xi = 2 ^ f
2 tanh 2X2 (32) 

l i ­ 1 j 
and 

( j g | ­ 3 i )
,

( r l ­ r 3 ) ' 

,)
2

1 cosh
3 2x 2 ' 

(33) 
•* j(£i ­ £ 2 )

3 tanh
3 2X2 + i (Г, ­ Г,)

3

] cosh
3 2x2' 

(7i ­ 7 » ) * = 4 [ ( £ i ­ E 3 )
,

U n h
3

2 x 3 + J ( . r J ­ r 2 )
3

j c o s h
3

2 x 2 , 

10 



f(JSi­Jfc)2 + i ( r i ­ r , ) 2 ] a 

(6ej* = T != ­ =! Ti­sinh^xz. (34) 
[(^! ­ E2f tanh

2 2 X 2 + | (14 ­ Г 2 )
2

] 

Note that, as it can be easily seen from cqs. (29) and (33), the attraction­

repulsion theorems established in [16] foi the single­channel case remain valid 
also for arbitrary number of channels (see also [15]). 

3. Additional simplifications emerge if only one decay channel is open 
since the partial widths of the resonances coincide in this case with the total 
widths. One can therefore find the parameter X2 explicitly. To do this, one 
can take into account that one of the initial widths у vanishes in the internal 
mixing basis whereas another is equal to sum Ti + Г 2 [8]. It gives 

, 2 , . . 1ЧГ2 
(El-E2)

2

+L{T1 + r2)
2

' 
tanh

2 2 X 3 = — „ t 2 ' ~ j . (35) 

The formulae (29), (30) and (33), (34) are reduced after substitution cf eq. 
(35) to the corresponding expressions of the ref. [16]. In particular, 

w S = 4

( F ^ h ­ ^
) 2 +

i
( r i + r 2 ) 3 (36) 

We will use this equality in the next section. At last the mixing phase can 
be easily found to be [7] 

t a n ( « 1 ­ a J ) = | ^ | i . (37) 

Applications 
The resonances mixed due to violation of an approximate symmetry represent 
nice special patterns of overlapping resonances. The isospin symmetry or CP­

symmetry broken in the decays of the neutral K­mesons are typical examples. 
The initial symmetry prompts a natural choice of the intrinsic basis in these 
cases. 

a) 2 + doublet* in 8Be 
The well­known doublett of 2 + states of *Be with energies 16,7 and 17,0MeV 
decaying into the two­a­partkle channel with sero isospin are formed by two 
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states with isospins 1 and 0. These states are considered to be composed 
from the two charge conjugate states 

r « + p > = ( ; ) , гв«+»>=(;).­ OS) 
From the charge symmetry one expects that the latter states have near­

ly equal energies and decay amplitudes. In the limit of the exact charge 
symmetry Hamiltonian matrix (25) has in the basis of constituents (38) the 
form 

H = (
 e o V

) -
l

- ( * > *>) (39) 
V v «о / 4 V To ­70 /

 v 

clearly manifesting this symmetry. 
The matrix (39) can be diagonalized by the real orthogonal transformation 

given by the matrix 

of eigenvectors 

ID = _L(|^ + P ) ­ r B e + n)) = ­ L ( _
1

1 ) , 

|0) = ^ ( j ^ + p ) + | ^ e + „)) = i ( 1

1

) 

with isospins 1 and 0 correspondingly. The diagonal form 

n-(
£

-
v ° ^ 

\ 0 e + t , ­ j 7 o , / 
directly reveals the isospin conservation due to the underlying charge sym­

metry: the state with isospin 1 is stable. 
Let us now suppose that the charge symmetry is broken only in the en­

ergies of the constituents (38) whereas their decay amplitudes remain equal. 
Then the effective Hamiltonian is perturbed by the energy­shift matrix 

(40) 

(41) 

(42) 

"­(Г­kbU*) (43) 

and gains therefore in the basis (41) the internal­mixing form given by the 
sum of eq. (42) and r.h.s. of eq. (43). Using the formula (36) of the previous 
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section and the experimental data by Bonn group [18] we can find the energy 
difference of the constituent states (38) 

\S(\ = 296.6 keV. (44) 

b) The system of p and u> mesons 
The system of the two neutral vector mesons p° and ш° is another example of 
resonance mixing caused by violation of the isospin conservation [19]. These 
mesons are composed of the two two­quark states, \uu) and \dd), which can 
decay into a number of channels, the 2т­ and Зт­ channels being the most 
important ones. Two orthogonal states with opposite G­parities and isospins 
1 and 0 decaying only into 2т­ and Зт channels are formed provided that the 
light quarks have equal masses and one neglects the electro­weak interaction. 
In the basis of these states the matrix of real decay amplitudes looks like 

where we have used the value of isospin to label the states and channels. 
The mass shift 6m=Se of the constituent states due to different masses 

of u and d quarks breaks the isotopic symmetry and forms the two mixed 
physical states \p) and |w). Suggesting that this shift is the only cause of 
symmetry breaking one finds from eqs. (45) and (IS) the complex decay 
amplitudes 

Я*,* = cosxVW A** = ­ sin Xyffy 

It leads immediately to 

(46) 

tan ( a * * ­ « * ' ) = ­ t a n (<*£*­<£*) ( 4 7 ) 

and 
Г

Р' = &«* *
 0 6 3 *

 10

~*
Г

е • (
4 8

) 

These relations have good accuracy in the frame of the adopted mechanism 
of symmetry breaking since they can be violated only by electromagnetic 
corrections, which can create small off­diagonal elements in the amplitude 
matrix (45). The width I** is not known experimentally. In view of our 
discussion and the unambigous prediction (47) it would be interesting to 
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measure this width. This can be done presumably at the planed Бафпе 
accelerator. 

The established relations (47), (48) allow one to solve exactly the equation 
(24). In particular , the second connection determines the relative sign of the 
two terms in this sum rule. Up to the terms of higher order on the ratio ­p*­

one obtains 

^2X" ^-IfJul-тЛ- liS) 

It leads to the expression for the mixing phases 

tan « ­ a
2

J) = ­ tan « ­ <&) = l ^
2

^ - * 5.15 , (50) 

which differs from that given in ref.[13] by sign in front of the width of w­

meson. We stress in this connection that the accuracy of the eq. (50) is 
Y~ (or, more exactly, ­p̂ — with electomagnetic decays taken into account) 
rather than £*. 

Since the matrix (45) of the amplitudes is diagonal the effective Hamil­

tonian of the p — w system has in the adopted approximation the internal 
mixing form again. The formulae (34) and (49) give for the mixing mass shift 

|6m| = 2 [ ( m „ ­ m p )
2 + i ( r p ­ r w )

2

l №-\ «5.07MeV. (51) 

This value is only 7% less than the estimate of ref.[17] obtained by a somewhat 
tricky one­channel approximation. 

We have considered an unstable twc­ievel system decaying into a number 
of open channels. It is shown that the mixing phases of the two overlapping 
resonances can be obtained from their partial width and one additional mix­

ing parameter. Applications are made to the dcublett of resonances in
 8

Be 
and to the p — w­system. In particular one obtains the 3x decay width of the 
p meson to be Г*» = 0.6310­

4
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