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FOREWORD

One important aspect contributing to the enhancement of nuclear safety in recent years
is the increasing use of computer technology. Introducing computer capabilities into the
control rooms resulted in the development of computerized operator support systems. With
time, these systems evolved into decision making aids with capabilities for diagnosis, trend
analysis and assessment of recovery actions. A further step is the introduction of expert
systems where large knowledge bases are utilized to give advice to operators when faced with
difficult situations.

The International Atomic Energy Agency has sponsored a number of meetings which
have explored the application of expert systems technology for use by the nuclear industry.
Reports produced from these meetings have examined expert systems in terms of their
technical foundation, the current state of their use and their future potential. The purpose of
this report is to review the current trends in this area.
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1. INTRODUCTION

The International Atomic Energy Agency has sponsored a number of meetings which
have explored the application of expert systems technology for use by the nuclear industry.
Reports produced from these meetings have examined expert systems in terms of their
technical foundation (October 1988 [1]), the current state of their use (October 1991 [2]) and
their future potential (September 1992 [3]). The purpose of this report is not to repeat what
has already been accomplished in the area of expert system evaluation, but to establish the
framework for an JAEA specialists meeting, which will examine the current trends in this
area.

In general, conclusions from previous IAEA studies of expert systems suggest that the
field is developing rapidly and that measures should be taken to ensure that their future
development addresses several important technical and implementation issues. This is
especially important within the nuclear industry, where the use of expert systems has been
shown to be a critical asset in the management of nuclear facilities. Previous IAEA reports
have concluded that, now that this technology is maturing, it is time to pursue the use of
standardized tools so that development time and cost can be reduced. Additional areas of
emphasis need to be applied to the process of expert system validation and verification, the
use of sound ergonomics in the development of the user interface, and improvements made
in the way this technology is introduced to plant management.

Over 300 expert systems have been developed corresponding to 60 distinct fields of
applications within the nuclear industry [4]. Many of these systems are now commercially
available, although the majority remain in the prototype stage of development. The rapid
progress in this field has been brought about through advances in computer processing speed,
the commercial availability of rapid prototyping software, and improvements in techniques
of building knowledge bases, to name a few. This trend will continue to the extent that
preparations need to be made for ensuring that the necessary supporting resources are
provided by the industry as the technology is integrated into plant operations. This will
become a more critical requirement as new expert system applications are fielded.

There are three major objectives of this report. Each relates to the development of
expert systems which improve the safety and efficiency of nuclear facility operations. The
first objective is to identify the major distinct applications of expert systems as they relate
to nuclear safety. The second objective is to identify future expert system development
trends in order to help anticipate emerging tools which may spark rapid development or
identify trends which may hinder its growth. The third objective is to identify development
challenges.

2. NUCLEAR SAFETY APPLICATIONS

One of the key reasons why expert systems have demonstrated such great potential
within the nuclear industry is due to their ability to assist in the management, diagnosis, and
formulation of decisions [S]. Not as a substitute, but rather as an assistant, expert systems
can be used to improve plant safety by increasing the operator’s comprehension and
efficiency. This is especially the case in areas where plant safety is directly affected.



2.1. PLANT SAFETY APPLICATIONS

Previous IAEA reports have identified a large number of both on- and off-line expert
system applications under development throughout the world. Although one can argue that
any application can be related to improving safe plant operations, it may be more relevant
for this report to discuss applications which are directly related to plant safety on a
day-to-day basis. Areas not directly related to plant safety are subject to the same conclusions
relative to future development trends as those which are safety related.

Safety applications include those related to component condition assessment and safety
system monitoring, alarm and post trip analysis, emergency planning and response, risk
assessment and accident diagnosis. There are a number of expert systems which can also be
classified as general operator advisors. These systems integrate databases, such as technical
specifications and plant procedures, into near real-time plant operations. Table I summarizes
the general expert system fields.

2.2. IMPLEMENTATION CHALLENGES

As expert systems development moves from concept through prototype into
commercialization and implementation, many of the key success factors begin to emerge.
These success factors can also be represented as obstacles to their successful use by the
industry. Often, it is only through a technology’s use that actual performance benefits can
be realized. This is especially the case with expert systems. Listed below are many of the
more recent issues which must be addressed if one expects this field to mature to a point
where their potential benefit can be fully realized.

1. How can user requirements be better defined within the system specification?

Often the design and early development of an expert system is launched without the
direct involvement of facility personnel. When the system is prepared for plant testing,
significant modifications may be expected because of unacceptable performance features
identified by plant personnel. This is a problem more related to the organizational split
between those individuals developing the expert system code (typically the research and
development department or the engineering department) and plant operations personnel.
Improvements in the manner in which the expert system subject matter experts are involved
in the system’s development need to be made.

2.  What role can (or should) the nuclear facility play in the development of the expert
system?

This issue relates to the more global involvement of the facility. Whereas user needs
can be addressed through the early involvement of plant experts, the plants’ involvement at
all levels - both technical and management - needs to be examined. The management of the
Nuclear Power Plants has to be adjusted to satisfy the requirements of the future expert
system advisors. The final goal of the plant operation should not be forgotten at any stage
of expert system development: efficient and safe electricity production.

3. What measures are in place that ensure the quality of the system? How can this quality
be tested?

Few, if any, quality standards are available for those developing expert systems. Since these
systems are being developed for use in the design, operation, administration, and
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TABLEI. GENERAL NUCLEAR INDUSTRY EXPERT SYSTEM APPLICATION AREAS

PLANT OPERATIONS

Plant status monitoring

Alarm diagnosis and filtering

Sensor validation

Procedure tracking

Maintenance planning and scheduling

Technical specification conformance

Risk monitoring

Maintenance risk assessment

Plant thermal performance

Support system monitoring and analysis
Chemical and volume control system
Diesel generator servicing
Water treatment analysis
Radiation protection
Xenon oscillations

Loose parts detection

Noise analysis

Steam generator leak detection

Causal analysis of plant behavior

Outage planning

Refuelling optimization and management

EMERGENCY PLANNING AND RESPONSE

Emergency preparedness and response
On-site emergency response
Off-site emergency response

Design basis accident management

Severe accident management

Plant security monitoring

Fire protection

Transient analysis and safety calculations

maintenance of facilities - all areas controlled by quality standards - it is reasonable to expect
that such controls be made available specifically for expert systems. Existing software
configuration management standards, although developed in response to quality requirements,
are not necessarily relevant to the design and testing of expert system software. The
standards for expert system shells and knowledge bases should be developed separately.

4. Have appropriate validation and verification (V&V) procedures been established?

Related to the area of quality control is that of expert system software V&V. Although
guidelines have been developed for the design and development of expert systems [6], the
content validity of a complex knowledge base can never be fully determined. As a result,
future developers need to take into consideration site specific V&V procedures when
evaluating the accuracy and completeness of their knowledge bases regardless of how the
knowledge base is represented.



5. What organizational issues need to be resolved in order to ensure that the expert
systems can be successfully integrated into the facility?

In some instances, expert systems will find their way into plant operations which
involve personnel who are responsible for managing severe plant upset conditions (i.e.
accident managers) and licensed personnel in the control room who are directly responsible
for plant control decisions. Conflicts may emerge which may result in contradictions in plant
control recommendations due to conflicting advice from within the control room and adjacent
technical support centres or nearby emergency support facilities. The users must be defined
early in the system development process. The hierarchy and responsibilities of each subject
involved in management of severe situations should be clearly defined in advance.

6. What training resources are available to prepare and qualify expert system users?

The user of the expert system is typically not the developer. As a consequence, a
significant amount of preparation needs to be made toward the development of training
materials (manuals, training software, accident scenarios, etc.) for the end user. Indeed,
the development of the software, from the user interface to the maintenance and evolution
of the software, should incorporate realistic training requirements. Guidelines for the
development of computer aided training software are available; however, little is available
specific to expert systems. As a consequence, specific expert system training guidelines may
be necessary as prototype systems are commercialized for plant use. Since expert systems
are generally not safety grade equipment and their operation in emergency cases is therefore
not guaranteed, the training of the users should emphasize the solely advisory role of such
tools.

7.  What role should the licensing play in the selection, installation, and verification of the
system?

In general, if realistic studies of expert system effectiveness and reliability are
performed, then some degree of regulatory approval may be realized. To date, however,
reliance on computer-aided support is discouraged unless information is received in an
advisory capacity in parallel with plant instrument information displays. As a consequence,
plant licensing personnel need to be aware of any software, especially software used for
operations advisement, that directly or indirectly affects safe plant operation and
maintenance. The development of expert systems has not yet reached the point where it may
replace any part of plant operation subject to regulatory body licensing.

8.  What limitations need to be placed over the ’levels of assistance’ provided by the expert
system?

The greater the degree of modelling accuracy of an expert system and the more realistic
it can display this information, the greater becomes the degree of operator acceptance. It is
likely that some degree of "perceptual capture” may result from high fidelity systems.
Consequently, a system designed as an advisor may become too close to an assistant to the
extent that the technical foundation of the advisory support is not questioned by the user.
This is also an issue related to system failure. Future systems must provide obvious
indications to the user if any failures in logic occur, regardless of how subtle.

9.  What criteria should be used for defining an acceptable or optimum user interface?

There are a number of man-machine interface guidelines in print which provide some
degree of guidance for the design of computer generated information displays. Little
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guidance, however, is available for the design of expert system user interfaces. Although
work in this area is progressing, it is important for the ultimate users to ensure that their
requirements are compatible with good practices of display design. Independent assessments
of information display effectiveness need to be provided at all stages of the expert system
user interface design. With the advancement of graphical user interfaces, which utilize
simple icon point and click tasks, the simplicity of the interface should become more
common.

10. What measures have been implemented to ensure that future system changes can be
conveniently made?

The art of expert systems resides in the way human experience is encoded in various
knowledge representation schemes within a computer. Humans build on previous knowledge
in complex and unique ways. Building upon previous knowledge within the structure of
software code is not as obvious and elegant as human learning. This represents a major
challenge for expert system developers. How can knowledge representation schemes
(inference engine) and content (knowledge base) change as system modifications are made?

Ideally, the inference engine is designed with the need for future changes in mind.
However, this is not always the case. It is usually the case that the knowledge base will
change and, therefore, provisions must be made for this requirement. This represents a
significant expert system maintenance issue and cost element.

11. What plant modifications need to be made in order to fully integrate an expert system
into the facility?

In addition to the organizational and procedural issues which need to be addressed as
expert systems are integrated into a facility, what are the plant hardware and software
interface modifications required of on-line, near real-time systems? This is a system
implementation element which is often overlooked until the later stages of the system’s
development. Early on in the design process special preparations need to be made to ensure
that the physical interface between the data acquisition component of the expert system can
"talk" to the plant computer. This interface usually consists of software modules, or "client
servers", data format protocols and transmission standards. Defining the communication
interface with the plant’s computer early in the design process helps to bridge the gap
between the facility and the development team. It also provides additional assurance that the
system is compatible with plant dynamics.

Each of the issues cited above represents design and implementation issues which contribute
to the overall success of an expert system development project. Whereas early development
issues focused on identifying and refining technical solutions, new challenges are emerging
which deal with the implementation and management of this technology. Successful
programs in the future will demonstrate a balance among all of these variables.

3. FUTURE TRENDS
Improvements in expert system development tools are expected to be realized over the
next few years. Improvements in computing speed and reductions in hardware costs are

expected to continue throughout the next decade. The development of expert systems will
become more affordable. As a result, additional applications can be expected to emerge
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which will broaden the usefulness and appeal of this technology. The following discussions
summarize the basic areas of anticipated future change.

3.1. EXPERT SYSTEM DEVELOPMENT TOOLS

Early commercial expert system shells dominated the expert system market for a
number of years. Although their use is widespread, there is a trend toward the use of
object-oriented languages which can be more specifically tailored to solve logical problems
independent of large shells. Commercial software packages in the future will allow the user
to develop relationships without the overhead associated with generic artificial intelligence
(AI) programming languages.

New, more efficient schemes for knowledge representation are emerging in the form
of adaptive software, where the logic rules are self-organizing and reflect the ability of
software to mirror events which it monitors in the real world. Adaptive software
development tools are becoming commercially available to the non-expert programmer, such
that decision support system concepts can be practically implemented without extensive
knowledge of inference engine mechanics. Prototype tools are also becoming available for
various types of personal computers and workstations.

3.2. SOFTWARE INTEGRATION

Expert systems which provide decision support at various levels of facility operation
will require access to a wider variety of information sources. Consequently, core expert
system programs will tap databases and communicate with a number of operator interfaces.
For instance, in the case where an on-line advisor provides recommendations for maintenance
priority, information must be accessed relative to the current state of particular plant
components, previous maintenance records, pipe and instrumentation drawings, planning
documentation and techmical manuals. This information integration requirement will
necessitate unique network design and traffic management techniques.

How all of this information is integrated will depend on information management
schemes which will combine traditional logic structure, encoded as rules, with perhaps
artificial neural networks - all accessing knowledge retained within a relational database. In
order to provide a greater source of information support to the user, more data integration
can be anticipated. In order to achieve this, more standardized programming tools will be
required. Standard operating systems such as UNIX and DOS, standard communication
protocols, and standard object oriented programming languages will be required in order to
fully realize the potential of these hybrid expert systems.

3.3. GRAPHICAL USER INTERFACE

Two major system design issues will play an important role in the speed with which
expert systems are developed and introduced to industry. First is the manner in which
information is accessed and displayed to the user. Given the complexity of large on-line
expert systems, unique methods must be used to provide the user with all levels of
information understanding. Future user interfaces will be graphical in nature. Icons and
windows will replace menu options and decision trees. Drawings will replace or augment
textual information displays. Multi-dimensional graphics will represent flat surface displays
and new techniques in data visualization and user tailored adaptive interfaces will emerge.
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The control over the expert system will be achieved through point and click tasks, and
word processing skill requirements will be kept to a minimum. Interface software will most
probably be developed under X-Windows and Motif (UNIX) and Windows-3 (PC). A second
design issue relates to the speed with which concepts are formalized and tested. Rapid
prototyping software will become available that will allow the development and testing of
user interfaces quickly, through the use of macro graphics codes. The ergonomics of
information displays, as well as the quality of expert system logic can be assessed more
rapidly and more thoroughly.

3.4. REAL-TIME PLANT INTERFACE

As the value of on-line expert systems is demonstrated, special requirements will
surface relative to sensor health or validation. Basic questions regarding the validity of the
monitored process must be assessed prior to, or in parallel with, the display of information
to the user. Condition monitoring of the sensors must be distinguished from the condition
of the system. As a consequence, there will be a greater use of sensor validation programs
providing information on both component and system status. Therefore, conclusions
regarding system performance can be made with some degree of confidence of parameter
performance.

3.5. HYBRID SYSTEMS

The trend toward information integration was cited earlier in this report. As we learn
to better match the problem with the solution, it is becoming clear that more than one
solution may be required to solve a particular problem. In certain cases, complex
non-deterministic problems will require access to simple information sources. Therefore,
look-up tables may serve as information sources for logic driven programs, the output of
which may serve an adaptive algorithm. All of the data traffic will be controlled by an
information network manager. An example of such a circumstance is discussed below.

Expert systems which are designed for process monitoring must manipulate data in a
variety of ways. This includes some form of data acquisition and quality verification, limit
checking, pattern detection and matching, decision making, and user communication. The
flow of data and program control commands can be complex. Although statistical methods
are available to test data integrity and sensor validity, expert systems are being developed
which apply rules to determine data quality. In cases where a rule-based approach may not
be fast enough to keep up with high data rates, other less computationally intensive
approaches may be more appropriate. This may take the form of an artificial neural
network, a fuzzy logic approach, or related adaptive or probabilistic method. Regardless of
how data are acquired or checked, the hybrid nature of the system becomes obvious as one
moves into the processing of the data. Pattern matching logic may be conducted with the use
of logical rules or, in the case of a very complex non-deterministic problem, an adaptive
approach may be more appropriate. Perhaps more than one approach may be applied, in a
serial fashion, to solve one problem. For instance, a set of rules may help structure data into
distinct classes prior to being processed by an adaptive algorithm.

Finally, as data become sources of information, decisions need to be made relevant to
the needs of the user. The expert system developer may find it appropriate to derive
decisions from known rules, from most probable relationships, from best fit patterns or from
simple look-up tables. Additionally, all of the data and information will have to be managed
efficiently, so that the system can respond to the demands of the environment. The final
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expert real-time process monitoring and pattern recognition system will demonstrate a variety
of approaches to information acquisition and reasoning. Clearly, a variety of methods may
have to be implemented in order to provide the flexibility necessary for solving particular
problems. Such hybrid systems will become typical of future expert systems.

4. DEVELOPMENT CHALLENGES

The excitement over the usefulness of expert system technology to improve nuclear
plant safety is well founded. The development of effective software development tools and
the availability of inexpensive computer platforms are all contributing to the rapid maturity
of the field. The issues which may be standing in the way of the technology’s practical
application to the nuclear industry are broad in nature. Several of these key issues are
discussed in the following paragraphs.

4.1. VERIFICATION AND VALIDATION

What constitutes a properly functioning expert system that fully meets the predefined
objectives is a question which can never be answered beyond any reasonable doubt.
However, measures can be taken to demonstrate that the developers have taken the necessary
precaution to ensure the system’s reliability. There is a need for the development of specific
performance criteria for evaluating the effectiveness of an expert system. These criteria
relate to speed of inference processing, repeatability, consistency under various degrees of
uncertainty, completeness, accuracy and other performance dimensions which are related to
process quality.

There are existing standards for safety related software, but there are few, if any,
quality standards available for expert systems. Nuclear operators and nuclear facility staff
are not necessarily prepared to develop software systems. The challenge is to organize a
verification and validation (V&V) team that includes software experts and nuclear operations
test specialists.

The V&V team must operate as an independent organization with the developing team
from the beginning of the project.. The V&YV team contributes to the software, hardware
and integration requirement specifications describing minimal requirements, but must be
independent from the beginning of the project.

The first verification task for the V&V team is the system design verification. In this
phase a number of documents are used by the V&V team which were produced by the
software developing team:

- Concept documentation
- System requirements specification
- Development schedules

The V&V team prepares a formal software verification and validation plan which
guides the application of V&V to the software products to achieve the highest quality
standards. Generally the V&V process by phase can be described as follows:

1. System design verification
2. Software specification verification
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3. Software design verification

4. Software code verification

5. System Hardware and Software Integration Verification

6. System validation

7. Post-certification software change verification and validation

This process is not different from the handling of safety critical or related software.
Standard verification and validation processes apply well to the procedural parts of an expert
system, the control components and the inference engine, as furnished in an expert system
"shell". Guidelines for verification and validation are available describing the minimum tasks
phase by phase, and listing the documents required as input, or produced as output by the
developing team and the V&V team.

Expert systems may not have a well-defined requirements specification, at least not
early in the system development. One cannot handle expert systems following a typically
procedural logic. They do not fit into the standard development sequence. The challenge
expert systems represent is a need for quality control methods suited to an iterative
development process and tests that are able to detect the kinds of errors occurring in expert
systems.

The validity of a complex knowledge base requires a totally new approach. This
problem seems to be similar to the problem of system specification verification. In the past,
cognitive and intuitive tasks were very difficult to formalize. Today there are techniques
available to prepare a system specification by using formal languages, for example PDL
(program design language). Structures described by formal language can also be analyzed
with computer-aided tools and their consistency and consequent behaviour can be verified.
The challenge is to link such a formal language to the software to be able to (1) verify its
completeness and accuracy and (2) automatically generate the system code from the formal
design language.

Standard benchmarking methods are available to compare the performance of one
system against another. This may include a series of realistic tests including evaluations of
the user interface by experts in the area of display quality and operator surveys.
Performance measurements include items such as cost, system size (number of rules),
average time to examine or execute a rule, or any of the so-called metrics. These are
evaluation methods, but are not related to validation unless they are implied or expressed in
the system requirements. Finally, the procedures developed for the V&V of expert system
software need to be integrated into the organization’s quality assurance program.

For purposes of the nuclear industry it is strongly recommended that validated and
codified knowledge be used for preparing the base of rules for an application. Knowledge
refreshing sub-process should not be used in the development since the handling of this area
requires added verification efforts.

Additionally, one should separate knowledge refreshing into another developing
procedure. This way, the new version of the knowledge base or rule base following
validation and confirmation can be encoded into the new version of the global expert system.
After the knowledge or rule base is validated, the following steps of the development and
V&V are followed:

1. Concept creation
2. Requirements analysis - Review knowledge and requirements

15



3. Requirements specification Validate requirement specification, rough-out
system validation test
Review design against requirement

Specification, evaluate knowledge rep.

1

4. Design prototype system

5. Code prototype system - Verify correct coding against design spec.
6. Test prototype - Device test procedure test against requirements.
7. Validate and evaluate system - Device validation procedures

Acceptance tests
Training of users
8. Use and maintain the system - User evaluation

4.2. USER ACCEPTANCE

There are a number of unique tools being developed which are designed to evaluate the
useability of development software and software systems. These tools will be invaluable
assets as expert system developers look at ways to simplify the use of the system without
sacrificing performance. When combined with the philosophy of early user involvement in
the design process, and when accompanied with feedback from prototype tests, these
useability evaluation tools will remove the acceptance barriers that exists in the field. The
allocation of tasks between man and computer, redundancy and mutual control must be
determined taking into account user acceptance. An expert system should be transparent for
the end user.

4.3. KNOWLEDGE ENGINEERING

One of the most costly elements of the expert system development process is the
transition from knowledge in the human domain to the domain of the computer. Current
practices require direct interviews and extensive surveys. Knowledge representation schemes
have to be developed, tested by subject matter experts and further verified and validated. It
is a time consuming process which often serves as a barrier for the initiation of many
projects. Although automatic learning methods, with the use of artificial neural networks,
inductive learning, and case-based reasoning can obviate the need for knowledge engineering,
such methods may not be appropriate for certain expert system applications. Knowledge
acquisition time and expense remains as a significant barrier for certain expert system
applications.

4.4. KNOWLEDGE REPRESENTATION STRUCTURE

The manner in which knowledge is represented within an expert system is dependent
on the nature of the problem and the proposed solution. Especially in the area of process
monitoring and diagnosis there is a trend toward the use of adaptive software where the
scheme of knowledge representation is in the form of relationships among variables that
organize themselves in a fashion that is unique to the pattern of activity being evaluated. The
efficiency of this approach to knowledge representation results in a system which, in most
instances, is less costly to develop. However, the availability of a plant’s operating history
or the use of high fidelity simulations, restricts the use of such knowledge representation to
a limited number of applications. Regardless, future expert systems in the nuclear industry
will use representation schemes that bear no resemblance to the logic structures of traditional
knowledge bases.
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Expert systems use the knowledge of the state and the components of the plant.
Consequently, they need precise and up to date information. They must maintain a highly
detailed computerized representation of a nuclear plant in its initial state and throughout its
in-service life. This information can be shared by other software and expert systems. This
information can also be used in the control room to maintain the plant or for CAD
applications. The representation schemes of future expert systems must be compatible with
such a system.

4.5. PLANT INTERFACE PROTOCOLS

Although most plant process computers are being linked to mainframes and peripheral
computer monitors through standard communication networks, significant work remains in
the development of expert system protocols. Currently, most expert system programs must
be uniquely tailored to the network in place. The client-server must be developed to provide
data to the expert system in a way which satisfies the unique data quality and processing
requirements of the system. Although the development of a single standard protocol is not
feasible due to the variety of applications, there is a need for guidelines in the general area
of protocol development.

4.6. REGULATORY ACCEPTANCE

It is unclear if and when approval from a regulatory body will ever be granted for the
use of an expert system as a stand-alone tool. However, given the acknowledgement from
various regulatory bodies around the world that solutions are needed in the area of
information management and display in the nuclear industry, it is likely that the use of such
solutions may be approved outside of the control room and only on an advisory basis. The
primary concern for any approval is the independence of any expert system from plant safety
systems. This will be true in terms of physical plant isolation and in terms of operator
decision-making without a high degree of confirmation. To ensure regulatory support (not
only for solutions outside of the control room) on an advisory basis, the licensing
organization must be directly involved in the V&V process from the beginning of the project.
Their contribution would be in the area of supervising and evaluating the V&V plan and the
process itself.

4.7. PEER REVIEW

As expert systems are developed and implemented at nuclear facilities it is important
to consider the value of the peer review process as a means of guiding the system’s
development. Future systems will be developed with the advice of a task force, whose job
it is to review the progress of the system’s development, and provide constructive criticism
during all development phases. Such a task force would accommodate outside, independent
experts to review the progress of the project and evaluate its quality within the domain of
expert systems technology.

S. CONCLUSIONS AND RECOMMENDATIONS

Expert systems have the potential to significantly contribute to the enhancement of
safety and reliability at nuclear facilities. Although early systems focused on decision support
tools related to plant information management, there is a trend toward the implementation
of on-line systems designed for monitoring and diagnosis. The success of these systems
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depends to a great extent on the manner in which the users are integrated into each phase of
design and testing. Additionally, realistic testing scenarios need to be developed which
emphasize initial small scale demonstrations followed by full scale tests under realistic
conditions. This structured approach will contribute to the technologies acceptance within the
user organization and within regulatory agencies. The following discussion summarizes the
recommendations which have emerged from this evaluation of the current practices and future
trends of expert systems within the nuclear industry.

1. User involvement

A key factor for the successful implementation of an expert system within a nuclear
facility is the involvement of the user. It is important to recognize the fact that developers
of expert systems are not necessarily qualified in the area of plant operations. This gap needs
to be filled by the project manager in such a way that both the developers and users respect
the contributions to be made by each. Facility personnel need to become familiarized with
the technical foundations of expert systems and expert system developers
need to understand the practical needs of the facility.

2. Development of quality standards

The nuclear industry should take the lead in ensuring that the standards with which
expert systems are developed are equal in quality to those standards used in plant design,
operation, maintenance and administration.

3. Adoption of a formal V&V program

Software configuration management and structured testing programs need to guide the
development of the expert system project. Performance criteria need to be established as part
of the overall system specification and tests defined which will be used to assess the
performance of the system. Wherever possible, independent means should be used to evaluate
the performance of the software against a known benchmark. The program needs to be
checked for consistency in expression of logical arguments and the matching of arguments
with parameters. Program documentation within the source code should be provided, and
testing of various decision paths within the code should be conducted.

4. Incremental approach to system development and testing

Start the project with a narrow, well defined application. Include the use of a pilot test
program and increase the scope of the expert system once its feasibility is demonstrated. The
incremental approach provides the opportunity for the user interface to be designed, tested
and modified as required.

5.  Organizational preparation

Ensure that representatives from various levels of plant management are kept informed
of the progress of the project. Incorporate these individuals during the planning stage and
throughout the development process. Establish the use of project reviews to help guide the
program along a path that will satisfy the needs of the facility.

6. Early training program development

Training time and costs can be reduced through the development of a training program
at the outset of the project. Training objectives can be defined and material developed as the
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project matures. Additionally, imbedded training capabilities may become part of the system
design specification, thereby increasing the usefulness of the expert system software.

7. Regulatory communications

In situations where the expert system is used in safety related areas, then the early
involvement of regulatory agencies is advisable. This involvement can be in the form of
routine meetings, submittal of progress report and formal communiques regarding project
status.

8. Knowledge base content and flexibility

The value of an expert system is in direct proportion to the content quality of the
knowledge base and the manner in which the content is structured. Given the volume of
material and complexity for typical nuclear installations, significant attention should be given
to the quality of information and the manner in which information is organized in the
knowledge base. Since relationships and interactions represent the major characteristics of
a knowledge base, it is essential that heuristics (operator reasoning and experience) need to
be merged with available models or algorithms. Redundant methods of knowledge
representation are recommended wherever possible. The resuit is a system that is more
reliable and defensible from the regulatory perspective. Finally, the knowledge base needs
to be structured so that modifications in plant design or changes in operating procedures can
be easily implemented.

9.  Hybrid system architecture
Consider the benefits of combining more than one type of expert system to solve a
particular problem. Rather than burden a single approach with peripheral tasks for which it

was not designed, consider the use of different information processing schemes that can be
combined without adding complexity to the system or affecting its reliability.
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SUPPORT OF NUCLEAR POWER PLANTS
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Abstract

With the growing complexity of safety-critical industrial systems there is a need for
computer-based tools which integrate different activities related to the layout of such systems
and focussing on risk assessment in general. These activities should not only be applicable for
early decision taking during the design phase but also allow an advanced maintenance over the
whole fife of an industrial system and even support on-line operator decision making. Thus such
intended activities are embedded in an overall domain description flexible to adapt itseif to
different situations and extendible for any kind of additional information to attach to. On the other
side, however, special applications running in the given domain should react to very specific
contexts given by the user and keep their knowledge for themselves.

Current research resulted in the development of a methodology (STARS) and an off-line
tool (Plant Editor) with which advanced layout techniques, domain administration and extension,
and an evaluation of a layout topology are combined. in particular, when using this tool one has a
powerful expert system for the design and maintenance of nuclear power plants.

In the second part of this paper a too! and methodology (FORMENTOR) for providing on-
line decision support to operators is described.

Safety analysis - as it is done with the PSA (Probability Safety Analysis) method - shows
some promissing results. PSA is a good tool to collect, structure, and interpret safety-related
information, and to identify and analyze strong and weak points in plant design and operation. As
industrial installations are becoming more and more complex, and managing and evaluating a
proper design and maintenance will be a problem of quantity, not mentioning quality aspects. In
addition, safety aspects, especially for NPPs, have still to be refined, so that computerizing the
task itself will not be that huge advantage as it was. Focus will therefore lie on a better use of the
hardware provided: giving the programs a better quality, using advanced programming
techniques, realizing a better data organization, etc. Concerning the design and licensing process
- for which most PSA applications were made - any new method and tool will have to be based
on that aspect.

Another requirement for changing the current situation comes from maintenance aspects
and reviews of operating plants: each PSA represents a static picture - a snapshot - of the safety
of a plant at a fixed moment of the plant's life cycle; performing a PSA now, however, puts some
limits to its pervasion as a true risk management tool because maintaining a PSA up-to-date is
cumbersome and costly and demands a lot of manpower; in most cases PSA models suffer from
transparency and traceability. Even a minor change in, e.g., the plant layout, requires a lot of
analysis to be repeated and, because of the many interrelationships, it is very difficult to
guarantee consistency across the whole PSA model. Moreover, feedback from experience (date
on failure events, initiating events, near-misses, precursors), from the plant itself or from other
similar plants, has to be incorporated in the model.

A natural extension to try to use PSA in a more dynamic way caused the introduction of
time as a variable for PSA which led to the so-called "Living PSA" model which can be regarded
as a model for RAMS (Reliability, Availability, Maintenance, and Safety) analysis in the widest
sense. Basic requirements for RAMS analysis are the following:

* possibility to represent and structure widely different kinds of information, i.e., all the
information items considered in safety assessment;
+ possibility to trace the analysis;

23



¢ possibility for incremental analyses, for updating the analyses without loosing consistency;

e possibility to collect and siructure all safety-related expertise and experience in a re-usable
form.

One major function of RAMS analysis is to support decision making in case of
modifications to design or operation. For that reason there is a certain demand to predict future
behavior of a plant system before the actual modification is done. This requires a simulator tool to
prove a hypothetic situation to get predictions based on probabilistic calculations.

Concerning the RAMS analysis input it tumed out that not all information and
assumptions that go into a RAMS analysis are explicitly and systematically reported. Some of
them remain in the heads of the analyst and are therefore sometimes difficult to backtrack. The
same is true for some safety rationales underlying the design, too: some of those remain in the
heads of the designers and there is a risk that might get overlooked in later design modifications.

Having this situation the most innovative points for a new approach of safety analysis
were to
e collect safety-related information in a systematic way over the whole plant life-cycle: The

aspect of covering all relevant information means to know location and time for occurrence of
information.

e structure all available information: Classification means to define a logical structure and put
the information in logical containers where appropriate. This is the point where information is
becoming knowledge.

o gather knowledge: The integration of diverse types of knowledge within one system requires
the syntactic acceptance and, semantically, the right use of "foreign” knowledge.

¢ provide the user with knowledge: Views at a-priori and derived knowledge make the whole
system more transparent, and - as the resuits of a safety analysis should be treated as
knowledge as well - a traceability of an analysis may be guaranteed by this.

¢ let the user put his own knowledge to the system: This requires the incorporation of user-
dependent knowledge to the system. A proper working of the system has to be guaranteed.

From a user's point of view the requirements were
¢ immediate risk assessment of a certain layout topology
¢ monitoring safety evolution over a plant life-cycle
¢ having a robust and comprehensive system behavior.

To achieve all these points we had to go beyond the current capabilities of PSA or living PSA

systems.

r T |

Major solutions for new approaches came from the pregramming side:
o with advanced user interfaces powerful information systems can be built
o using knowledge-based systems (KBS) powerful expert systems can be performed.
The classification and the syntactic integration requirement (from above) are fulfilled by the use of
KBSs. KBSs can be viewed and extended in an excellent way also.

The crucial point of decision was to bring different tasks together with one basic storing
mechanism working in background. Thus knowledge about diverse aspects of a plant is kept
together, and - as a consequence of the information system - viewable, accessible, modifiable,
etc. Now knowledge is either derived automatically, or it is given manually to the system which
means that it is entirely controlled by the user both in its logical dependency and temporal
validity.

One aspect of the new methodology was to pre-elicitate a-priori knowledge in order to not
to write large amounts of invariant knowledge each time the system is used. Such knowledge is
surely representing plant hardware (components, units, etc.) but may describe functions and
experiences, too. Similar knowledge is grouped within one knowledge base, while semantically
different knowledge should be split into different knowledge bases. Generally spoken, the quality
of a system is based on a proper user of a well-developed (external) knowledge base or -
internally - on the grade of collaboration of knowledge bases.

Technically a knowledge base is a set of object-attribute-value triples; all triples with the
same object identifier form a knowledge base entry. Knowledge base entries may semantically be
classified thus forming a hierarchy of abstractions with special attributes describing the hierarchy
connections.
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3.1 The aim

The Joint Research Centre is involved in several projects in which knowledge-based
systems, information technology, and risk management methods within the context of safety-
critical complex industrial systems are brought together. One major methodology developed was
used to construct an expert system tool. With it promissing results were achieved in supporting
industrial organizations managing their resources.

Starting with safety aspects it is in complex industrial installations highly desirable to
develop a fast layout of an industrial system in order to predict as early as possible what might be
the reason of a malfunctioning of some component. Being a certain kind of diagnostics process
the looking up for reasons results in following more and more branches of a so-called fault tree.
The complexity of a fault tree is proportional to the complexity of the underlying topology which
the diagnostics process is based on. Therefore the fault tree construction should be directly
connected to a given layout topology. The topology itself might have been developed according
to some global semantic layout principles: horizontally seen there may be a distinction between a
functional or a structural view of a plant system; vertically seen it is the abstraction that may alter:
a plant system can be viewed as one single black-box, or as consisting of diverse sub-systems,
etc. To know this abstraction level is important both for viewing (displaying) and storing aspects.
In any case the system needs some external domain and expert knowledge as input to become
an expert system. When this works the user should still be able to manipulate the derived
knowledge; he should be able to monitor knowledge whenever a layout or fault tree construction
is done. In particular the results of an assessment should be kept and traceable.

The domain knowledge is called generic because of its invariant character whereas a
special plant system thathas been created by the user forms some kind of specific knowledge
established under a certain name (plant layout description). Knowledge put and/or retracted by
the user is called temporary knowledge.

3.2 The STARS kernel
Intr ion

Concerning off-line tool development major effort has been put to develop a methodology
which was taken as basis within the STARS! (Software Tools for Analysis of Reliability and
Safety) project. The objective was to provide knowledge-based support to all phases of design,
maintenance, reliability, and safety assessment. Domains for which the STARS methodology has
been developed so far are those of NPPs and chemical plants, describing their systems, sub-
systems, components, their functional behavior and structural relations.

in the STARS project a number of tools has been developed (see Fig. 1) guaranteeing
their collaboration [Poucet 80]; among these tools the so-called kernel (mainly consisting of the
Plant Editor) and its underlying methodology is described.

3.2.2 Methodology

The main decisions made for this methodology are:
1. Use of an object-oriented database system as basic storing mechanism:
‘The introduction of an object-oriented database system (OODBS) substitutes previously made
research which stored all relevant knowledge on Ascii files. Working with object-oriented methods
[Meyer 88] also automatically provides inheritance mechanisms (within an hierarchically
organized taxonomy tree), and allows the user to implement complex relational structures
between different database entries.
2. Development of a CAD tool for design and risk assessment purposes:
It was decided to have as kernel tool a CAD tool (Plant Editor) with which a layout of a plant
system can be developed. Basicly drawable objects can be chosen from a catalogue and placed

1 STARS is a collaborative project with four partners contributing to it: Commission of the EC, Joint
Research Centre Ispra; RISOE National Laboratory (DK); Tecsa SpA (I); VTT Technical Research Centre
(SF). See also [HePoSu 92].
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Fig. 1: The STARS project

on the screen. A layout becomes meaningful when objects drawn are connected each other
appropiately thus creating a topology. Once having created a topology an immediate assessment
may be done in terms of risks creating a so-called fault tree. All results - either from topology data
or from risk assessment - are stored in the OODBS in appropriate structures and may be re-used
later or in another STARS too!.

3. Use of generic knowledge to construct various specific applications:

The catalogue mentioned above offers drawable objects that come from a so-called generic
knowledge base representing a domain taxonomy tree. Choosing one of these objects creates an
instance of it (a copy) copying also all its generic knowledge into that instance. A topology
created in this way contains specific knowledge of an application made by the user. There even
user-dependent (i.e., not directly used for layout or risk purposes) knowledge may be
incorporated.

4. System views and system extendability for user purposes:

The user should be able to view any objects selected in his layout. A view should contain all the
knowledge attached to that object - either generic or specific knowledge. With a special
mechanism an overwriting of already known specific knowledge and the attachment of new
knowledge should be allowed by the user. A special point concerns the risk assessment part
where rules are used for execution: there - in a step-wise mode - the user may write his own
rules being valid only for the next step (in creating the fault tree).

i neric Knowl

Any use of the Plant Editor is based on a certain domain. Viewing industrial installations
normally two generic knowledge bases (GKBs) are supported by the tool: they represent
taxonomy knowledge of structures and functions, respectively. One GKB might be empty, of
course. The usage of further knowledge bases must be managed by the tool itself?.

The generation of generic knowledge is fully supported by graphical interfaces>.

An attribute of a knowledge base object is allowed to have more than one value (multi-
valued). A value may have any representation; of course, semantically the values must be
understood when used. For example, each value of the attribute "MacroFaultTree_Rules" stands
for a rule which must follow a special pre-defined syntax. Along special "is_a" attributes more
general knowledge may be inherited by more specific knowledge.

The usage of a GKB manifests itself in the availability of drawable objects which can be
chosen to create instances of them. The drawables are organized in a menu catalogue.

2Theoretically there is no limitation; for very practical reasons, however, a third GKB could not be
justified for this application area.
3 This is now done by features within the CODBS.
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The user may create the layout of his plant system by 1. choosing a drawable object,
giving it a name thus creating an instance of that object, 2. connecting already displayed
instances by special pre-defined connections, 3. augmenting a layout by a variety of auxiliary
objects like (poly-)lines and texts, 4. selecting, moving, deleting, mirroring, and/or turning (as far
it is allowed) of all created instances and auxiliary objects as he wants. The layout generation is
fully managed by diverse control mechanisms and even semantic checks (which again use
generic knowledge, e.g. for connections) [SchPo 92].

One particular topology layout is based on one particular GKB. It is, however, possible to
switch between semantically different layouts, e.g. between structural and functional description.
This functionality requires a very exact and strict management of what is possible and what is
prohibited; normally such knowledge is stored in both (the developer has to foresee it) GKBs, too.

in the same way how the usage of different GKBs may contribute to a horizontal
diversification, a vertical diversification is KB-driven, too. This normally quite simply-structured KB
describes the different levels of abstraction that might be allowed when a plant layout is created
and then saved. The tool manages switches between different abstraction levels.

GKB1 P RTTL ST - S .

GKB2 LT .
applt appl2 appl3

Fig. 2: Three system users using two GKBs and producing three applications

Using a matrix (Fig. 2) different applications may be developed which can be saved and
re-loaded again. An application consists of specific knowledge (with pointers to generic
knowledge) which is generated automatically. In addition, a viewing mechanism (Fig. 3) allows
the user to edit the specific knowledge of a previously selected object out of the topology giving
him the possibility to add edit more specific knowledge for that instance for private purposes or as
input to subsequent STARS tools.

A

} valuation I

Risk assessment on top of a topology is fully graphically supported and semantically
checked. The system is a diagnostics system and it iooks "backwards” for the causes of a
misbehavior. In terms of the overall methodology a fault tree is constructed?. The risk
assessment is explained by rules that are taken by a special inference engine working in a
backward-chaining mode [HaWal.e 83]. The results of a risk assessment session are made
nicely visible and, in addition, count again as new specific knowledge which might be re-used.

A special step mechanism allows a "debug”-fike intervening by the user. In this particular
case the actual valid rules (those which fire in the next step) are displayed. The user might
augment this list of rules by temporarily valid ruies for the next step only (Fig. 4). Thus his
possibilities of evaluating his previous made layout are enormously extended.

4The contrary activity is known as failure mode and effect analysis (FMEA) which, however, is actually
not part of the methodology.

27



AR eliability 3 Sefety Releare 1.0

;I:,: s Tl PLANT EDITING TOOL

Inherited slots: Instance: 1864a

Superllass CLASS: Mator operated_valve
Is._cless F from comection 2 low Flow AND valve_opened THEN from connect:d
Craphics IF from connection 2 high Flow GHD valve_opened THEH from cornvect
P IF from conwection 2 rev flow AND valve opened THEH from connect)
O _specific_rules IF to conmection 1 low flow AND valve opened THEN to connection 2
HFT_specific rules If to connection 1 hagh Flow AND valve opened THEN to connection 3
Cr aphRepresentation IF to corwwction 1 rev Flow AND valve_opened THEH to connection 2
Rulelnbheritancelvl 4
XpledClass If valve closed THEH from connection 1 low Flow

IFf valve_closed THEH to cornection 2 low flow

Pasi1tion

CLRSS: Valves
spots

EXP_generic rules

ConmentSlot

Specific slos: -
Superclass /invalid_signal O
x_Coord ;Pluued . g

open_rupture

Y.Coord /close_rupture O
Hirror 7TRUE °
Turn
DefaultPos
Rulelnheritancelv]
Cr aphRepresent ation

d1lwre Kales
Repair _Rates
Unavailsbilities

R siot M [

BIRECTORY: /jro/isel/rpr/dons_ stersrlivpsy PLANT: probe.plam

Fig. 3: Viewing the generic and specific knowledge for the component "1864a" which
is selected (rectangle around it) on the canvas window. For the generic (inherited) knowledge
the "MFT generic rules” slot is viewed, for the specific par the slot "Test intervals”.

f is results withi =l rator
4.1 Background

Classical safety analysis is a matter of studies, performed mostly during the design and
development stages of hazardous systems, which then results in the the most relevant choices to
be made between design alternatives. The previous chapter described a methodology and an
associated computerised tool (STARS) to perform these studies and to keep them up-to-date
with subsequent plant modifications. However, the tool remains an off-line too! to be used mainly
by plant engineers.

Two major observations can be made about this approach when related to hazardous
plants operated by human operators:

e onthe one hand, safety and reliability studies try to assess values of probabilities or rates, or
to identify critical paths in terms of events sequences; on the other hand, operators require a
support to detect and diagnose symptoms of anomaly early, to assess potential threats on
production and safety objectives, and to help them build a suitable recovery action plan. Post
hoc analysis of major accidents in the chemical industry has shown that most of them had
precursor signs, which were ignored or misinterpreted at the time [Dr91]. The systematic
integration of all the available information offers the possibility for operators to have such
precursor signs, and their implications, brought to their attention in time to prevent serious
consequences.

e the safety expertise gained during preliminary studies is only transferred to the operators,
who will have to manage safety problems in real-time, through a set of operating instructions
and the installation of alarm management systems.

The first observation addresses the problem of support functions really needed for safety
management during operation, and the necessary compromise, in abnormal situations, between
antagonistic production and safety objectives: a responsibility given to the operator who is
generally not trained to it. The second raises the question of how to integrate the knowledge,
gained during safety analyses, into on-line decision support tools, and how to adapt general
safety considerations to a known and specific situation.
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Fig. 4: A fault tree during development: one rule displayed, no temporary rules written.

FORMENTORS provides a convenient solution to the problem of reusing and applying
safety expertise in real-time. The FORMENTOR project [WiNoPo93] eventually resulted in the
development of a safety-oriented real-time knowledge based system that supports operators of
complex installations in managing potentially hazardous situations. The technical approach
adopted is generic to the many industries whose operators could benefit from such systems.
These include Nuclear Power Plants. The ultimate objective of FORMENTOR is to avoid major
disturbances in a plant or at least to keep it in a safe state. The rationale and usefulness of
operator support systems of this kind have been recognized and described elsewhere
[NoMiWi93], [Lo84].

4.2 Approach

The approach taken to define the FORMENTOR functionalties has been a task-based
one. Discussions with plant managers and the experience of the applications developed so far
[WiNoPo093], [WiNoMi93], enabled the generic operator tasks defined in particular for the nuclear
industry [Lo84] to be confirmed and generalized. The following breakdown into five tasks appears
to be common across different industries (see Fig. 5):

Monitoring - detection of pre-cursor signs and symptoms of abnormal or unsafe behaviour,
checking the instruments and validating their results.

Assessing the current situation - based on the results of the monitoring activity above,
deciding what is the current underlying state of the plant.

Diagnosis - having worked out what the state is and discovered an anomaly, deciding how this
anomaly or "symptom" has arisen and where. Typically this involves tracing mechanisms from

SFORMENTOR is a project in the EUREKA program of co-operative international R&D projects. The
partners in the FORMENTOR consortium are: Aérospatiale Protection Systémes (F), Cap Gemini
Innovation (F), Det Norske Veritas (N} and the Institute for Systems Engineering and Informatics of the
Joint Research Centre of the Commission of the European Communities, based at Ispra (J).
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Fig. 5: FORMENTOR functional architecture

effect to cause, and often involves combining symptoms from separate parts of the plant which
stem from a common cause. In many cases diagnosis of a symptom resuits in identification of a
faulty component or subsystem.

Assessing the consequences of the current situation - deciding whether the current plant
state is one which may or will evolve into a dangerous or otherwise undesirable condition.
Countermeasure planning - if the current state is dangerous, or has the potential to evolve in a
dangerous manner, deciding what should be done about it. In particular, there are often a lot of
possible operator interventions which might cure the immediate problem, but which have side
effects on other aspects of the plant; then the most appropriate sequence of actions has to be
found.

Computer systems such as those discussed here limit themselves to offering advice, with
the operator retaining responsibility, rather than the computer system taking action itself. In the
end it is up to the operators whether or not they use the system. To ensure user acceptance, a
good Man Machine Interface design is necessary [CaCz92], leaving the user the maximum of
control over the presentation and substance of the information supplied. Beyond this experience
about acceptance implies to provide a system "belonging" to an operator, i.e., mirroring his
experience and view on the plant.

4.3 Knowledge Bases and Models

The capability of FORMENTOR to perform many of the required tasks relies upon the
choice of a set of dedicated models and operational knowledge of the plant to be supervised.
Functional model, the GTST
The Goal Tree Success Tree (GTST) model is one major knowledge representation scheme
which is well suited to describe complex plant [KiMoNiHu90] [KiMo87].

The GTST model is a safety-oriented functional model of a system in the large sense, relating
high-level goals to low-level hardware functionalities of the system. Applied to industrial plant, it
relates high-level safety and process objectives to the functions carried out by components of the
plant. See [NoMiWi93] for a more extensive description of the use of the GTST within
Formentor.

Structural and Behavioural model

An industrial system, from a structural viewpoint, can be seen as a set of components bound
together in order to interact. A component is another system, etc. The recursion stops when a
system is considered as being atomic. A structural model then provides a structural
decomposition of the plant into components and in addition embodies the interrelations (physical
or logical) of the components of which it is composed.

Part of the knowledge base in this Formentor application is the Multi Layer Model (MLM) defining
the plant as a hierarchy of components and their relationships to each other. The MLM is used as
a coherent framework for various forms of knowledge and reasoning. In particular, behavioural
knowledge can be associated to its components.

1.4 Link off-l i

Several attempts made convinced us that standard models built during safety analyses
(Faulvevent trees, Markov chains, Petri nets,...) were inadequate for a direct application in an
evolving context, mainly for the following reasons: impossibility to react dynamically to incoming
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information (plant data and operator actions), difficulty to ensure reality matching of the models,
impossibility to derive countermeasures from an exploitation of the models. However, and even if
it is not possible to automatize the transfer, an extensive re-use of the results of safety studies
has proven to be possibie.

As such, logical links have been established between classical safety analyis
methodologies and the development of a FORMENTOR application. It is obvious that for a new
FORMENTOR system, all the knowledge covered by safety and risk analysis of a plant is of
primary relevance.

in any case, it should be noted that a FORMENTOR system can always incorporate the
experience gained in safely operating a process, either from safety/risk studies or from the
expertise not put on documents but apparent in the way operators and engineers manage the
plant (heuristics). At the same time, a FORMENTOR system would be easily modifiable, due to
its structured design and the supporting development and KB maintenance tools: in that way it
can adapt to changes in the plant hardware and variations in the process conditions.

In the following points, we will outline how results of classical safety analysis methods
have an impact within each basic FORMENTOR functionality.

Monitoring:

The definition of the symptoms that could indicate abnormalities, and the way in which they
should be classified, are closely related with safety analysis. The main safety parameters, which
have an incidence on the safety level of the system when they are not maintained, are natural
candidates for symptoms. They can be observables or computed parameters, and are associated
with thresholds that are eventually used for classifying the symptoms. Minor symptoms can
correspond either to relatively siow fluctuations near the operational limits or to abnormal
variations with a certain frequency. Major symptoms can correspond to faster variations or to
greater value shifts. Critical symptoms can correspond to fluctuations or shifts arriving to safety
limits.

Assessing the current situation:

The situation assessment function is performed over the GTST model. Goals are states
expressed in a positive way which can be related to the negation of unwanted events. Process
goals correspond to the achievement of certain production objectives, as safety goals
correspond to the avoidance of dangerous situations. The construction of the GTST is based on
a functional decomposition of the target system. Information in Fault-trees can highlight the
conditions needed for developing the Success Tree logic. Fault trees can indicate the relationship
between top goals in the Goal Tree and support its further refinement.

Diagnosing:

Both, heuristics or model-based diagnostics systems, should be based on safety knowledge.
Diagnosis is workable when there is a strong knowledge on what can go wrong in a plant and
why. The heuristics causal model can use indications from Fault-trees, FMEA, etc., and from the
operability instructions handbook. The definition of undesirable plant states, the use of supporting
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evidence for their confirmation, the links to potential remedies, the refinement of these remedies,
and the verification of their applicability against constraints, can not only be best guesses by the
operators, but heuristics supported by specific studies. On the other hand, a model-based
diagnosis system should necessarily use information from FMEA about the possible component
failures.

Assessing the consequences of the current situation:

Consequences are obviously implied in the contents of several safety-related analyses. They
cover the evolution of a process in abnormal conditions, the time period before the occurrence of
certain events, and the period needed for recovering normal conditions after the application of
counter-actions. What is critical when dealing with an abnormal situation is mainly how bad the
state can worsen, and how much time there is for reacting.

Countermeasure planning and advice generation:

Safety analysis can give the applicability conditions for the diverse possible remedy actions. The
information on consequences, on urgency of the current condition, and on what can be expected
after the application of each countermeasure, can be supported by safety and risk studies. Also
the probability of success of each possible action line, based for example on event trees, can be
used to determine priorities. The specification of a concrete action plan should take into account
the physical limits of the handle and its reliability.
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Abstract

Artificial neural networks (ANN) are now accepted as a very practical Al technique,
used for many applications in various fields. The nuclear industry, although aware of
the potential benefits of the application of ANN, is slow in accepting this technique
in nuclear power plants (NPP) contro! rooms, even for operator advisory roles.
However, the technique is now being considered for predictive maintenance systems of
NPP components, and for support roles in non-safety related systems, such as load
forecasting, water chemistry, fuel management and safeguards systems. Active
research on the properties and possible applications of ANN in NPP’s is carried out in
universities and national laboratories in several countries. Training data is supplied by
the nuclear industry, either as real NPP operating data or from full scale simulators.
The ability to train large scale ANN is crucial to their successful implementation in
real-life situations, enabling also the development of auto-associative ANN for
real-time fault diagnostics. In a demonstration example of a simulated material
transfer system with S50 components, an auto-associative ANN was able to sense
immediately the presence of a fault during an operation, and diagnose correctly the
faulty component.

INTRODUCTION

On-line applications of intelligent computation techniques, such as Expert
Systems (ES), Fuzzy Logic (FL) and Neural Networks (NN) are regarded as means to
increase the safety and reliability of nuclear power plant (NPP), and other nuclear
installations. The need to analyze the detailed behavior of the plant slows the
implementation of some of these systems, and the derivation of the Expert Rules can
be difficult in complex systems. In parallel with the growing interest in NN as viable
artificial intelligence technique for complex system modeling, several applications of
the NN techniques to NPP operation were reported during the years 1989 - 1991,
summarized in three reviews (Uhrig, 1990, 1991, Boger, 1992). Many NN applications
in industrial and other areas are now reported, recent extensive work in the nuclear
industry is summarized in six reviews. (Uhrig, 1992a, 1992b, 1992c¢, 1993, Boger,
1993a, 1993b).

Some of these applications are aimed at the development of “on-line™ operator
support systems, or even closed loop controllers, as the superior execution speed of a
trained NN is very attractive for these applications, and most of the effort is directed
to this area. Yet, the implementation of useful NPP operator aids is hampered by two’
obstacles - the large number of sensors and alarms patterns that have to be recognized,
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which are difficult to train with the current NN techniques, and the need to pass a
verification and validation (V & V) process, a vital requirement by the licensing
authorities. Another growing field is the on-line monitoring of NPP components, as
part of a predictive maintenance system that should replace the costly preventive
maintenance scheme currently employed. This paper is the third review presented to an
IAEA Workshop on the use of expert systems in the nuclear industry. It describes recent
advances in the training and applications of NN in the nuclear industries, comments on -
the status of NN in the nuclear industry and suggests possible future roles of large
scale neural networks in nuclear power plant systems. .

NEURAL NETWORKS LEARNING

A detailed description of the NN theory and learning techniques may be found in
the many books and papers, some of which are covered by the referred reviews, and
will not be repeated here. Briefly, it refers to implementing in the computer, by
software or special hardware, processing nodes (neurodes) are linked to each other by
variable strength connections. The sum of all inputs to a neurode, if larger then a
bias, activates the neurode. The neurode output, multiplied by the connection weights is
transferred to all neurodes receiving inputs from this neurode. The training of NN is
done by starting with random connection weights, presenting a known set of inputs and
outputs of a system to the NN, and adjusting the connection weights to decrease the
error between the NN outputs and the known system outputs. The general delta rule or
the conjugate gradient variants of the error back propagation (BP) algorithms are
usually used. When the error is small enough, the generalization capacity of the NN is
tested by it's ability to predict correctly unknown outputs from known inputs of a test
set not used in the training process.

The learning process may slow even on fast computers, especially when the NN
contains many inputs and outputs. It is because of this slow learning that NN
applications papers for nuclear power plants researchers are testing new architectures or
learning algorithms to overcome the limitation of small to medium-size systems, with
few inputs. Some researchers try to decrease the heuristic aspects of the neural network
training by more rigorous statistical methods such as data pre-processing (Giraud, and
Liu-Lon-Chang, 1991) computed or dynamic NN structure, (Basu, 1992, Ciftcioglu and
Turkcan, 1992b), modular NN (Guo and Uhrig, 1992a), elimination of non-relevant
inputs (Guo and Uhrig, 1992b. Reifman ef. al., 1993). the use of non-random initial
connection weights (Boger, 1990), or accelerating the learning algorithms (Bartlett and
Uhrig, 1992a, lJavier and Reifman, 1992, Parlos et. al., 1992b). A new approach to
increase the confidence in the NN results is made by training another NN to estimate
the error of the first one (Kim et. al., 1992). An attempt to automate feature
extraction and cc;mpress the number of inputs is done by a recirculation NN.
(Alguindigue et. al., 1991). Others try to use different concepts, such as the ART-2
algorithm (Keyvan and Rabelo, 1991), recurrent NN (Ishii, 1993), or combinations
with other Al techniques (discussed in the next section).

Another obstacle to using large scale NN is the belief that many examples are
needed to get robust, reliable NN. The conventional rule of thumb requires the number
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of examples to be at least equal to the number of connections in the NN, preferably
ten time as much. As large number of examples, especially of fault situations, is
usually hard to collect or generate, there is a tendency to avoid and distrust large-scale
NN. The way most researchers try to overcome this obstacle is the use of full scale
nuclear power plant simulators to generate data of plant responses in different
abnormal or accident scenarios. Others use real plant data to train the NN to
distinguish between normal and abnormal states, or use expert judgment to create
probable accident scenarios (Keter and Boger, 1993). There is some evidence, mainly
from spectra analysis results, that because of the interrelation between inputs, a much
smaller number of examples is sufficient to train a NN to generalize correctly (Boger,
1990, Karpas and Boger, 1992, Alguindigue et. al., 1993), thus decreasing the training
data generation and learning requirements.

SYNERGISM WITH OTHER ARTIFICIAL INTELLIGENCE TECHNIQUES

The slow implementation of Expert System techniques in large scale systems,
mainly because of the problems in knowledge acquisition, programming and verification,
led to the rise of hybrid systems. This approach tries to incorporate other Al techniques
such as Neural Networks and Fuzzy Logic with ES, to get a synergistic effect, utilizing
the best features of each technique.

Combinations of NN and FL were used to identify reactor transients
(Ikonomopoulos et. al.., 199la, 1991b), perform pump diagnostics (Ikonomopoulos ef.
al., 1992a), monitor the state of a system {(Berkan et. al., 1992), create models of
hard-to-measure  properties, “virtual instruments” {Tsoukalas el. al., 1992,
lkonomopoulos el. al., 1992c, Keyvan et. al., 1993)., and to create robust sensor
network for alarm identification (Abbott and Clark, 1993). The combination of NN
and ES was used to develop a robot for hazardous environments. the processing of
radioactive isotopes (Spelt, 1992, 1993). Expert knowledge-based logic pre-processing of
LOCA test-bench inputs is also proposed (Prock, 1992, Prock et. af., 1992).

The most promising synergistic combinations of different Al techniques are in the
V & V area. The use of totally different concepts, software and technologies that
arrive to the same conclusions should increase the confidence of the operators in the
advice given by the diagnostics and monitoring systems. However, although the concept"
of “diversity” is referred to in private communications, nothing was published yet on
NPP diagnostics. However, parallel control scheme, in which several different
algorithms are used, is already described (Eryurek et. af., 1993).

AREAS OF NEURAL NETWORKS RESEARCH AND APPLICATIONS

The "traditional™ aim of NN research for NPP applications is the development of
a quick and reliable operator support system that would identify abnormal situations,
and their causes, distinguished from “normal™ transients. Thus, many researchers are
active in this field (Horiguchi et. al., 1991, Bartlett and Uhrig, 1991, 1992b,
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Watanabe el. al., 1991, Tramer el. al., 1991, 1992, Ciftcioglu and Turkcan, 1992a,
Turkan etf. af., 1992, Dhanwada and Bartlett, 1992, Basu, 1992, Cheon ef. al., 1993,
Thompson et. al., 1993, Bartlett et. al., 1993, Elias el. al.. 1993). The number of
signals used to diagnose the plant state vary between two to several tens, or a time
history of one or more inputs, depending on the data source and the NN learning
algorithm. The scope of generality of the diagnostic capability is decreasing somewhat
recently, with more realistic aims of sensor validation and “virtual instrument”®
generation, (Eryurek and Turkcan, 1991a, 1991b, Ikehara, 1991, Cahyono et. al.,
}991, De Viron and De Vlaminck, 1992), modeling of specific phenomena of the NPP
or a component (Miller, 1991, Korash et. al., 1992, Welstead, 1992, Chambers et.
al., 1992, Parlos et. al., 1992). The modest scope of these NN's allows quick
implementation of useful models, and do not need much V & V to be accepted as it is
more related to maintenance activities.

Closed~loop control of specific components is researched, both with “classic® NN
approach (Sakai et. al., 1990, Eduards et. al., 1993) or in combination with fuzzy
logic techniques (Cordes el. al., 1991, 1992, Eryurek et. al., 1993).

One of the emerging fields of interest is the on-line diagnostics of machinery,
especially rotating machinery. There are two reasons for this - the aging of NPP
requires more attention to the state of the equipment, and the licensing authorities
sometime mandate this attention when extending operating licenses over the original
predicted NPP lifetime. The second reason is that the scheduled maintenance costs are
rising, skilled maintenance workers are retiring, and utilities realize that the nominal
maintenance periods may be too conservative and maybe even reducing the equipment
life by excessive dismanteling and re-assembling. Thus, a monitoring system that will
predict incipient faults in time to take it out of service for maintenance will be much
appreciated. NN are ideal for this type of "predictive maintenance”, as accurate
mathematical models of rotating equipment are hard or impossible to construct. The NN
is taught from past history of fault patterns, or when these are not available, at least
it can learn the normal behavior and alert the operators or maintenance personnel to-
possible faults. Another consideration was mentioned in the previous section is that
these systems are considered non-safety related, so no formal software licensing or V &
V effort is required. The importance of this application was recognized quite early and
a special Preventive Maintenance Laboratory was created in the University of Tennessee
in 1989. Now NN are included in the techniques employed to monitor deterioration of
instruments and rotating equipment in the TVA NPP’s (Upadhyaya, 1992). The most
easy way to monitor rotating equipment is by vibration or noise spectra analysis
(Alguindigue and Uhrig 1991, Alguindigue ef. al., 1991, 1992a, 1992b, 1993, Miller
1991, Bopger, 1993c), although other available measurements are used, such as electrical
current (Parlos et. al., 1992), or with external values such as flow and pressure in a
pump ( Keyvan and Rabelo. 1991, Keyvan et. al., 1993). A NN A comprehensive NPP
maintenance system was recently proposed, using NN.and FL concepts to track on-line
the condition of every piece of equipment., based on past history records, adjusting the
maintenance schedules accordingly (Simon and Raghavan, 1993).

NN are now proposed for various NPP activities, ranging from severe accident
management (Silverman, 1991), electrical load demand forecasting and balancing
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(Wang et. al., 1992, Lu et. al., 1993, Zhang et. al., 1993), water chemistry
monitoring and control (Sakai et. al., 1990), to investigating the effect of NPP
operation on the fish in Lake Ontario (Ramani ef. al., 1991).

The application of NN techniques to the nuclear fuel cycle activities is growing.
Safeguards monitoring of nuclear material transfer and spent fuel discharge is proposed
(Whiteson and Howell, 1992, Larson et. al., 1993). NN are also mentioned for
managing the operation of a mixed waste incinerator (Rivera et. al., 1992).

THE FUTURE OF NN APPLICATIONS IN THE NUCLEAR INDUSTRY

Up to now most of the NN research in the US was carried out at universities
and government funded research laboratories. For instance. the most active group in
this field is Professor Uhrig's students at the University of Tennessee at Knoxville and
his colleagues in the Oak Ridge National Laboratory. They mostly use data from the
TVA reactors and full scale simulators. Another is active at the Idaho National
Engineering Laboratory, where the source of data is the EBR-Il reactor which is also
used by researchers at Argonne National Laboratory and ORNL. A new project for
identifying NPP transients by NN has been started at Ames Laboratory, and the Los
Alamos National Laboratory is engaged in the safeguards applications of NN. Research
is also carried out in Pennsylvania State University, A & M University of Texas, and
other universities. The electrical utilities in the US do not appear to be confident of the
applicabjlity of NN techniques in NPP, although the attitude may be changing. The
Electric Power Research Institute is sponsoring now some NN projects (EPRI, 1992),
and the NN-based maintenance system proposal was prepared by General Electric, albeit
for Japanese, and possibly Taiwanese, utilities (Simon and Raghavan, 1993). In Europe
the situation is similar, with the most active group in the Energy Research Foundation
at Petten, Holland, and some utility interest by Tractebel in Belgium. In Canada and
in Japan the reverse is true. Most of the NN research is carried out by the utilities,
Ontario Hydro and Toshiba for example. There is a nuclear plant integrated monitoring
and diagnostic system that is approaching implementation in Point Lepreau Generating
Station, which includes NN-based diagnostics (Thompson et. al., 1993).

As noted above, one of the main reasons of the utilities distrust of the NN
technique for on-line operator advice is the dependence on simulated data for
generating the training patterns for abnormal state classification, and the V & V
requirements. The first step in the training of a NN is the creation of an adequate
data base. Although aided by the data collecting and processing systems installed in
NPP’s, this is a difficult task, especially for fault situations. One way is to use
mathematical models for the creation of fault database is using a full scale reactor
simulator. The responses of the sensor readings and alarm blocks to a deliberate
component fajlure would serve as inputs for teaching the NN to distinguish between the
different faults. As simulator generated databases would be suspected of lack of
accuracy or realism, and plant generated databases would be accused of incompleteness
of fault situations. Thus, the V & V process would not be possible. A compromise
approach may be taken, in which only normal plant data, available in much quantity
or detail, will be used for classifying the plant behavior.
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A possible way to alley this distrust is the use of large scale auto-associative NN.
Auto-associative NN is a net with identical input and output set. These nets can be
taught different cases of normal plant behavior, in different situations (start-up,
power level changes etc.), thus creating a model of normal situations. If this NN will
be monitoring the plant, an abnormal situation will manifest itself as a large deviation
between one or more NN input. and the corresponding model output, and thus alert the
operator of some possible fault. If only one data-point is flagged. it may be an
indication of a sensor drift or failure. However, several such flags would suggest an
abnormal situation (Boger. 1993b, 1993d).

AUTO-ASSOCIATIVE NN EXAMPLES

Auto-associative NN has been already proposed for monitoring the normal
behavior of a NPP (Turkan et. al. 1992, Kavaklioglu et. al., 1892). The first study
used 26 real-time .sensor signals from Borssele PWR, and no deviations from normal
operation were found in a test. The second study used 16 steady-state signals of a
PWR, and an anomaly was detected. The extrapolation capability of a trained NN was
tested using the Borssele plant data, and it was found that correct sensor readings were
predicted in a situation different from the one used for training (Eryurek and Turkan,
1992). Two large-scale examples, one from actual operating data from a wastewater
treatment plant, and the second from simulated material transfer system demonstrate
the possible benefits of this approach in NPP’'s.

The first example is based on two years of operation of the Soreq Wastewater
Treatment Plant in the Tel-Aviv metropolitan region, deals with the identification of
the causes of high turbidity plant effluent. Two 110 input-output auto-associative NN
were trained, one with normal behavior data-set (450 days), the other with high
turbidity data-set (152 days). 20% of the data were not used in the NN training, to
serve as test data for estimating the NN error. After 20 epochs of training both data
sets mean error was about 7% in the two NN. The data of the 108 days in which the
plant produced intermediate effluent turbidity were presented to both NN's, in order to
identify possible causes and distinctive patterns of abnormal behavior. The inputs having
large prediction errors were analyzed and several plant variables were identified as
connected with the high plant turbidity (Boger, 1993b).

In the second example, a hypothetical material transfer system was simulated.
Liquid may be pumped from one of ten source tanks, via one of five pumps, into one
of ten receiving tanks. There are isolating valves for each tank and pump, so the
system consists of 50 pieces of equipment. A 50-16-50 auto-associative NN was trained
with 500 examples of all legitimate transfers, using the non-random initial weight
software package, (TURBO-NEURON, 1992). The training time on a 486/33 machine
in less than an hour, to an average error of 0.01. It was tested with transfer data
containing single fault and double faults. In all cases was the NN able to recognize
"immediately” an abnormal situation. In addition the NN was able to identify the cause
of the abnormality in 99% of the single fault test cases, and in 95% of the double fault
test cases (Boger, 1993d).
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CONCLUSIONS

The nuclear power industry, while recognizing the NN potential for inclusion in
intelligent displays and instrumentation systems, is hesitating to apply it in safety
related systems, no doubt because of NN teaching problems, verification and validation
issues. However, the number of non-safety applications for NPP and related fuel cycle
is growing, with the maintenance related applications having the best potential for
actual plant use. As the V & V issues are also difficult to solve in any type of
operator support systems, the advantages of the quick setup and fast execution time of
NN, combined synergisticly with fuzzy logic techniques, should overcome this hesitation.
The research leading to the availability of fast learning algorithms should enable
researchers and developers to apply the auto-associative technique for large-scale
systems. Once experience is gained in the forthcoming monitoring and diagnostic systems
in NPP’s outside the US, the nuclear power industry will get more confidence in the
neural networks capabilities.
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APPLICATION OF NEURAL NETWORKS
IN NUCLEAR SAFETY ANALYSIS

A. STRITAR, M. LESKOVAR
Jozef Stefan Institute,
Ljubljana, Slovenia

Abstract

Two applications of the neural network methodology in the field of nuclear
safety analysis are described. The first one is the 3-D response surface
generation by the Back Propagation Method. The results were not satisfactory.
The second is the application of the Optimal Statistical Estimator methodology
Jor the generation of 8-D response surface. It was used as a statistical part of
the Code, Scaling, Applicability and Uncertainty (CSAU) methodology for the
evaluation of Large Break Loss of Coolant Accident. The result was
comparable to the one obtained by the ordinary method.

1 INTRODUCTION

A survey of the bibliographic data base shows us a considerable number of neural
network applications in nuclear industry in recent years. Most developments are oriented
towards some kind of on-line plant diagnostics *,2,%,4,%,6,7 8,° %and"!, while much fewer deal
with the some analytical applications 2,'* and !*. During our work with the thermal-hydraulic
safety analysis of Large Break Loss of Coolant Accident (LB LOCA) for the NPP Krsko in
Slovenia !5, several problems were encountered, which could be solved by the use of the
artificial neural network method. Two such applications are presented here, one less and the
other much more successful.

2 APPLICATION OF THE NEURAL NETWORK FOR THE RESPONSE
SURFACE GENERATION IN 3-D SPACE

21 Definition of the Problem

In our study, referenced in °, the final result of the analytical thermal-hydraulic
simulation of LB LOCA was the Peak Clad Temperature (PCT) during the accident. This is
a single value representing the temperature of the hottest spot in the whole core during the
entire transient. The influence of the steam generator plugging level and of the initial break
size to PCT was sought. There were altogether 35 computer runs performed using 5 different
values for the break size and 7 for the plugging level. 35 calculated PCTs are shown in Table
I. The PCT may be regarded as a function of two independent variables-plugging level and
break size. This would produce a 3-D surface, so called response surface. If one makes a
simple linear interpolation between calculated points, this surface would look like the one
at the Figure 1. It was our desire to draw that surface somewhat smoothed, because it was
clear to us, that uncertainty of each individual solution is quite high. A general impression
about the influence of both parameters to the final result could better be understood by
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Table I: Set of Peak Clad Temperatures in the first study

Break size Plugging level
0 10 14 16 17 18 22
25 1343 1366 1346 1359 1369 1371 1340
30 1388 1438 1438 1424 1441 1423 1386
35 1374 1460 1460 1409 1452 1419 1428
40 1381 1412 1412 1414 1415 1432 1426
45 1316 1329 1329 1322 1369 1338 1359
1500 1500
1450 = 1450 =
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Figure 1: PCT Response Surface by
linear interpolation

.35
30 e [\
6 e B

Figure 2: Spline interpolation of input data

preparing a smoothed surface. After the linear interpolation the surface was approximated
by applying spline curves through, or better close to the calculated points. The result is

shown on Figure 2. It later proved to be the
best surface representation we could produce.

2.2  Solution by the Back Propagation
Neural Network

The construction of the response surface
through the points in Table I was tried also by
the multilayer neural network and Back
Propagation learning method Y’,'®. This was
more of the academic interest and was
primarily intended as our initial training in
neural networks. The back propagation method
proved to be very slow. Considerable amount
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Figure 3: Neural network interpolation in a

dense grid

of time was spent trying to find optimal number of hidden neurons and network parameters.
The best result was obtained after some 70000 learning steps and around 7 hours of
computing on a 80386, 25 MHz personal computer with the 80387 numeric coprocessor. It

is shown on Figure 3.
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2.3 Conclusion

Since for that particular case the response surface was not needed for any further analytical
purpose and having in mind extremely cumbersome calculational process for obtaining its
neural network generated version, application of back propagation for this purpose was
considered unsuitable.

3 APPLICATION OF THE NEURAL NETWORK FOR THE RESPONSE
SURFACE GENERATION IN 8-D SPACE

3.1 Definition of the Problem

Safety analysis of the LB LOCA by another methodology, so called Code Scaling,
Applicability and Uncertainty (CSAU) evaluation '° has also a step, that can be solved by the
use of neural network. We have performed LB LOCA analysis by that methodology %, 2!,
As in the previous case the parameter we were looking for was Peak Clad Temperature.
There were 7 independent variables chosen: fuel peaking factor, gap conductance, fuel
conductivity, break size, pump degradation, plugging level and safety injection flow rate. For
each independent variable two to three different input values were selected based on its
uncertainty. Altogether 128 computer runs, giving 128 different PCT results, were performed
with different combinations of input variables. The PCT values are presented in Table II.

From these results the probability density curve should be obtained. For that purpose the
response surface in 8 dimensional space (7 independent and 1 dependent variable) must be
generated. The probability density curve can be calculated by the random selection of input
variable sets and reading the corresponding PCT values from the response surface.

The neural network may be used in the process of the response surface creation. Original
method of response surface creation is described first.

3.2  Solution by the Regression Analysis

The third order response surface was used to obtain the following function for Peak Clad
Temperature '

LK

PCT =Y a,, XXX, ,

i, j, k=0
where [=J=K=7, X;,=0 and XX X, are the combinations of input parameters. Higher
order terms are redefined as auxiliary terms to perform linear regression analysis. The
regression function of the standard personal computer spreadsheet program LOTUS 1-2-3 #
was used.

This function was then used in a Monte Carlo sampling program. 100,000 samples were
collected with random variations of input parameters. For most of input parameters the
uniform probability distribution has been assumed, except for the peaking factor and fuel
thermal conductivity (normal distribution).

Results of Monte Carlo sampling are frequency histograms on Figure 4, which are

representing probability distribution function. Final result of the analysis is the mean value
of the Peak Clad Temperature after the LB LOCA 1137 K and 95% upper bound <1268 K.
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Table II: Peak Clad Temperatures in Kelvins for the second case

break break | SI flow { SI flow | plug.g plug. pump pump
size size -20% +20% level level level 1 | level 2
0.4 0.3 10% 18%

nominal 1092 1087 1104 1093 1104 1100 1091 1100
=-3.6% 1066 1033 1080 1062 1055 1061 1089 1080
E=+5.6% 1128 1087 1138 1126 1122 1131 1146 1137
F.=-10% 1116 1099 1134 1132 1110 1136 1137 1128
F.=-5% 1101 1096 1095 1094 1106 1112 1117 1117
F.=4+10% 1074 1061 1092 1088 1066 1081 1086 1075
G.=-80% 1284 1225 1261 1288 1264 1287 1294 1292
G, =-46% 1147 1120 1131 1149 1139 1154 1154 1157
G.=+35% 1098 1065 1083 1072 1084 1072 1075 1113
F,=+45.6%,G.=-80% 1318 1263 1297 1299 1316 1328 1323 1325
F,=+5.6%,F.=-10% 1159 1128 1146 1153 1160 1152 1167 1170
F,=+4+5.6%,F.=+10% 1097 1095 1088 1090 1103 1106 1115 1110
G,=-80%,F.=-10% 1299 1250 1282 1312 1302 1329 1308 1313
G.=-46%,F.=-10% 1185 1147 1167 1166 1174 1175 1169 1193
G.=+35%,F.=+10% 1073 1062 1061 1063 1065 1075 1087 1080
F,=+45.6%,F.=-10%, 1342 1285 1336 1342 1316 1347 1316 1324

F, - power peaking factor, F, - thermal fuel conductivity, G, - gap conductance
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3.3  Solution by the artificial neural network: Optimal Estimator Method

The neural network was constructed based on the Optimal Statistical Estimator, described in
Grabec, » and Grabec, 2. Monte-Carlo sampling was then used for the probability density
calculation.

3.3.1 Description of the Optimal Estimator Method

Results from Table II were used as inputs. Each result represented one point for the response
surface generation in eight dimensional space. Each input variable represented one
dimension.

For the calculated input data the value

SG’
f N i/r

@

was calculated, where S is estimated standard deviation of the calculated input data, N is
total number of calculated input data and 7 is number of input dimensions. The corrective
factor f, is to be selected by the user. The contribution of each data point to the final result
estimation can be adjusted by it.

Every original data point is contributing to the estimate of the output variable value
at the response surface. The Gaussian function is used for the calculation of the average
weight of each input data to the final result. It is calculated by the equation:

1G-G,I*
5(G-G) = —L ¢ 3
(2m*e!
where
I
IGI? = Yx” @
i=1

x; is input data value, G is input vector and subscript n corresponds to the calculated input
data. The optimal estimator of the value at the response surface H, can be calculated by the
conditional average:

gj@(H- ») 8,(G-G,)
fHI|G) = 22 )]

N

>.8,(G-G,)
n=1

where H is output vector. The optimal estimator is represented by the integral:

Hy(G) = [H f(H|G) dH ©)

Inserting function from equation (3) into equation (5) and integrating over the vector H yields
for each term in the summation of Gaussian functions its mean value H, according to the
simple expression:
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N
HO(G) = E Can (7)

_ _8%(G-G)

N ®
Z 8,(G-G,)
n=1

3.3.2 Results

All 128 peak clad temperatures were used as input data for the response surface generation
by the optimal estimator program. Monte-Carlo analysis was performed by random variation
of input parameters. For each point at the response surface complete calculations from
equations (2) to (8) have been done. The normal (Gaussian) distribution has been used for
Peaking factor and Fuel conductivity and uniform distribution for other five input parameters.
The Monte-Carlo sampling required about 1 minute of CPU time for 1000 samples at the 25
MHz 80386 personal computer with 80387 numeric coprocessor. The results are shown on
Figure 4. The calculated probability density function is compared with the one obtained by
the regression analysis in section 3.2.

Probability distribution functions peaks are shown at Figure 5 and are also compared with
those from regression analysis. The difference in 95 percentile is rather small (5 K). The 95
percentile calculated by the optimal statistical estimator method is higher then the one
obtained by the regression analysis, which is conservative.

Results are summarized and compared with the results of the regression analysis in
Table III.
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Figure 5: Comparison of Optimal Estimator and Regression Probability Distributions

for the blowdown peak
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Table III: =~ Comparison of Neural Network and
Regression analysis results

Peak Clad Temperature Il
r
Mean PCT 95% upper | ToT nean (K}
(K) bound (K)
Optimal :
statistical 1140 1268 128
estimator
Regression 1137 1264 127

4 CONCLUSIONS

The back propagation neural network method proved to be quite ineffective for the purpose
of the response surface generation in 3-D space. Ordinary methods for graphical presentation
of 3-D objects are much more practical.

For the statistical evaluation of the large set of computational results, which can be organized
in the multidimensional response surface, the Optimal Statistical Estimator method is very
useful. The final result and the speed of the method is comparable to the usually used
regression analysis.
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QUALITATIVE PROCESSING OF
UNCERTAINTY, CONFLICTS AND
REDUNDANCY IN KNOWLEDGE BASES

V. ZBYTOVSKY
I}Iuclear Research Institute,
Rez, Czech Republic

Abstract

This paper describes two techniques, created and
implemented in the course of development of the
real-time on-line expert system Recon at the Nuclear
Research Institute at ReZ, Czech Republic.

The first of them 1is the qualitative processing
of uncertainty, which is based on the introduction of
the third 1logic value to logic data objects, and the
credibility flag to arithmetic data objects. The
treatment of the third value and credibility flags
during the inference, the explanation method based on
the graphic representation and the uncertainty
processing during the explanation are also mentioned.

The second technique, is a semantic checking of
knowledge bases, which enables us to recover parts of
the bases, that are meaningless, either because of an
error during their implementation into a base, or
because they are redundant. The paper includes the
explanation of basic terms of this method, such as so
called conflicts, K-group and K-situation. The two
types of the conflict ( dead-end and bubble) are also

discussed. The paper also offers the complete
mathematical apparatus, which the checking method is
based on.

1) Introduction

The main result of the development project on the
diagnostic technological expert system (ES) for operator
support TEEX [1] was creation of rule based real-time
on-line ES Recon. Since 1992 after the termination of
project TEEX the development of RECON has continued
independently. In this period the integrated sheel ERB [2]
for creating and editing of knowledge bases was developed.
The inference engine (IE) and the explanation mechanism were
complemented by qualitative wucertainty processing, which is
the subject of the first part of this paper.

The second part presents our approach to the detection
of conflicts in knowledge bases [4], which was developed and
implemented within the framework of TEEX project, and which

is prepared for implementation into Recon.
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2) Oualitative processing of uncertainty

2.1) Problem background

In the early stages of the TEEX project the
possibility of the representation of uncertanty was
considered. In order to process uncertainty correctly, the
area of uncertainty in AI was reviewed. The conclusion was
not to use Mycin-like 1IM, which process the uncertainty
extensionally, because of the possibility to obtain results,
which are in contradiction with knowledge from KB.

Oon the other hand the intentional methods such as
Shachter's probabilistic inference (3], are true consistent
with the theory of mathemathics. This method was implemented
in ES SHAT (interactive ES) and DIAG (automatic module).
Also this approach was not successful, because of high
memory costs and problems with understanding of numeric
results (probabilities) by users (NPP's operators).

The experience obtained creating KB for real
applications show us, that uncertainty in area of NPP
technology diagnostics, concerns the lack and wrong quality
of input data and not the technolgy itself. The main problem
was to treat data failures. Considered numerical
(quantitative) methods were not suitable to solve this
problem and thus - the new qualitative method of uncertainty
processing was developed and implemented.

Basic framework for this method was that operator
wants to see only unambiguous conclusions, based on
unambiguous knowledge and on potentionally non-credible
input data. The outputs of diagnostic ES are logic statemens
which have Boolean values true or false (YES or NO
respectively) when system is capable to give answer, or
UNKNOWN value, instead of numeric measure of uncertainty,
when input uncertainty obstruct the unambiguous conclusion.
This new logic value enhanced Boolean sample space
bool={YES,NO} to the three value sample space 3bool={YES,
UNKNOWN,NO}, which is the new base for so called "three
value logic" (3VL).

To be able to compute logic expressions in 3VL the
data objects (log, float and int variables and constants),

logic operations (NOT, AND, OR), relational operations (>,
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>=,=,...) and arithmetic operations (+,-,*,/) and functions

were redefined.

2.2) Application for IM

The original idea was to assign UNKNOWN value to every
statement based on uncertain information. 1In this way one
non-credible input could block a relatively considerable
part of KB by UNKNOWN value, even if other, credible data,
are sufficient to obtain unambiguous result. Since the
special properties of Boolean logic can be used to define
result, knowing only one of two operands, it is possible to
obtain certain results from partially uncertain data. 1In
standard algebraic expressions there are in principle three
types of operations:

arithmetic: arit X arit -> arit

relational: arit X arit -> bool

logic: bool X bool -> bool
where arit=R U Z.

The above mentioned modification of data objects means
to assign to every arit object a Boolean credibility flag,
and to use 3bool sample space instead of bool. The
operations and functions are then redefined in the following
way:

Arithmetic operations

As mentioned above an arit data object in 3VL is
represented by pair <value, credibility flag>, where
valueearit and credibility flage{0,1}. Zero value of the
flag means that the value is credible, if flag is 1 it means
the opposite.

Redefinition:

arit X bool X arit X bool -> arit X bool

opl aop op2 -> res

is computed as:

opl.value aop op2.value -> res.value

opl.flag U op2.flag -> res.flag
The resulting value 1is obtained as usual in normal
arithmetic, the resulting flag is disjunction of flags of
operands. Therefore even one non-credible data object in
arithmetic expression leads to non-credibility of the
result.
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Relational operations

Redefinition:
arit X bool X arit X bool -> 3bool
opl rop op2 -> res
is computed as:

opl.value rop op2.value -> res, if dis_ flag=o0,
UNKNOWN -> res, if dis flag=1,

where dis flag= opl.flag U op2.flag.
Similarly to the arithmetic operations, the result is
UNKNOWN whenever at least one operand is non-credible, else

the result is the same as in the normal algebra.

Logic operations

As the basis to operate with the third logic value so
called absorption effect of Boolean logic was wused. This
effect can be described by following equations:

Z AND 1 = 2
Z AND 0 =0
ZOR 1=1
Z OR 0 = Z, where Z¢€{1,0}.

These equations tell us, that very often (in 50% of all
combinations) it is sufficient to know only one operand to
determine the result. Owing to this effect in real KB the
non-credible input wvalues can be absorbed, and ES gives
credible results even if some of input data are not

credible.

Redefinition:
3bool X 3bool -> 3bool

opl op2|AND| OR|NOT opl
1 1|11 0
1 X | x| 0
1 o] o1 0
X 1| x| X
X X | x| X X
X 0| ol X X
o 11|01 1
o0 X | o | X 1
o o] o0} o0 1

where 1 is YES, X is UNKNOWN and 0 is NoO.
For computer processing the folowing representation of

values was used:
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YES = 2
UNKNOWN = 1
NO = 0.
In this representation the following equivalences are valid:
A AND B <=> min(A,B),
A OR B <=> max(A,B),
NOT A <=> 2 - A,
and implementation by classic programming languages is then

trivial.

Functions
We consider functions of the following shape:
FuncName(par;, pary,....,pary).

Parameters are logic or arithmetic expressions, which are
used 1like inputs and function returns arit or log data
object. The value of returned object is calculated according
to the function's algorithm and its credibility is
disjunction of parameters' credibilities. In ES Recon is
also possible to override this default credibility inside

function's algorithm.

2.3) Explanation of expressions

The problem of the explanation of expressions is to
determine, for each 1logic data object appearing in the
expression, the projection of its value to the resulting
value of the whole expression. The table definitions of

explanation function for basic logic operations are

following:
Y = opl AND op2 Y = opl OR op2
Importancy Importancy

opl op2) ¥ opl|op2 opl op2{ Y opl|op2
1 1 1 + + 1 1 1 + +
1 X X - + 1 X 1 + -
1 0 0 - + 1 (0] 1 + -
X 1 X + - X 1 1 - +
X X X + + X X X + +
X 0 0 - + X 0 X + -
0] 1 0 + - 0 1 1 - +
0] X 0 + - 0 X X - +
0 0 0] + - 0 0 0 + +

Analysing these tables we can see that in fact an operand is
important if its value is equal to the value of the result.
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Every 1logical expression can be replaced by hierarchy of
basic logical operations AND, OR and NOT. The explanation of
such structures can be performed in two ways.

The easier way is to take the value of an oprand,
negate it so many times how many NOT operations is on path
between operand and result, and so negated value compare
with the result of the expression. In this case the result
is a list of potentionally important operands, but their
contribution could be absorbed by other operands. This fact
could not be discovered by this method.

The more difficult way is to analyze the tree of the
expression with regard to absorption of values of
potentionally important operands.

ES Recon uses the more difficult method to analyse
expressions containing only logic operations. In
expressions, where 1logic and other operations and operands
are mixed, Recon automatically chooses the simple method of

explanation.

3) Semantic checking of KB

The necessity to detect conflicts and redundancies in
KB arose in the course of TEEX project. For these reasons
a special theory was constructed, which was also implemented
in program package ZPRAl.

3.1) Basic conceptions

KB is for reasons of the semantic control represented
in form of a special graph, which is a discrete analogy of
so called influence diagram (ID), used in probabilistic
approaches to wuncertainty [3]. ID is a finite directed
acyclic graph, in which every node x has its value <x> from
sample space Q(x) (finite set of symbols) and a table of
a transfer function Tab(x), which assignes to every
combination of values of node x direct predecessors one
value <x>.

Definition 1: Node A is a direct predecessor of node B if in
ID exists an edge A->B. Node B 1is a direct
successor of node A.

Definition 2: Node A is a weak predecessor of node B if in
ID exist a path from A to B.



Example 1:

This example, like all examples in the paper, is made
for binary sample spaces. But all theory is valid for
arbitrary dicsrete sample spaces of nodes, and
therefore also for 3bool used by Recon. In this
example we have three Boolean statements: A, B, C and
we have a rule how to obtain value of C: C = A AND B.
Representation of such a small diagnostic KB is

following:
Q(C)={1,0} Tab(C) Tab(A) Tab(B)
c AB|C AlA B|B
111 1j1 1)1
[->- -<-| 1040 0|0 0|0
010
A B 0010

a(a)={1,0} a(B)={1,0}

As you can see, the 1leaves of graph (input nodes,
evidence) have purely formal tables, because they have
no predecessors and their values are input data of

inference.

End of example 1.

Definition 3: A conflict 1is an unconsistency of KB with

testing set of metaknowledge.

Metaknowledge mentioned in def.3 can be related to the
problem area, but more often it follows from common logic,
e.g. one variable can not have at the same time more than
one value,

Later we will use so called types of conflictness
(e.g. dead-end) describing types of unconsistency, and types
of conflicts (eg. bubble) describing the semantic of
metaknowledge. In this work we discuss only conflictness
related to the unpossibility for a node (statement) to
attain some values from sample space.
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3.2 Metaknowledge

Metaknowledge is knowledge about knowledge. Since we
represent knowledge in form of ID, the metaknowlege are
represented by terms of ID.

Definition 4: K-group is a set of ID nodes, what is the
metaknowledge about.

Definition 5: K-situation is a combination of wvalues of

nodes from K-group, which is not allowed.

In other words, metaknowledge, used to determine
conflictness of nodes of ID (base) 1is knowledge about

allowed and unallowed combinations of a set of nodes

(group).

Example 23
Let us have two binary nodes A and B (Q(A)=0(B)={1,0})
with following semantic:

A% X2y,
B=xx<y,
where e.g. X, vy € R, 1i.e. real numbers. It is obvious, that
truth values of these nodes can not be equal, i.e.
<A> = <B>,

what is a consequention of Kknowledge, that variable can not
have at the same time two different values.

Using above defined def. 4 and 5 we express described

knowldge in the following way:
K-group: G={A,B},

K-situation: S={{1,1},{0,0}}.
End of exanmple 2.

3.3 conflicts

Now we can define terms related to the conflictness of
nodes.
Definition 6: Node X of ID iIs conflicting, if K-situation

is a necessary condition to attain one or
more value from Q(X).
Definition 7: Node X of ID is called dead-end, if

K-situation is necessary to attain any value
from Q(X), except one.
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Consequence 1: Sets of dead-ends are subsets of conflicting

nodes.
Definition 8: The type of conflict called bubble takes
a place, if a node (bubble top) exists, which

requires situation, in that another node
(bubble source) has at the same time two or
more different values.

Example 3: How to express bubble-conflict for binary bubble

source hode A:
G={A,A}.
S={Sl,82}={1,0},{0,1}}.
S,={1,0}, S,=(0,1}.
As you can see it 1is possible to do it using
K-groups and K-situations. This type of conflict
is general and undesirable in most of KB.
End of example 3.

Definitions 6 and 7 define two types of conflictness,
like property of node of ID. Def.6 defines a general case of
conflictnes, which is a redundancy of sample space which has
a relation to KB redundancy (see 3.6).

3.4 Detection of conflicts

From def.6 it 1is obvious, that apperance of all
members of K-group in set of weak predecessors of node X is
a necessary condition for conflictness of X.

Definition 9: Potentionally conflicting node (PCN) is every
node, the set of weak predecesors of which

contains all members of K-group.

The base for detection of conflictness of PCN X is
a dividing of rows of Tab(X) into two sets, set of available
and set of unavailable rows. If all members of the K-group
are also direct predecessors of PCN X, then combinations of
K~-group members, divided to available and unavailable
(K-situatons), divide rows of Tab(X) in the same manner. If
one or more values from £Q(X) do not appear in set of
available rovs, then according to def.6 is node
X conflicting (maybe dead-end).
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Example 4: Dead-end node.
K-group: G={B,C}.
K-situation: S=({(0,1},{(1,0}}.
Q(A)=0(B)=1(C)=0(D)={0,1}.

Tab(A)
BCD | A A
000 ol
oo1 ]| o <
01010 A
011 1
1001 o0 B C D
101 |1
110 ol
111/ o0

K-situations in the table are underlined and available
rows (situations) are marked by "J". According to
def.7 node A is a dead-end, because its value is in

available situations constant.

End of example 4.

3.5) Blocking effect and its propagation

If some members of the K-group are not direct
predecessors of PCN, it is necessary to investigate,
wheather the K-situations will propagate to the predecessors
and thus divide the rows of Tab(PCN).

Assumption : Let us suppose, that node H has n direct

predecessors Eq,...,Ej.

Definition 10: Direct predecessor Ej blocks node H, if the
following expression is true:
EXIST C; € Q(Ej),

EXIST C, € Q(H): (<Ej> = Cq1) => (<H> = C,).

We say, that there is so called AS-dependence between nodes

Ej and H. This fact can be written as a function:

as(Ej,Cl,H,Cz).



Definition 11: A path is set of nodes P={N;,...Np} if:
FOR i € [1, m-1],

FOR N;y € P : Ny is a direct predecessor of Nitq-

Definition 12: A path P={N;,...N,} is an AS path, if:
FOR i € [2,m-1],
EXIST Cje @(Nj) : as(N;j_;,C5_1,N; ,C; ) n
as(N; ,Ci Njy1.Ci41)-
This fact will be expressed as:
AS(P,C,).

It is obvious from def.12, that in AS path is the
blocking effect propagated from the first to the last node,
and then it is true that:

<N1>=C1 => <Nm>=Cm .

Owing to this property of AS paths only, it is possible,
that the K-situation can be transported by AS paths from
members of K-group to the direct predecessors of PCN, and
rows of Tab(PCN) will be then divided. Only by AS paths it
is guaranteed, that K~situation will be not absorbed between
N, (member of K-group) and Nn (direct predecessor of PCN).

Definition 13: K-situation S, will be transported by ID from
K-group G to the direct predecessors E; only
if:

FOR %X € G
EXIST Py={X,...,Ej} : <x> € S5, n AS(P,,<x>).

I.e. for every node x from K-group exist an AS path Py which

transports dependence on value <x> to the direct predecessor

of PKU E;- But value of E; need not be equal to value of x.

3.6) Redundancy

As redundant elements we call parts of ID, retrieving
of which will not affect the work of ES with this KB. Such
elements in KB often tell us more frequently rather about
error in course of expression of knowledge by KB formalizm
than about redundancy of expert's knowledge. Therefore
before retrieving redundant elements from KB it is necessary

to do a detailed revision of related knowledge.
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The first candidates for redundant elements are nodes,
conflicting according to def.6 and 7. If a node X is
conflicting, it means, that it can not attain one or more
values from its sample space. In this case the number of
possible rows of transfer functions of successors of X will
decrease. In this way the conflictness of node X (redundancy
of sample space) causes redundancy of transfer functions of
its successors, particulary rows corresponding to
unattainable values of X.

The special case - dead-end is an extreme of
conflictness, because such a node Y has no influence on its
successors. Therefore all edges starting in ¥ are redundant
and then also ¥ is redundant (similarly to def. 15).

Except redundancy caused by conflictness of nodes,

there can also appear so called structural redundancy.

Definition 14: Edge A->B is structurally redundant (SR), if
any alteration of <A> for any fixed
combination of values of the other direct
predessors of B will not affect <B>.

Definition 15: Node is structurally redundant, if all edges

starting in it are structurally redundant.

SR nodes and edges (SR elements) are esentially also
a kind of conflict according to def.3, but description of
correspondent metaknowledge using K-groups and K-situations
would be extremly akward. Therefore for their detection we
use a special algorithm, based on the detection of redundant
edges A->B:

1) In table Tab(B) we mark rows with available
situations. If there is no testing metaknowledge,
we will, of course, mark all rows.

2) We divide Tab(B) into several tables, one for every
fixed <A> from Q(3).

3) If the marked lines from all tables are equal, then
edge A->B is structurally redundant.

Then we can cancel edge A~->B and replace Tab(B) by any table
created in step 2).
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Example 5: Testing of the edge A->B for SR.

Tab(B)

ACD| B

0 00| 1 =0 =1
001 1I

0101 Cc D| B CD| B
011{ 0

100/ 0 00| 1 0 0| O
101f 1 01 1I 01| 1
1101 101 10| 1
1110 11} 0 11| 0

As we can see, values of B in both small tables
differ only in the first row, but both these
combinations are unavailable (not marked). In the
marked rows both tables are identical and edge
A->B is then redundant. As a new Tab(B) we can

use arbitrary one of the small tables.

End of example 5.

4) Conclusions

The solutions of all presented problems are obviously
based on the absorption effect of Boolean operations.

In the area of qualitative processing of uncertainty
this approach enables us to achieve a significiant
increasing of capabilities of ES with minium increasing of
time of processing (no difficult or floating point
operations). This is valuable, esspecialy for real time ES,
which must be fast and need automatic treatment of data
failures. For instance ES Recon, which uses 3VL for the
inference and explanation, achieves on IBM PC 486 50 MHz an
average speed of 0.0063 sec/rule in compiled regime (for
on-line application) and 0.13 sec/rule in interpreting
regime (for off-line testing). These tests have been made
using real KB prepared for a real NPP.

The application of the semantic control methods makes
it possible to improve quality of KB represented by wide
variety of formal methods. To do this it is sufficient to
create a relatively small program converting a particular
formalism, used for knowledge representation, into form of
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ID,

and then - use presented methods. From this point of

view these methods are also a contribution to the problem of

verification and validation of KB.

(1]

[2]

{31

(4]
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APPLICATION OF ARTIFICIAL NEURAL NETWORKS
FOR MODELING LOCALIZED CORROSION

M. BEN-HAIM, M. MARELLY
Negev Nuclear Research Centre,
Beersheba, Israel

Abstract

Artificial neural networks (ANN) were applied to modeling localized corrosion of Incoloy Alloy 825
in simulated J - 13 well water. ANN as a non linear models can represent accurately localized
corrosion phenomena caused by an environment cantaining chlorides, nitrates, fluorides and
sulfates at various temperature ranges. Although the nature of the dependent variable of the ANN
models, the visual rating of the localized corrosion is qualitative, a good correspondence
between the output of the model and the actual indications is determined. Accurate ANN
modeling has been carried out by using the visual inspection of the specimen surface, in contrast
to linear modeling where in order to get a sound correlation between the system variables, a
complex dependent parameter, having no clear physical meaning has been chosen. it has also
been found that one can extrapolate to a certain extent, beyond the ability to interpolate (as with
linear models). The ANN model predicted with a low relative error the visual rating of the
corrosion rate of records which where part of the testing set of the ANN and belonging to the

original full factorial design experiment. Thus, such models can be used for detailed analysis

procedures as sensitivity, knowledge acquisition and optimization.

INTRODUCTION

Artificial intelligence techniques such as
expert systems and artificial neural networks
are being used for a wide variety of problems
and analysis. Artificial neural networks have
been suggested for use in problems typically
solved by regression techniques. Moreover,
by utilizing non linear transfer functions, the
artificial neural networks are not limited to
linear cases, thus, complex electrochemical
systems characterizing localized corrosion
and passivity can be modeled.

Passive metals such as stainless steels,
nickel and aluminum alloys usually resist a
wide variety of corrosive media and perform

well over extended periods. In certain cases,

the surface remains actually inert, but, if for
any reason corrosion eventually starts, rapid
penetration of the construction material
takes place at very small parts of it, inducing
a localized corrosion phenomena.

This phenomenon in general, and pitting and
crevice corrosion in particular, is known to
be one of the most severe degradation
mechanisms by which containers of high
level nuclear waste (HLNW)

are liable to fail. Thus, modeling localized
corrosion, in order to predict candidate
materials performance as containers for
HLNW, is vital for understanding the effect of
environmental factors on pitting and crevice
corrosion and the electrochemical

parameters characterizing it.
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Numerous analytical models for crevice and

pitting corrosion phenomena were
published, enabling simulation systems to
be set up. Once the simulation program is
operating, one would expect to acquire
specific knowledge affecting the phenomena
as how the process would respond if, for
instance, the chemical compaosition or other
variables of the corrosive environment would
change. Some of the required knowiedge can
be learned by analyzing the mathematical
equations governing the localized corrosion
model. Another source of knowledge is
laboratory experiments. These methods are
easy to implement in simple systems, but not
in muiti - parameter processes, characterized
by non - linear behavior.

This work will demonstrates the feasibility of
using artificial neural networks for modeling,
knowledge acquisition and learning some of
the rules controlling a localized corrosion
phenomenon; Incoloy Alloy 825 exposed a
corrosive medium containing elements
characterizing J-13 well water. Resulits are
compared to predictions derived from linear

models.

lnput(:)

“)

INPUTS

Hidden(j)

e

APPLICATION OF ARTIFICIAL NEURAL

NETWORKS FOR MODELING
The actual potential of artificial neural
networks for engineering applications

became evident in the mid nineteen eighties.
The rigorous name of the ANN is "artificial
neural networks", showing the similarity of
concepts to the neural cell networks in the
brain. Processing elements are linked to
each other by variable strength connections.
The sum of all the inputs to such an element,
activates it and produces an output. The
node outputs, multiplied by connection
weights are transferred to all processing
elements receiving inputs from this node.
Apparently, an analogous situation, though
much more complex, is present in neural
brain cells, whose axons and dendrites are
connected to each other through synapses
that modify the connection resistance during
the learning process. Although many ANN
architectures are possible, the most common
one is presented in Figure 1. It consists of
one input and two processing layers; one of
which is called the "hidden layer”, the other

Output(i)

OUTPUT

Figure 1: Basic neural network architecture

70



one is the “"output layer”. The input layer
functions as a fan-out of the input variables
to the "hidden After

performing the non-linear transfer function,

second, layer”.
the results are connected to the third, output
layer, which aiso executes similar non -

linear transformation.

An artificial neural node used in this study
operates according to a simple mathematical
function; sigmoidal -

transfer shaped

equations:

fz)=(1+e )'1; z = ¥ Wi X

where f(z) is the node output, x; are the
outputs of the previous layer nodes, W are
the connection weights leading to a node

{including the bias).

The most common learning algorithm is the
supervised back propagation algorithm, in
which a data set of system inputs and
outputs ("training set") are presented to a
neural network having

initial connection weights. An error is
calculated by comparing the actual outputs
to those calculated by the network; the
connection weights and bias are modified to
decrease the sum of
squared error. This training procedure is

carried out repeatedly, until the error
converges to a small value. The network is
tested by presenting another set of inputs
and outputs ("test set”), and comparing the
network outputs to the those of the test set.
If the resulting error is small enough,

the network is considered trained and it may
be used for predicting outputs. Thus, a
system model has been created, not by

programming equations but by teaching

from examples. For more information, the
reader is referred to two comprehensive
books in this domain (12) and several
papers in recent issues of the Computers in

Chemical Engineering journal.

For constructing a ANN model, two essential
elements are needed: a database of the
system inputs and outputs, covering the
approximate range of values, and an efficient
ANN training algorithm. It was the lack of the
second requirement that hindered the
application of ANN to non-trivial systems, as
the learning rate was slow, and convergence
may take days, even on powerful computers.
The reason for this was the fact that random
values had to be chosen as the initial
connection weights, and the problem was
equivalent to n-dimensional optimization,
with n rising fast as the number of
connections between inputs and hidden
nodes increases. Even when converged,
several repeat runs were needed to prove
that a global minimal error was reached.
Similarly, the number of hidden neurons,
chosen heuristically by the network
designer, had to be checked by repeat
hidden

numbers for optimal network performance.

training with different neuron

In this study, a commercial software shell
has been used(s). It is based on an algorithm
which performs statistical analysis of the
training data set, calculates meaningful
initial connection weights and estimates the
number of neurons in the hidden layer. This
procedure reduces the training time by a
factor of 20 - 50 compared to the existing
algorithms, and allows the user to build
effective ANN in a matter of hours, even on

personal computers. Once an ANN is trained,
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its statistical validity and ability to generalize
may be further increased by another
algorithm which identifies non - significant
inputs by statistical analysis of the hidden
node behavior. Thus, allowing

re-training with reduced input set to produce

a more robust and dependable ANN model.

Extraction of knowledge from a trained
artificial neural network can be performed by
applying the “causal index" analysis @)
Although it reflects only an average tendency
for the total input range of parameters, when
backed by common sensitivity analysis
techniques, it can provides useful global
characteristics of the investigated system.
The causal index is determined by
multiplying all connections weights from a
specific input to a specific output and the

resuits summed over all hidden neurons;
Cm=ZWin Wnm

CL.m is proportional to d By / d Ay, where By
and A, are representing I-th output and m-th
input respectively, and n is the hidden
Thus, it
global

neuron index. represents

qualitatively  the relationships

between each output and input in the
system, and is easily calculated by the
weights derived from the trained artificial

neural network.

LOCALIZED CORROSION OF INCOLOY
ALLOY 825 EXPOSED TO ELEMENTS
PRESENT IN J-13 WELL WATER.

The corrosion behavior of Incoloy Alloy 825
in environments containing elements present

in J-13 well water was studied extensively,
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examining the effects of chlorides, sulfates,

nitrates fluorides and the temperature (5)’(6).

Pairs of these parameters can in certain
circumstances affect the localized corrosion
phenomena synergistically. The effects of
these factors on electrochemical parameters

were investigated as well, by applying cyclic

potentiodynamic polarization tests for
determining susceptibility to localized
corrosion.

Generally, chloride ions are promoting

localized corrosion. The fact that metal
halides are more stable than oxides at higher
anodic potentials is responsible for the
breakdown of passive films on austenitic
alloys, thus, initiation and propagation of
various localized corrosion forms may resuit.
Chloride ions are liable to induce localized
attack as pitting and crevice corrosion; at
concentrations beyond 20 ppm, it might
cause crevice corrosion of Incoloy Alloy 825,
and at concentrations of 200 ppm and
beyond, it might promote both pitting and
crevice corrosion (7). Nitrate ions are known
as inhibitors of localized corrosion,
especially in the presence of aggressive ions
as chlorides. The reason is attributed to the
between

chlorides for available adsorption sites on

competition these ions and
the metal surface. A synergistic inhibitive
effect between chlorides and nitrates has
been reported as well (7); at chloride ion
concentrations beyond 100 ppm, nitrates
inhibit the localized corrosion phenomena of

Incoloy Alloy 825.

Fluorides and sulfates have opposite effects
on localized corrosion. Fluoride ions inhibit
corrosion

localized (though promoting



uniform attack), especially at low chloride
ion concentrations, due to their strong
complexing capability. On the other hand,
localized

sulfates slightly

7

promote
corrosion( As far as the effect of

temperature on localized corrosion is

concerned, a minor influence is reported (7).

Localized corrosion has been investigated

electrochemically, measuring pitting,
corrosion and repassivation potentials, (Ep,
Ecorr and Epp respectively) by applying the
cyclic polarization technique. The values of
Ep and Epy relative to Eqopr are indicative of
the pitting susceptibility. The closer Ey is to
Ecorn the greater susceptibility to pitting is
observed. As far as the repassivation
potential is concerned, the value of E, - Erp
crevice

is adversely proportional to

corrosion resistance.

SETTING UP THE DATABASE FOR ANN
SIMULATION

The basic

localized corrosion phenomena by the ANN

requirement for simulating

technique, is the acquisition of a
comprehensive database. It has to includes
most of the normal and abnormal situations,
covering the approximate range of values,
thus, the ANN can generalize the global
process behavior.

In this study, the database {set of vectors),
for the ANN analysis was taken from
experimental results, documented in the
literature (7). These experiments were
carried out by following a two level full
factorial design methodology using five
factors. Thus, one can determine the effect

of the variation of the independent variables

on the localized corrosion rate; the
dependent variable. The components of the
vectors composing the ANN database, are
the environmental variables characterizing
the corrosive medium (concentrations of the
various ions and temperature) and the
measured electrochemical parameters.

The factor representing the visual rating {VR)
of the localized corrosion has been chosen
as the dependent variable. It varies from 1 to
4; where 4 is the most severe localized
corrosion. The following components were
selected as independent variables:

1. Temperature, T (°C)

. Concentrations of chloride ions, ppm

. Concentrations of nitrate ions, ppm

. Concentrations of fluoride ions, ppm

. Concentrations of sulfate ions, ppm

. Corrosion potential, E¢oyr, mV

. Pitting potential, E,, mV

. Repassivation potential, Eyp, mV

W 0 N O O~ WN

. The difference, Ep- Erp, mV

In order to predict the extent of the localized
corrosion rate, two networks were set up;
one with parameters characterizing the
chemical nature of the corrosive medium, 1
to 5, and the other with the electrochemical
variables; 6 to 9.

The database contains 37 records {vectors).
32 records are originated from the factorial
design nature of the experiment, defining the
ranges with respect to each of the variables
characterizing the corrosive environment
and representing the extremes of the matrix.
The other five records represent intermediate
values of the matrix. Twenty seven records
were chosen randomly as the learn set and
the remainder ten records were selected as

the test set.
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NEURAL NETWORK MODELING

in order to model and correlate the localized
corrosion phenomenon with respect to the
varjous inputs imposed, two artificial neural
networks were tested; one with temperature
and chemical compositions as independent
variables; the "environment variables based
neural network”, and the other with the
electrochemical parameters as independent
variables; the "electrochemical variables
based neural network". Each neural network
is composed of three layers, as presented
schematically in Figure 1. As far as the
environment variables based neufal network
is concerned, its input layer contains five fan
out elements; scaled concentrations of
chloride, nitrate fluoride and sulfate ions (in
ppm units) and scaled temperature (°C).

As far as the electrochemical variables
based neural network is concerned, its input
layer contains four fan out elements; scaled
values of Ecorr, Ep, Eyp and Ep- Ep .

A basic feature of a neural network is its
inherent ability to generalize, namely, to
avoid memorization of the training set. Thus,
accurate modeling, constrained by a network
composed of a minimal number of
processing elements has to be performed,
implying the use of a the {east possible
number of processing elements in the input
and hidden layers.

The optimal size of the neural network has
been determined by the Turbo Neuron 3)
shell. For the environment variables based
neural network, it has been found that the
sulfate ion concentration has a negligible
influence on the visual rating of the localized
corrosion. As far as the electrochemical
variables based artificial neural networks

concerned, all inputs have a meaningful
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influence. Consequently, for both artificial
neural networks, four processing elements
were used in the input layer. Two processing
elements for both artificial neural networks
were used in the hidden layer. The output
layer for each of the two artificial neural
networks contain one processing element,
corresponding for VR. All inputs were
properly scaled, between +1 and -1. The
output has been normalized within the range
of 0.1 to 0.9.

The schematic representation of the two
artificial neural networks with their
comresponding weights are displayed in
Figures 2 and 3.

The networks were trained on an IBM
compatible 486 33MHz personal computer.
The final

environment variables based neural network

mean square error of the

was 8% for the learning set and 6% for the
testing set. The final mean square error of
the electrochemical variables based neural
network was 9% for the learning set and 5%
for the testing set. '

The comparison of the VR as calculated by
the environmental variables based neural
network to the

actual experimental

observation is presented in Figure 4.

The comparison of the visual rating of the
localized corrosion rate as calculated by the
neural

variables based

network, to the

electrochemical
actual experimental

observation is presented in Figure 5.

it should be noted that in both these cases,
only data from the training set was used in
the learning phase; the results include also
the test set results. As good correspondence
is shown, it can be concluded that both
artificial neural networks adequately model

the localized corrosion phenomenon.
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ACQUIRING EXPLICIT KNOWLEDGE FROM

THE  TRAINED ARTIFICIAL NEURAL
NETWORKS.
Neural nets enclose implied knowledge

which can be derived explicitly, leading to a
better understanding of the effect of the
parameters on the analyzed system.
Graphical sensitivity analysis along with the
application of the "causal index” technique
can be used for efficiently analyzing complex
localized corrosion

systems such as
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phenomenon, in which the relative influence
of each independent variable is not always

evident.

Figure 6 summarizes global effects of each
individual environmental parameters on the
localized corrosion rate as reflected by the
causal index of the system. The most
significant parameters effecting VR are the
chloride and nitrate ion concentrations.
Chloride appears as a promoter of localized

corrosion attack, while nitrate acts as an



inhibitor. The fluoride ion is an inhibitor,
though to a lower extent than the nitrate.

Temperature has a minor influence on VR.

Graphical sensitivity analysis based on the
ANN model of three parameters having the
most substantial effect on VR; chloride,
nitrate and fluoride, has been performed.
According to the ANN model, negligible
influence of the temperature and actually no
effect of sulfate ions have been determined,

thus, these variables were not analyzed.

The analysis was performed by plotting
contour 3-D images of the VR based on the
neural network model. The X and Y axis are
the chloride and nitrate ion concentrations
respectively, while the Z axis is the VR. The
concentration of the fluoride ions was

chosen as a parameters, thus, several
contour 3-D plots were made, each one
representing a specific concentration of

these ions.

Typically, each 3-D image has a spherical S

shape. The concentrations of the fluoride
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Fgure 7a: Visual corrosion raling; Auoride = 0 ppm

ions are determining the specific geometry
of each plot. According to the relation
between concentrations of chloride and
nitrate ions, one can determine some generali
features characterizing the analyzed system.
VR is directly proportional to the chloride
and adversely proportional to the nitrate ion
the

concentration of the nitrate ion rises, the

concentrations. Moreover, as
effect of chloride on VR diminishes, and
beyond a specific threshold it has no
influence on VR, even at high chloride
concentrations. On the other hand, at low
nitrate concentrations, VR is sensitive to the

chloride contents.

In Figures 7a to 7e, contour 3-D images of VR
- chloride - nitrate, with fluoride ions as a
parameter are displayed. From these images,
one can examine quantitatively the effect of
the environmental variables on the VR.
Fluoride ions, as slightly inhibitive elements,
the

localized corrosion is less detrimental. At

moderately enlarges ranges were

concentrations over 200 ppm, no VR beyond
a degree of 2 is determined.
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Electrochemical parameters can be used as
indicators of localizes corrosion. In order to
determine the global correlations between
these variables and localized corrosion rate,
a causal index has been performed; Figure 8.
The most significant indicators for VR are

observed by the linear modeling technique.

The causal index has an inherent limitation,
as a result of the fact that it provides only
global information concerning the influences
the

dependent variable. Thus, it reflects only an

of each parameter on modeled
mean tendency of the input variables. If for
example, an input has a dominant effect on

the output in a certain part of the input range
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I = 'jlj—m —~{——1300

200 500 800
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Figure 8c Visual corrasion rating; Ep = 800 MV

and a negligible or even opposite in other
regions, this might not be reflected by the
causal index. Consequently, the causal index
technique has been used in this report only
as a complementary technique for
investigating the relative influence of the
the detailed

concerning the effects of the various inputs

various inputs; information

has been derived from the graphical
sensitivity analysis as displayed in Figures 7
and 9. it can be concluded qualitatively that
the modeled output is a monotomic function
of each input over the whole range of the
others, and although its gradient is not
constant, it reflects the influences of the

input variables.
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SAMSON: SEVERE ACCIDENT MANAGEMENT
SYSTEM ON-LINE NETWORK

E.B. SILVERMAN
ARD Corporation,
Columbia, Maryland,
United States of America

Abstract

SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and
Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON
examines over 150 status points monitored by nuclear power plant process computers during a severe
accident and makes predictions about when core damage, support plate failure, and reactor vessel failure
will occur. These predictions are based on the current state of the plant assuming that all safety equipment
not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the
back propagation learning algorithms to make predictions. Training on data from an accident analysis code
(MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant
with different times to critical failures. The accidents currently recognized by SAMSON include stcam
generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant
accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm?2) in size to breaks 3.0 square
feet in size (2800 cm?). ‘

1.0 NORMAL OPERATION OF SAMSON

SAMSON operates on a Sun Micro Systems 40 MHz SPARCstation 2GX UNIX machine running Sun
Operating System 4.1.2 (Solaris 1.0.1). SAMSON was developed in the Motif ™ window environment
with MITs X11RS5. A 19 inch, 256 color monitor is required to display SAMSON’s windows.

1.1 Pre-Accident Operation

Data are collected via a client-server from the plant process computer via a modem and ethernet connection.
In the ‘normal’ mode, SAMSON operates in the background, collecting data, searching the data for an
initiation signal, and archiving the data. In addition, SAMSON displays five hours of data in scrollable
sensor graphs to allow a user to examine data during normal operation.

When an initiation signal is received, SAMSON automatically switches to ‘accident’ mode, activating the
five default windows and begins making predictions. The initiation signals recognized by SAMSON
include a closure of a main steam isolation valve, a feedwater pump trip, a turbine trip, a safety injection
actuation signal, or a reactor trip.

1.2 Accident Classification

Once an initiation signal is received, the accident must be classified into an accident type recognized by
SAMSON before failure predictions can be made. A rule-based expert system classifies accidents using
data collected during the first four minutes of an accident. SAMSON currently recognizes LOCAs and
SGTRs. Work continues on expanding the accident types recognized. Since LOCAs and SGTRs are the
most likely accidents to lead to core damage and support plate failure based on the Zion IPE, emphasis was
placed on recognizing these two accident types. Once the accident is classified, the appropriate neural
networks are called to begin making predictions about the failure times.
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1.3 Failure Predictions

As data are received, SAMSON processes the data through the appropriate neural networks to make failure
predictions. Although data is received only once per minute from Zion's PRIME computer, SAMSON
processes all data in under one second, freeing the computer for other calculations as required by plant
engineers. Failure predictions are displayed in the ‘System Status’ window (Figure 1). Three predictions
are shown in both an analog and digital form; the time until the onset of core damage (CD), the time until
support plate failure (SPF), and the time until reactor vessel failure. Neural networks predict the time until
CD and SPF. The time until reactor vessel failure is fixed at one minute after SPF since the accident
analysis code used to train the neural networks could not model reactor vessel failure. The pointer on the
bar graphs moves up and down as predicted failure times change. The bar graph automatically scales if
predicted failure times go off-scale or the selected scale is too large for the current predictions. Once a
failure has been predicted, the portion of the window dedicated to that prediction grays, displaying instead
that failure has occurred and the time the failure occurred.

Also shown in this window is the time since the start of the accident, the accident classification, and a rate
meler. In Figure 1, the accident has been classified as a 0.5 square feet break LOCA. This does not mean
that the break is exactly (.5 square feet in size, but rather that it is from 0.1 square feet in size to 1 square
foot in size. The networks that make the predictions were trained on a range of accident sizes, centered
around the listed break size, to ensure that predictions would be accurate when the exact break size is
unknown.

The rate meter, located to the right of the analog failure meter, displays the instantaneous rate of change in
time until the predicted failure, indicating whether the plant is improving or degrading according to the
neural networks. Negative rates, shown in red, correspond to a degrading plant state while positive rates,
shown in green, indicate that the plant state is improving. The size of the bar indicates the magnitude of
change.

Figure 1: Zion System Status Window

1.4 Displays

When SAMSON activates due to an initiation signal, five windows are opened or activated; ‘Zion System
Status,” ‘Predicted TTF History Graphs' (TTF stands for Time To Failure'), * Events Log,” ‘Sensor
History Graphs,” and ‘Sensor Summaries.” The user can reconfigure SAMSON, specifying which
windows will open when SAMSON is launched. The ‘Zion System Status’ window must always be
displayed since closing this window stops SAMSON. If SAMSON is used to display data during normal
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operations, this window is greyed out since the predictions from the neural networks, trained to recognize
accident conditions, would be meaningless.

The ‘Predicted TTF History Graphs’ is a scrollable window showing the history of network predictions
for cach failure type. The graphs show the predicted time to failure on the vertical axis and the time into
the accident on the horizontal axis. Once failure occurs, a message stating that failure has occurred is
displayed on the graph.

The ‘Events Log’ records when key events occur during an accident. Initiation signals are first recorded
and displayed, followed by accident classification information. Other information displayed includes:

. When failures occurred

. User actions to override decisions made by SAMSON

. When the break location was determined by SAMSON

. When recirculation of cooling water has been established

. Which sensors have failed based on SAMSON’s redundancy checking

. When the network predictions were inaccurate (SPF time to failure (TTF) less than CD

TTF. This could occur if bad data is received).

A ‘Sensor History” window displays the historical values for any parameter monitored by the plant’s
process computer. The order of the graphs is user configurable since only three graphs are visible in the
scrollable window at one time. If the user wants to view pressurizer pressure, cooling water flow into the
reactor and containment pressure simultaneously, the user can order the graphs so those three are grouped
together. As the accident progresses or as the displayed values go off-scale, the graphs will automatically
adjust scales to accommodate the data.

The ‘Sensor History’ window can display up to five hours of data during normal operations to allow the
user to perform trend analysis. SAMSON can monitor and display data for over 1000 different
parameters. For accident conditions, only 27 parameters are monitored and displayed. Once an initiation
signal is received, the window ‘resets,” displaying data since the initiation signal was received.

The “Sensor Summaries’ window displays information about the same parameters displayed on a ‘Sensor
History’ window. In addition to the current sensor value, the ‘Sensor Summaries’ also displays which
sensors have failed. SAMSON uses information from the plant process computer in addition to
redundancy checking to determine if a sensor has failed. If the sensor has failed, the value will not be
used in the neural networks to make prediction. If no sensors are considered accurate, the neural networks
will use a default value. Since this default value may not be close to the real value, the network predictions
will have some additional error. However, the default values were determined so the smallest error results
(not sending a value when required will cause the network to fail). Each circle next to a sensor name
corresponds to an individual sensor.

2.0 SPECIAL OPERATION OF SAMSON

There are several other windows that perform specialized functions. Since these functions are not
normally used, the windows are gencrally closed, but can be called when desired. Certain events can
force the user or SAMSON to open these windows.

2.1 Manual Start
SAMSON continuaily reccives data from the plant’s process computers, but it is possible that the initiation

signal will not be received. If this occurs, the user can manually start SAMSON. During a manual start,
the ‘Manual Start’ window opens prior to the default windows opening. Using this window, the user has
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two options; to direct SAMSON to reexamine archived data over a specified time for an initiation signal or
to start SAMSON assuming an initiation signal was received at a specificd time. If the user dirccts
SAMSON to reexamine archived data and an initiation signal is found, SAMSON will process all archived
data since the initiation signal and then process new data as it is received. If SAMSON can not find an
initiation signal within the specified time, the user is forced to specify a start time for the accident and also
classify the accident.

2.2 Accident Classification Override

Since the precise starting time of the accident may not be known if the initiation signal is missed, the
accident classification could be wrong. The rule based system used by SAMSON to classify accidents can
also fail if data is not received during the first few minutes of the accident or if the first few minutes of data
fluctuates too wildly to allow for proper classification. An ‘Accident Override’ window allows the user to
change the accident classification at any time during the accident. Under the ‘edit” menu in the ‘System
Status’ window the user can open the accident override window. This window displays the accident type
as classified by SAMSON, as well as the other accidents recognized by SAMSON. If the user selects a
different accident type, SAMSON is forced to use neural networks for that accident to make failure
predictions. The predictions in the ‘System Status’ window will be the predictions using networks
designed for the user-chosen accident. For each graph in the ‘Predicted TTF History Graph’ window,
two lines will be shown; one for the user specified accident type and one for the SAMSON classified
accident type. This allows the user to compare network behavior between two accident types. The failure
predictions for both accidents will continually be displayed in the history graphs, even though the ‘System
Status’ window displays the current prediction for only the user-chosen accident type. If the user wishes
to chose another accident type via the ‘Accident Override’ window, SAMSON will update both the
‘System Status’ and ‘Predicted TTF History Graphs” windows with the most recent user-chosen accident
type. SAMSON will also display the history predictions based on the original classification.

If SAMSON does not recognize the accident type during the first four minutes of an accident, the
‘Accident Override’ window is automatically opened to force the user to manually classify the accident so
SAMSON can begin making predictions. The user can change the classification later in the accident as
described above.

2.3 Core Thermocouple Map

A ‘Core Exit Thermocouple Map’ displays the temperature of the 63 core exit thermocouples. The map is
color coded according to the temperature received. If a thermocouple is sending bad data, the sensor will
be displayed in black. This map will give the user some indication of flow exiting the core during an
accident and help to identify ‘hot spots’ in the core.

2.4 Recirculation Detection

A recirculation detection module was incorporated specifically for Zion Nuclear Generating Station. The
Zion IPE determined that once recirculation of cooling water was established, no additional failures would
occur. Once a ruled based system determined that one train of recirculation is established, network
predictions are no longer necessary and are terminated. No provision is made if recirculation of cooling
water is later terminated since the neural networks have not been trained on data where recirculation fails
after it has been established.

2.5 Recovery Strategies
A list of recovery strategies was developed to respond to various accident conditions. The user can open

the ‘Recovery Strategy’ window and query a database for possible recovery actions to prevent further
damage from occurring. When strategies are requested, SAMSON sends the current predicted failure time
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along with several plant parameter values to the database, informing the database of the plant state. If
matching strategies are found, SAMSON will display what equipment must be operational or what actions
must be taken along with the approximate time to complete the action.

3.0 FUTURE DEVELOPMENTS
Work continues on SAMSON to make it even more capable. Future changes include:

» Creating analysis tools to explain network prediction changes

* Training new neural networks for failure detection

¢ Forcing SAMSON to continue predictions after predicted failure has occurred

* Training neural networks for sensor validation

* Sensor Validation override

* Integrating normal operation monitoring with accident management operation

* Comparing MAAP runs with the current accident for validation during an accident
» Using additional accident analysis codes for training the neural networks
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Abstract

The design of nuclear reactor fuel reload patterns involves a great amount of data,
calculations, safety criteria and restrictions to be observed, as well as the knowledge of
experts working in this field. Many reload patterns can be generated but only a few are
optimal. In this paper the current development stage of a system based on heuristic search
methods to generate and optimize fuel reload patterns using engineers is presented. The main
components of the system are the knowledge base, the inference engine, the 3D Boiling
Water Reactor (BWR) simulator PRESTO({ 1] and the user interface. The system has already
developed and evaluated fuel reload patterns for the Laguna Verde Nuclear Power Plant,
achieving similar patterns to those generated by the fuel supplier. Further work on
optimization of patterns is about to be started. In the near future this system will be
integrated in an overall system based on graphics environment to perform in-core fuel
management analysis for BWR nuclear reactors.

1 INTRODUCTION

The design of nuclear fuel reload patterns is a complex task, which requires manipulation of
a large number of data and parameters. Satisfaction of constraints related to safety and
energy requirements has to be achieved as well. Basically, the required amount of fresh fuel
assemblies and used fuel assemblies have to be shuffled in such way that requirements and
constraints are satisfied. Exhaustive analysis of position combinations is prohibitive due to
the explosively growth of the search space. Nuclear engineers have tackled this task using
heuristics which prune the search space. However, no guaranteed heuristics has been
produced, and tests of alternative configurations require neutronic models to be used for
verifying them. The whole design of fuel reload patterns task is knowledge intensive, though
it also involves numeric simulation, in a trial and error iterative loop.

We are developing a computer system for designing fuel reload patterns for the Laguna
Verde BWR nuclear power plant. The main development tool is Nexpert Object [2]. The
current capabilities of our system are generation of initial patterns generated according to
several heuristics, and partial evaluation of the patterns by the PRESTO-B code. We describe
below the main characteristics, development and future work on our system.

2 AN APPROACH TO DESIGN FUEL RELOAD PATTERNS

A brief description of the fuel reload patterns design and evaluation requirements is presented
here, according to knowledge and experience of the expert nuclear engineers involved in this
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project. The main goal pursued by the whole design task is to maximize the generated energy
in an operation cycle, while satisfying safety restrictions concerning the fuel integrity, and
the plant operation.

2.1  The Fuel Reload Patterns Design Task

The initial requirements for designing fuel reload patterns are the final operation conditions
in the previous cycle, and the desired conditions for the operation cycle being designed (i.e.
operation time, capacity factor). The operations which can be carried out using these data
are:

- Determination of the amount, enrichment and type of fresh fuel.

- Determination of lowest reactivity or highest exposure fuel to be removed from the
reactor.

- Design of the fuel reload pattern, loading fresh fuel, and reshuffling the fuel staying
in the reactor after being there during other cycles. Criteria for selecting fuel
positions are consistent with the Maximum Reactivity/Minimum Peaking Principle,
the Low Leakage Pattern and Control Cell Core Strategy.

The following restrictions apply:

1/8 core simetry.
Assemblies from the pool are reinserted.
Hand discharge of assemblies whose integrity appear to be damaged, and some

special cases (i.e. an assembly cannot be positioned beside a control cell if the
assembly has already been beside a control cell.

2.2 The Fuel Reload Patterns Evaluation Task

The fuel reload patterns are evaluated using the PRESTO-B code. This is a 3D simulator of
the reactor’s core, which solves the diffusion equation bared on an approximation to two
group diffusion theory using a special coarse-mesh algorithm for a core representation.

- The fuel reload pattern,

- The final conditions of operation of the previous cycle,

- Nuclear data banks for the fuel types used in the fuel reloading,

- The reactor’s core characteristics (i.e. core geometry, number of fuel assemblies,
number of control rods),

- The operation conditions for the cycle (i.e. thermal power, feed water enthalpy, cycle
exposure)

Evaluations of fuel reload paterns are carried out in four stages, and six executions of
PRESTO-B are required.
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. At the beginning of cycle, radial reactivity profile, and power per channel.

At the end of cycle Haling calculations, for analizing generated energy so that it is
maintained inside specified operation conditions; also, the Minimum Critical Power
Ratio and the Maximum Linear Heat Generation Rate thermal limits are verified so
that they are maintained inside safety margins. Radial and axial average power
distributions must not exceed the design limit.

Evaluations are done at the beginning of cycle, when conditions are cold, power is
null and free of xenon. The shutdown margin must satisfy the design criteria.

The shutdown margin is evaluated on several burning steps so that the plant’s safety
criteria is satisfied.

3 DEVELOPMENT OF THE FUEL RELOAD PATTERNS DESIGN SYSTEM
The current stage of development of our system shows two main subsystems

The Fuel Reload Patterns Generator

The Fuel Reload Patterns Evaluator

They really work as different modules. Fuel reload patterns are generated by the generator,
and are analysed by the evaluator so that working or promising patterns are detected and
selected. Additional modules will carry out optimization of promising patterns, as described
in Section 4. General characteristics of the working modules are described below.

3.1 Heuristic Generation of Fuel Reload Patterns

A fuel reload pattern is generated by modifying the old fuel pattern, the one used in the
previous operation stage of the analized nuclear reactor. Heuristic rules for positioning fuel
assemblies were acquired from expert nuclear engineers, exploiting their knowledge and
experience in the task of design of working fuel reload patterns. In order to apply such rules,
once the amount of fresh fuel to be added to the reactor is determined, two work phases are
required to define the new positions of all the fuel assemblies:

Used fuel assemblies are assigned a position in the new pattern.
Fresh fuel assemblies are positioned in the new pattern.

General guidelines are established by the expert rules. They constrain the shuffling of
assemblies so that restrictions are obbeyed, and convenient sites are chosen. This set of
guidelines is presented in [1]. Eight different, mutually exclusive strategies for positioning
a given set of assemblies are generated following our heuristic rules.

Our implementation of the Fuel reload Patterns Generator requires two aspects of information
processing to be used. First, preparation of nuclear data is accomplished so that the amounts
of fresh and old fuel to be used are determined. Then the heuristic rules are used to select
positions of fuel assemblies. The final result of these processing stages are eight different fuel
assemblies patterns, for the same specification of fresh and recycled fuel (i.e eight different
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patterns for the specified amount of fresh and recycled fuel). These patterns are then tested
by the Fuel reload Patterns Evaluator module.

3.2 Evaluation of Fuel Reload Patterns

The fuel reload patterns created by the Generator module are evaluated in order to select the
appropriate ones according to specified requirements and restrictions. As previously stated,
the evaluation is performed using the PRESTO-B code to simulate neutronic and
thermohidraulic behaviour of the reactor, for stable operation and xenon transients
conditions. Power distribution, fuel burnup, thermal limits and fuel reactivity are evaluated
in this way.

Six executions of the PRESTO-B code have to be carried out in order to fully accomplish the
evaluation of fuel reload patterns. Additionally, preparation of input data for each execution,
and analysis of PRESTO-B results are the complementary tasks performed by our system in
this stage.

Preparation of input data for PRESTO-B, and its execution are tasks which require extensive
manipulation of information, which is done according to established procedures. However,
analysis of the simulator results is one more knowledge-based decision making process.
Heuristic rules are used for selecting promisory fuel reload patterns, and making suggestions
for modifying the fuel reload patterns so that their performances are improved.
Modification of fuel reload patterns in order to improve its performance is actually the third
processing stage of our system, and the one which will set conditions for starting the next

iteration in the fuel reload patterns design task. Other aspects of the current implementation
are presented in subsection 3.3

3.3 Implementation of the Fuel Reload Patterns Design System
The main physical characteristics of our system are:
The main development environment is the NEXPERT Object shell.
It is composed by 489 heuristic and control rules.

A backward chaining is carried out, in order to reach a satisfactory fuel reload pattern
design goal.

Two operational Classes are defined, and their instantiation generate assemblies and
fuel reload patterns.

External support programs are written in the C programming language.
The system is being developed in a DEC Risc machine, running Ultrix.

The user interface works under MOTIF, using an X terminal.



4 PARTIAL RESULTS AND FUTURE WORK ON THE FUEL RELOAD
PATTERNS DESIGN SYSTEM

The fuel reload patterns design system has the capability to produce fuel reload patterns
already, according to the heuristic rules added up to this time. Full evaluation of the fuel
reload patterns is not complete yet, as evaluation of some operative limits has not been
implemented. Nevertheless, the system is now feedbacking the expert nuclear engineers
which defined the heuristic rules. The experts are analysing the effects of their assumptions
as used by the system. New conclusions have already been reached, and refinements to the
knowledge inside the system have also be carried out.

According to the requirements specification of the fuel reload patterns design, the aspects
which still require intense work are the module for modifying promisory fuel reload patterns,
and the user interface. The Fuel reload Patterns Generator will be modified in order to add
several new considerations and constraints to the heuristic rules for positioning fuel
assemblies. The Fuel Reload Patterns Evaluator requires also further additions in order to
fully carry out evaluation of the specified parameters.

Local and total validations have also to be performed. These shall be continuous tasks, as the
incremental development of the system requires that a working complete prototype be
produced, and successive refinements of it will be done until the achievement of
requirements.

5 CONCLUSIONS

The initial stages and results of the development of a fuel reload patterns design system have
been described. Tests using real data have produced results very close to those obtained by
the fuel supplier. Fuel reload patterns have been obtained which are close to meet the
requirements; however, no pattern generated by the system is satisfactory yet. Therefore
refinements to the system’s knowledge are being carried out, trying to find better ways to
shuffle fuel, and get better performance. The system has allowed the expert nuclear engineers
to explore new design approaches, and is also feedbacking them and validating their own
knowledge.

REFERENCES
[1] Martin del Campo C., Frangois J.L., Cortés C. Specification of the Fuel Reload
Patterns Prototype Optimizing System Based on Heuristic Search Methods, Report
IIE, february 1993 (in Spanish).

[2] NEXPERT OBJECT, Neuron data Inc, Palo Alto, Cal. 94301

Next page(s) left blank 91



AN EXPERT SYSTEM FOR DIAGNOSING
FAILURES IN THE CONDENSATE SYSTEM OF
THE LAGUNA VERDE NUCLEAR POWER PLANT

J. ARELLANO, E. RAMIREZ, Y. GALICIA
Instituto de Investigaciones Eléctricas,
Cuernavaca, Morelos,

Mexico

Abstract

An expert system for diagnosing faults and processing alarms during operation of the
Condensate System of a boiling water reactor nuclear power plant is presented here. The
main features of this system are its systematic knowledge acquisition methodology, based on
Probabilistic Risk Analysis techniques, and an intelligent alarm prioritising mechanism for
generating optimal, very fast inference strategies. The main developing tool for was the
GENESIS shell, a specific use tool developed by the authors of this paper.

Introduction

The operation of nuclear power plants (NPP) during transients, when many alarms and
process indicators might require the attention of the operators, can become very critical. In
these cases the most relevant occurring indicators have to be recognized in order to detect
possible failures, and the cause of them. Vast knowledge of the process is required to carry
out such task. As a way for mitigating this problem it has been proposed that expert systems
for detecting and diagnosing failures during operation of nuclear power plants could be a
valuable help for increasing process reliability.

A prototype expert system for performing both process symptoms pattern recognition, and
failure diagnosis of the Condensate System of the Laguna Verde BWR nuclear power plant,
is presented here. In building such a system an innovative methodology based on
Probabilistic Risk Analysis (PRA) techniques for capturing and representing the required
knowledge was used, as well as a directed inference mechanism. An expert system shell
developed for building this sort of applications, GENESIS [1], was the main development
tool.

The current version of our system - CONDE - interacts with human users receiving as input
data values of process variables, and generating as output the diagnosis of failures, whenever
a pattern is recognized. Extending the expert system to incorporate communication links with
a data acquisition system (what should ease implementing a real time expert system) will be
enabled by the simple representation and inference approaches used.

Description of the Condensate System

The Condensate System of the Laguna Verde NPP is composed by the equipment included
after the discharge of the main condenser’s hot.well, up to the discharge of the low pressure
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Figure 1. Simplified Diagram of the Laguna Verde NPP Condensate System

heaters (see Figure 1). The fluid there discharged is the feed water which is to be sent to the
reactor, after receiving further heating in the feed water system.

The functions of the Condensate System are those shown below:

To continuously supply water to the reactor feed water system.

To preheat the pool reactor feed water.

To keep the feed water quality inside purity specifications.

To guarantee the equipment reliability so that water can be supplied to the reactor
during transients.

The borders of the Condensate System are the following points:

The input point of the Condensate System is the main condenser discharge head,
which is also the suction head of the condensate pumps.

The output point of the Condensate System is the discharge head of the low pressure
heaters, which is also the suction head of the feed water pumps.

In this prototype system the equipment used to purify the fluid were not considered
as part of the Condensate System, and their associated failures were not included
while building this prototype.

Development of the CONDE Expert System
The methodology used for developing CONDE is based on an original application of

Probabilistic Risk Analysis techniques [2]. A description of how this methodology was used
is presented below, as well as a description of the architecture and modules of our system.
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Architecture of CONDE

The main components of CONDE are GENESIS - a shell for development of diagnosis expert
systems [1], and a knowledge base containing relevant information of the Condensate System
of the Laguna Verde nuclear power plant. The architecture of CONDE is shown in Figure
2.

According to the methodology proposed in [1], the knowledge base for the Condensate
System was integrated by carrying out the following stages of processing:

1. A fault tree [2] was constructed, in which the top event is the failure of the
Condensate System to supply the required amount of fluid at its output point (i.e.
there is no flow at the discharge head of the low pressure heaters).

2. A set of symptoms was associated to each basic event in the fault tree. Detection of
one of these symptoms sets is assumed to mean the occurrence of its associated basic
event.

3. The probability of occurrence of every basic event was included in the information

supplied as input data for the creation of the knowledge base.

GENESIS processes the information just mentioned, in order to generate a set of optimal
strategies for recognizing the symptoms patterns associated to failures of complex systems.
Also, an environment is provided for executing the search strategies, once they have been
constructed.

The steps followed to construct the knowledge base of CONDE, and the development of the
system itself are presented below.
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Knowledge Elicitation

The first stage carried out in the construction of CONDE was the elicitation of knowledge
concerning the Condensate System. According to the methodology suggested in [1], the
following tasks were carried out:

Construction of the appropriate fault trees for the Condensate System.
Association of symptoms to the basic events in the fault trees.

Both tasks were performed by the developers, and they were assisted by human experts.

Construction of the Condensate System Fault Trees. Fault tree [2] is the generic name for
a kind of logic-graphic model of physical systems, and are used for describing the ways in
which different simple (basic) events are combined for making an undesired event to occur.
The undesired event, known as top event, is usually a dangerous situation, a failure of the
analyzed system to operate properly, etc. Immediately related, simpler events which cause
the occurrence of the fop event are connected to it by means of AND or OR logic gates,
depending on their interrelationships. Each second level event is further developed in the
same way up to the point where the required level of detail is reached.

When constructing fault trees the knowledge elicitation is carried out in a systematic way,
according to the well-established PRA methodology for doing so [2]. The information is
neatly structured, and can easily be reviewed and updated by human experts, due to the
graphic representation of the fault trees. Concerning the basic events, the information
contained in the fault trees includes both the specification of every basic event at the
appropriate level of detail, and the probability of occurrence of the same basic event.

The top event examined for the Condensate System fault tree is: "Insufficient Flow of
Condensate Fluid at the Discharge Head of the Low Pressure Heaters". This refers to cases
when the output flow of the Condensate System is 50 % or less than the normal flow.

Inclusion of Symptoms. Every basic event in the fault tree was associated to a specific set
of symptoms, which can be alarms, measurements, and indicators of process parameters.
This task was also performed by the human experts, having in mind the mentioned basic
assumption which states: if a specific set of symptoms is occurring then its associated basic
event is occurring as well.

Integration of the Knowledge Base

The integration of the knowledge base was performed using the GENESIS shell, by carrying
out further processing of the input knowledge as described below.

First, in order to identify all the possible modes in which the top event could occur, the fault
tree was processed to find every minimal combination of basic events which can make the
top event occur. Each of these sets of events is known as a Minimal Cut Set (MCS). The
FTAP code [3] was used to generate the MCSs of the Condensate System.

The immediate step was the construction of a reduced, equivalent tree, a task carried out by
GENESIS. This was done by representing the original tree in terms of an OR relation
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Figure 3. A Fault Tree Represented in Terms of its Minimal Cut Sets

between the top event and all the MCSs. This representation is shown in Figure 3, where the
equivalent tree in two levels is presented. This structure largely reduced the size of the
search space in the sense of deepness. It can be easily understood as the OR relationship in
which the top event occurs if any of the MCSs occurs.

For the faut tree of the Condensate System 1579 MCSs were identified, taking into account
only the MCSs composed by the combination of 1, 2, or 3 basic events each.

In the next processing stage the sets of symptoms associated to the detected basic events were
included. An extended tree was generated in which the sets of symptoms were explicitly
represented, connected to their associated basic events. The purpose for doing this was to
express the tree’s MCSs in terms of symptoms only (taking care of carrying out boolean
reductions to avoid expressions like A'A, which is reduced to A). An example of the
inclusion of symptoms as described is presented in Figure 4.

The basic assumption for integrating the knowledge base rules in [1] is as follows. The
relationship between an MCS and its associated symptoms pattern is an implication:

MCS ---> symptoms pattern

In order to carry out diagnosis, abduction on groups of symptoms is carried out. If a
symptoms pattern is recognized then the MCS which it is associated to could be occurring
as well. In this way, for every MCS considered for the analysis, its associated symptoms
pattern was used as the conditions part of a production rule, and the basic events which
integrate the MCS were taken to be the conclusions part of such a rule. An example of one
of these rules is shown below.

RULE No. 1
IF
LG-1015 LOW and
LG-1016 LOW
THEN
INSUFFICIENT FLOW IN THE CONDENSER HOT WELL
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SYMPTOM2 SYMPTOMS SYMPTOMEB
SYMPTOM3 SYMPTOM?

Figure 4. An Extended Tree Including Symptoms

According to this methodology, GENESIS generated 1579 production rules for the CONDE
expert system.

Inference Mechanism

The number of symptoms occurring during a transient in a power plant can be very large.
Furthermore, since an even larger quantity of symptoms patterns (i.e. MCS) can be
originated after processing the fault tree, the search space can grow as much as the involved
basic events combinations allow. In these conditions, recognizing the pattern(s) occurring
during a failure can be an extremely expensive task, in terms of time. In CONDE this
problem was tackled by using a directed search algorithm implemented in GENESIS [1]. In
this way optimal search strategies were generated off-line, and used to carry out failures
diagnosis in the Condensate System.

The search strategies generated by GENESIS are said to be directed because they "prefer"
certain symptoms when starting the search. This behaviour is obtained by arranging the
symptoms review order according to their probabilistic importance [2]. The most important
symptoms are those whose probability of occurrence is higher, and those which are included
in more patterns [1]. Attending to this aspect, two important steps were carried out by the
algorithm used to construct the search strategies:

Symptoms patterns were arranged in such a way that the most important symptoms
point to the patterns they are contained in.

The most important symptoms are positioned in an agenda, in descending importance
sequence.
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P1=0938 H| LOW PRESSURE
HEATERS

(56 MCSs)

Figure 5. Search Strategy Generated Off-Line for CONDE

The effect achieved by doing this is that patterns associated to an important symptom do not
have to be considered if the symptom is not detected when it is checked (i.e. part of the
search space is pruned).

The search strategies used by CONDE are shown in Figure 5. The interpretation for that
diagram is as follows: The symptom PI-0938 is checked to find out whether there is a
problem in the low pressure heaters section or not (see Figure 1). Behind this is the fact that,
if there is a problem in that section (e.g. PI-0938 is high), then a big branch of the search
space can be pruned, since the rest of the system is assumed not to be in trouble (i.e. there
are 1523 out of 1579 patterns which do not have to be checked). On the other hand, if the
symptom PI-0938 low is detected, then the search is directed towards the booster pumps, the
condensers, and the condensate pumps sections, and the most important symptoms in turn
are checked (e.g. FR-1023, PI-0912), following the alternative branch of the global strategy,
and pruning from the search space the low pressure heaters section.

It can be appreciated that this global strategy generated is in fact a classification of the
Condensate System into simpler subsystems, resembling the way an expert operator would
carry out a quick diagnosis inspection of the same system. A forward chaining mechanism
is used in GENESIS for carrying out this search task.

User Interface

At this stage of development, the CONDE expert system has the capability for interacting
with human experts and final users. There are two basic aspects of the communication
between the expert system and its users which the user interface takes care of:

A series of conventional menus, text and graphic display of conclusions (i.e. using
screen mimics), and explanations for the results reached are available during the
normal diagnosis sessions. In the current version of CONDE it asks the user for the
symptoms which are present in the diagnosis session. Nevertheless, the input format
for the symptoms is prepared for a future extension, to make CONDE able to cope
with inputs from data acquisition systems.
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The task of updating CONDE’s knowledge base can be carried out by modifying the
input fault tree, the associated symptoms, or both. This information has to be supplied
in simple text files, according to formats used for constructing fault trees [1].

Current Status of the CONDE Expert System

The inference mechanism supplied by GENESIS has been extensively tested in previous
developments [1]. The tests carried out have shown an excellent performance of the
mechanism, though further testing periods shall be done, as CONDE itself is still being
enhanced. One of the most important aspects of expert systems interfaces is their ability to
guarantee accessibility to relevant information which can be useful to users and developers.
These aspects of CONDE’s performance were tested and validated by human experts.

The current status of the CONDE expert system is that of a working prototype, for which
further validations should be carried out against simulators of the Condensate System of the
Laguna Verde NPP. CONDE is now a self-contained system which appears to be ready for
the extensions which shall make it able to cope with real diagnosis problems.

The knowledge representation used, based on fault trees of the Condensate System, has
proven to be very convenient, mostly due to the fact that the knowledge can be systematically
captured. Also, accessing the knowledge is an easy task both when performing inferences and
diagnosis, and when working on the maintenance of the knowledge base.

Future Work on CONDE

Some aspects in the performance of our expert system have to be enhanced, in order to make
it capable to work under real conditions. They are shown below:

The user interface should be able to read symptoms patterns from a data acquisition
system, apart from the current form of the interaction (in which it is completely based
on dialogues maintained between the user and CONDE). This is actually an
implementation task, which shall be addressed once tests in a real environment get
started.

The knowledge elicitation task depends on the construction of fault trees for the
system analyzed. A further step towards the automation of this stage has just been
done [4]. After integrating a tool for systematically constructing fault trees, the
resulting system will provide a powerful environment for the development and
maintenance of this kind of expert systems.

Further testing of the knowledge contained in CONDE has to be performed using a
simulator of the Condensate System. The whole expert system should be able to work
under this conditions, in order to make of it a really useful tool. This is the main task
to be carried out in order to achieve the complete development of CONDE.

Conclusions

A prototype expert system for recognizing symptoms patterns, and diagnosing failures of the
Condensate System of the Laguna Verde BWR nuclear power plant, was developed. The kind
of symptoms processed by the CONDE expert system, are those which are available to
operators of a real nuclear power plant (i.e. alarms, measurements, and indicators of process
variables).
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CONDE uses a strategy for executing directed search of the symptoms patterns space. The
strategy classifies the whole condensate fluid system into several sections, resembling the
behaviour of expert operators. This strategy is generated prior to the execution of the expert
system itself, so that the actual diagnosis task can be carried out in a very fast execution of
such strategy.

The current implementation of CONDE requires further work to be carried out on its
interface. In order to make the expert system capable to work in a real environment the main
requirements to satisfy are: communication between CONDE and a data acquisition system
has to be implemented, as well as communication between CONDE and an automated
knowledge elicitation tool. Our current work is focused in those topics. Also, extensive
validations of the knowledge base are to be carried out in a simulator of the nuclear power
plant analyzed.

The knowledge representation used, based on fault trees of the system analyzed, is very
convenient because it provides efficient accessibility over the expert system knowledge. Also,
by applying the fault trees techniques for process analysis, the development of this kind of
diagnosis expert systems can be carried out in a systematic way when using the development
environment supplied by GENESIS [1].
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APPLICATION OF ARTIFICIAL NEURAL
NETWORKS IN ESTIMATION OF PROBABLE
ACCIDENT CAUSES IN NUCLEAR POWER PLANTS
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Beersheba, Israel

Abstract

The concept of a Nuclear Power Plant (NPP) control room advisor,
applying quick estimation of the probable accident causes, is recently a
subject of growing interest. The purpose of such a tool is to assist plant
operators to evaluate the situation and forecast the consequences of an
accident. Several expert systems have been developed for such a task, most
of them using the traditional approach of a "rule-base", where the
potential accident causes are encoded in a "knowledge base" list. The main
problem of such systems lies in creating and using the knowledge base
which is inherently limited and unable to deal with uncertainties.

A way to use a knowledge base with treatment of uncertainties is
the calculation of Bayesian probabilities of the accident cause from the
time behavior of selected signals, based on NPP expert knowledge. However,
this method is sensitive to errors in the instrumentation readings.
Artificial neural networks (ANN) were already used to predict fault
probabilities, and are known to show robustness against erroneous or
incomplete input data.

An exploratory study was made to trainh an ANN to predict the
probabilities of four causes of accidents (loss of coolant accident types),
based on the time behavior of three selected parameters (pressurizer
pressure and level and containment humidity). 316 time scenarios have been
generated, with the cause probabilities calculated by Bayesian procedures.
Four ANN models were trained by the TURBO-NEURON 1.1 software
package on a basis of 251 cases to predict the cause probabilities of a
particular accident scenario. The generalization capacity of the models was
tested by comparing the results of the remaining 65 cases.

It was found that the ANN models were able to classify correctly the
original cause in 88% of the test cases, while the probability of correct
prediction by random guess is 25% . This result is considered quite
encouraging for further work, in view of the possibility to increase easily
the number of training cases, with a consequent increase in the
generalization capability. ' .

1. Introduction
The ability to quickly diagnose the cause of an abnormal situation
in a nuclear power plant (NPP) is, obviously, an important operator aid

with major safety implications. Thus, there is an ongoing effort in many
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companies and organizations to develop such an ability, using a variety of
software tools. The main thrust is in using Expert System technology,
based on "deep knowledge" of the system components behavior and
interactions, using expert rules and detailed engineering models.

In recent years came, however, the realization that the common
Expert System approach may not be the best available for implementation
in NPP's, This is because detailed rules are hard to formulate, code, debug
and maintain, The speed of diagnosis in real situations may not be fast
enough, the possibility
that sensors malfunction, which may mislead "if /then" rules or models, will
not indicate the right cause in time. There are also the verification and
validation (V&V) requirements of the safety authorities, which are hard to
meet. ‘

One alternative approach is the’artificial neural networks (ANN)
approach, which depends on "learning" typical patterns of behavior in
accidents in NPP, identifying the probable cause of an abnormal situation
by the time response of a small number of sensors. The advantages of this
approach are the fast recognition, the ability to diagnose correctly even
when some of the sensors are faulty, and theé compact easy to verify
computer code. The main disadvantages are the limited availability of real
NPP data to learn from, the lack of explanation facilities, and the distrust
of experts in "machine" learning, which depends on "shallow knowledge".

Despite these objections, there are many references to attempts of
using ANN for this purpose. One of the most advanced is a project by
Silverman (1) to predict the probable evolution of a severe accident in a
NPP, based on several sensor readings. The data for teaching the ANN is
generated by a full-scale simulator of the Zion NPP,

The current view of ANN implementation is to use it in a
synergistic way with other methods, each contributing it's special strength
(2). In this work we test the possibility to generate the training data by
probabilistic methods, based on expert knowledge of the system behavior
in a small number of initiating events. If successful, this approach may be
further developed into a full scale operator aid.

2. The Need for Expert-System Diagnostics in NPP

After the Three-Mile-Island accident it has been widely recognized
that an onsite advisor at nuclear power plants might serve as a useful
diagnostic tool for abnormal situations, Since a human expert is not always
available in the control room, a computerized system with a capability to
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reflect the expert knowledge, can offer diagnostic and decision assistance
to plant operators and managers when emergency conditions develop.

While in emergency conditions, or even in abnormal situations that
might lead to emergency conditions, response time is of crucial importance
to the plant. A wide and comprehensive knowledge base is necessary to
evaluate many possible causes of abnormal events. These characteristics
are typical to a computerized expert system. .

Consequently, considerable effort has been invested in developing
various computerized systems for NPP diagnostics (3-7). Most of them use
the traditional approach of a "rule-base", where the potential accident
causes are encoded in a "knowledge base" list. The main problem of such
systems lies in creating and using the knowledge base which is inherently
limited and unable to deal with uncertainties. Another way to use a
knowledge base with treatment of uncertainties is the calculation of
Bayesian probabilities of the accident cause from the time behavior of
selected signals, based on NPP expert knowledge (8). However, this method
is sensitive to errors in the instrumentation readings. Artificial neural
networks (ANN) were already used to predict fault probabilities (9), and are
known to show robustness against erroneous or incomplete input data.

One of the main advantages of ANN systems is the potential of
learning not only from expert knowledge base, but also from actual events
and transients in many NPPs and simulators. As shown in this paper, the
prediction ability improves as a result of knowledge-base extension.
Therefore, it can be expected that ANN can be a suitable and efficient tool
for diagnostics of NPP abnormal events.

3. Neural Networks as Diagnostic Tools

The subject of ANN theory and practice is well discussed in recent
years, and only a very brief description will be given here. A network of
nodes ("neurons") are created by software, arranged in layers. Each node
is connected to all nodes in the next layer by variable strength coefficients.
The node behavior is sigmoidal, its input being the sum of the products of
each preceding layer nodes output with it's connection strength. The
networks are trained by presenting a set of inputs/outputs of the desired
system to the first and last layers, respectively. The network error is the
difference between the values of the output layer nodes and the system's
known output values. The connection coefficients are then adjusted to
decrease the error. This process is repeated as long as necessary, until an
acceptable small training error is achieved.
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ANN have been used extensively in diagnostics of complex systems,
when exact models are hard to build. One type of diagnosis, much in
demand, is in predictive maintenance of rotating machinery, when on~line
diagnosis of impending problems can be made by ANN trained to classify
normal transients from real faults, If reliable, these diagnostics can replace
costly scheduled maintenance. Several papers have been published on
diagnostics of particular pieces of equipment, and a plan for complete NPP
system maintenance is proposed (10).

The topic of NPP state diagnostic is being studied in several places.
AT an ANS meeting in November 1992, no less than four papers were
presented on these topics (11 - 14). There is research going on also at the
University of Tennessee / Oak Ridge National Laboratory (15). A1l methods
use the same type of data source, namely, reactor simulators which give the
sensor response to an assumed or incipient fault. The difference between
the various groups is in the way the data are preprocessed, the structure
of the ANN and the training algorithms. These techniques are important
in achieving practical applications, as large networks usually require a lot
of training effort (48,000 presentations of the training set to a rather small
network were necessary for achieving 98% accuracy in one of these papers).

One way of reducing the training effort is by starting with
non-random connection weights, instead of random connection weights as
usual. This leads to a quick convergence of the network to the desired
accuracy, and was demonstrated in several papers describing the creation
of large-scale models of industrial plants (9,16,17). This algorithm is
embedded in the TURBO-~-NEURON software package (18), which was used
previously for fault diagnosis. In these works, time stationary data was
used to classify faults of a rotating machinery (19), or a fault in a material
transfer operation (2). In this paper, time dependent data of three sensors
in a NPP was used to classify the scope of a Loss Of Cooling Accident

(LOCA), by learning from simulated data generated by an expert program
(8).

4. The Expert Knowledge-Base for Abnormal Events

The knowledge-base used for ANN training and testing was
generated by a different expert-system concept, using the Bayesian
algorithm (8). A pilot accident- scenario data-base was constructed by
using basic reactor safety expertise and straightforward logic. The data
base consists of four accident causes :

* very large loss of coolant accident (LOCA)
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* large loss of coolant accident
* medium loss of coolant accident
* small loss of coolant accident

For each of those causes, three symptoms were considered :
* the pressure in the primary circuit
* the water level in the pressurizer
* the humidity in the containment

The value of the first symptom (primary circuit pressure) is
expected to decrease rapidly in large LOCA scenarios while in small LOCA
scenarios it is expected to decrease slowly. Pressurizer water level will drop
immediately with a slow recovery (if any) in large LOCAs while it will
hardly drop in simall LOCA (assuming, of course, proper functioning of
emergency systems). Containment humidity will increase in all kinds of
LOCA, but it will be faster and to a higher extent for large LOCAs.

The four accident causes and the three symptoms, define an array
of 12 (3 by 4) "curve families", each curve describing how the specific
symptom develops in time. Each such curve is a possible scenario with a
certain likelihood, assessed by the human expert. A schematic presentation
of this data-base is given in figure 1.

After preparing the data-base, diagnosis can take place. Given the
abnormal conditions (in our case.: pressure, water level and humidity), a
Bayesian algorithm is used to assign probabilities to each one of the
accident causes (the 4 kinds of LOCA). So, for each set of abnormal
conditions used as input, a set of four probability values (one for each
LOCA type) is generated. These sets of "abnormal conditions” (input) and
"probability values" (output) are actually the knowledge~base used by the
ANN for training and testing.

5. Training Neural Networks for Classification of Abnormal
Events

The data-base generated by the expert consists of five time
snapshots of three sensors - pressure apd water level in the pressurizer of
a PWR, and the humidity sensor in the reactor containment. The time
increments were unequal, the first one immediately following the initiating
event, and 1, 5, 10, 20 seconds afterwards. The sensor values were
represented by class, 1 to 4, unevenly spaced across the sensor measurement
span.

107



_
S | £
.55

15 -
time time time

5 ] 3
2
~ T 2 l.6
L\\,.A 2 15 / L
.1 .01
——d 37 e ———— _
time time time

2
7 18 K3
Q i 8 1w
&_\\,ns . ___,___,,—/
.04
{ime time time
JI5 B 15
K/ P o 1%
_'———’—‘—J‘_pf—-’-
gy .13
iime ime time

flg. 1 : data bagse scheme

The data-base consisted also of the-estimated probabilities of each
type of four LOCA's, ranging from small to very large. To convert the
data-base values into input/output of a neural network, each input class
was converted to binary input, 1 or 0. Thus, a class of sensor reading of 3
would be represented by 0 0 1 0. this gave 3 x 5 x 4 = 60 binary inputs to
the ANN. Missing information was represented by 0 0 0 0. The outputs were
first taken as the estimated probabilities. However, initial trials indicated
that the dynamic range was too large, spanning the range between 10e-18
to 1.00 . Thus, the output probability of each LOCA type was grouped into
4 classes, the first between 0 - .001, the second 0.001 - 0.1, the third
0.1 - 0.5, and the fourth 0.5 - 1,0.

The ANN was trained using the TURBO-NEURON software

package, version 1.1 (18), which starts the training with non-random
connection weights, calculated from statistical analysis of the training
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data. 16 hidden nodes were selected by the software, to use 80% of
information content in the data-base. The 60 x 16 x 4 ANN took about 18
minutes to train, using the delta back-propagation algorithm option, on a
486/33 PC machine with 251 training examples. The training error was
about 6%, corresponding to a correct classification in about 85% of the
cases. The test data consisted of 65 examples, out of which the ANN
correctly classified about 67% .

6. Discussion and Recommendations

" The following table shows the first run of 40 test cases, after
training the ANN with 151 known cases. the results are grouped in 4
probability categories :

case expert ANN case expert ANN
1 4 3 21 2 2
2 3 4 22 2 2
3 3 3 23 2 2
4 4 3 24 3 2
5 4 3 25 3 3
6 4 4 26 4 4
7 1 1 27 4 4
8 2 2 28 4 4
9 4 4 29 3 3
10 4 4 30 2 1
11 2 2 31 3 3
12 2 2 32 2 2
13 4 2 33 3 2
14 4 4 34 2 3
15 4 4 35 3 2
16 1 2 36 2 2
17 3 4 37 2 2
18 4 4 38 1 1
19 2 2 39 2 1
20 3 3 40 4 4

total matching cases : 27 (67.5%)

As stated above, this work was carried out as a "pilot" study, to see
if the combination of ANN with expert generated data-base could preform
well enough. The correct classification rate, of 85% in the training data and
67% of the test data is quite satisfactory for a first try.

109



Afterwards, 100 additional cases were introduced to the ANN for more
training, followed by 25 more test cases:

case expert ANN case expert ANN
41 4 4 53 2 2
42 1 1 54 2 2
43 4 4 55 2 2
44 2 2 56 4 4
45 4 4 57 4 4
46 4 3 58 4 4
47 4 4 59 4 4
48 4 3 60 4 4
49 4 4 61 4 4
50 4 4 62 2 2
51 2 2 63 2 2
52 2 2 64 2 4
65 2 2

total matching cases : 22 (88%)

These results are encouraging, as prediction improves after adding
training data. More training data could be made available, with a projected
improvement in both the training and test classifications. It is interesting
to notice that the performance of the first run (training and test data
alike) also improved after introducing to the ANN the second data set.

More experimenting could be done with the TURBO-NEURON 1.1
training options. The outputs could be also changed into binary coded
classifications, increasing the correct classification of the arbitrary
groupings of the LOCA probabilities.

In the main study, if carried out, the number of different faults will
be increased to test the fast classification capabilities of the ANN. Only
then will this method be considered ready for evaluation in an NPP
simulator, |
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Abstract

Rex is a knowledge management method that was initiated and developped by the CEA in
order to preservg and make use of its experience. From this objective outcame a method and a
computerized tool which constitute a solution available to any company that considers knowledge
acquired throughout its activities as a valuable asset and therefore is willing to capitalize it. In
particular several systems prototypes have been developped to manage experience feedback
issued from NPP operation.

Such a solution is worked out in terms of a cycle aimed at ensuring that, at each step of a
company's activity, experience feed-back is taken into account. This cycle is activated by a
computer system which inputs experience as it occurs, stores it, then allows its pertinent retrieval at
the moment it is needed to help tackling new situations. Integrated within a company's organisation,
a Rex system thus provides a means of permanently up-grading corporate know-how.

Carrying out a Rex project involves:

« A methed for analysing needs and identifying sources of exparience.

« Procedures for constructing elementary pieces of experience from documents, data bases, or
interviews.

+ Procedures for building up a computer representation of the knowledge domain at stake.

+ A software package which includes a multimedia interface, and a retrieval engine that produces
information files on the basis of questions in natural language.

An extension to a Case Based Reasoning system oriented toward operation diagnostic is
presented.

Rex is an experience management method that was initiated and developped by the CEA in
order to preserve and make use of the experience gathered during nuclear reactors design and start-
up phases. The objective of the initiai application was to preserve the knowledge feedback on the
start-up ot the european fast reactor Super-Phenix.

Recent studies point out that an increasing number of companies consider the
management of their experience as a strategic concern. Capitalizing exBerience concerning NPP's
operation becomes a key-factor in companies' competitiveness and in NPP's safety.

After raising the problem of experience management, we describe the principie of an
Experience Feed-back Cycle. Then the Rex approach is introduced as_an organic answer to the
functionnal requirements of the cycle. Finally, an extension to a Case Based Reasoning system
oriented toward operation diagnostic is presented.

1. Th roblem of experien man men

Experience can be considered as an information flux generated by all the activities, from the
most elementary to the most global ones, which combine themselves to attain the company's
objective [1-3]. Carrying out any activity is possible only because some know-how is made
available. (figure 1).

figure 1 : Carrying out an activity requires some know-how and produces experience.
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figure 2 : know-how supplying activities
As an essential resources, know-how can be improved by different means (figure 2):

- Education : hiring young graduates makes the most recent scholar knowledge at hand, and
training employees keeps their skills up to date.

- R&D results: as a source of new technology.
- Engineering : to update procedures and master cumrent techniques.

- Experience Feedback : so that any activity may benefit from past experience (to avoid
redoing)things. draw inspiration from similar cases, take errings into account, renew good
choices).

Education, R&D, engineering have always attracted a good part of corporate investment. But,
it is a paradox that most of the companies do not invest to develop their own founts of experience,
although these are what makes them different from otherwise equal competitors.

With respect to these considerations, one may rightfully ask: What proportion of experience is
dissipated by an activity without ever being used? What is the value of consequently lost know-
how ? This value can be derived from the resulting loss of productivity, the costs induced by
redoing tasks , renewing mistakes,...

Answering to these questions requires a thorough diagnostic which will often prescribe
- investments as necessary in order to set up some form of experience management. We think that
experience management can be addressed by controlling the Experience Feed-back Cycle
presented hereafter.

X i -

Capitalizing experience on an activity is done through a cycle that covers all the steps from
the moment experience outcomes; up to the moment it is considered as part of some available
improved know-how.

2.1. The "non-assisted” cycle

In order to get a thorough comprehension and justification of the cycle, let's examine the most
elementary activity of interest to our investigation: the case of an individual carrying out a specific
task at a given time. In this case, the intrinsic intelligence of the individual ensures that the
experience that he may draw from his performance is turned into know-how of his own. The
rehabél@it% of this natural mechanism is unfortunately very dependent on the individual's memorization
capability.

BRAIN-WORK

r ACTIVITY OF A PERSON

figure 3 : Experience feed-back is a natural process to an individual.
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Within a group, communication between people creates a shared know-how which adds up

onto each individual’'s own know-how.
COMMUNICATION <|7

I INDIVIDUAL <
EXPERIENCES
’

|4
’

SHARED
KNOW-HOW

figure 4 : shared know-how results from people being part of a group and adds-up to
everyone's own know-how.

As long as a group remains small enough, informal communication is sufficient to produce
shared know-how. But once it comes to larger teams, informal communication still operates, but

For instance:

- when operating some industrial process, experience is collected by fact-sheets, reports...

- when performing some engineering task, designers will commit their experience in the form of
application papers.

- maintenance of a plant yields results which are consigned into failure modes and effects
description sheets.

It can be generally observed that, within a company, an activity will, at best, organize itself to
put its formalized pieces of experience into exploitation for its own sake. But cases where this
experience is put at the disposal of other activities are seldom encountered.

2.2. Mastering the Cycle

Three steps are to be distinguished in the Experience Feed-back Cycle (figure 5): first, the
activity from which experience outcomes, second, the delivery function whose aim is to put
experience at disposal, third, the valorization function which turns experience into know-how (i.e.
value).

The first step of the the cycle pertains to the activity itself. Experience arises as a result or as
a side effect to the processes which people execute within this activity:

« "as a result...”, this relates to intellectual activities whose own purpose is to produce
knowledge (research, studies, tests, experiments). In this category what can be labelled as
experience is :

- the straight outcome of the activity,
- track keeping of all the choices, options, configurations that were investigated or tried,
and why they were abandonned or rejected.

+ "as a side effect...” : this is true for all kinds activities, including the above ones. Whilst the
outcome of some experiment is labelled as experience, what happened during the
experiment (tricks, short-cuts) is also to be valued as experience. Reminding of anomalies or
incidents and their associated diagnostic also belongs to this category of experience, as well
as knowing the explanation of discrepancies between how procedures are prescribed and
how they are actually applied. ‘

The second step of the cycle pertains to experience de!iver'y. Experience to be collected may
be “stored” in the memory of individuals, or may be already formalized in an existing system
(computerized or not) in terms of synthesis reports, fact sheets, database records,... From these
sources, elementary pieces of experience can be constituted and memorized. Then they must be
delivered in a relevant way as requested by the next step.
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VALORIZATION [< DELIVERY

figure 5 : The Experience Feedback Cycle.

The third step of the cycle pertains to know-how valorization. This is a value-adding process
that takes place at two levels: on one hand, when an individual takes into account shared
experience which is put at his disposal, turns it into new know-how of his own, and then applies it
to his current tasks; on the other hand, when dedicated services purposely perform the
transformation of experience into know-how and distribute it so that it can be shared by all.

2.3. The Rex Method : Delivering Experience.

The purpose of a Rex Application within a company is to set up an organisation and its
associated tools so that the Experience Feedback Cycle can be mastered.

Within the cycle, the valorization step is essentially a human process {relying on natural
intelligence) that must be fueled with proper data in a convenient way. Such a delivery function is
fulfilled by the CEMS (Corporate Experience Management System) whase construction is the very
aim of the Bex Method. This system is made of two particular processes: one constitutes pieces of
experience arising from an activity; the other restitutes those pieces to the user that has to valorize
them. Between their constitution and restitution, pieces of experience are kept inside a storage
element that we name the “Corporate Experience Memory" (CEMem) (figure 6).

< PIECES OF CEMem
EXPERIENCE K&
RETRIEVAL §;+

.

COMPANY'S |
ACTIVITY

N

VALORIZATION

figure 6 : The purpose of the Rex Method is to build a Corporate Experience
Management System which combines procedures and computerized tools, in order to
“constitute”, "memorize”, and “restitute” experience.

3. Functional requirements of the cycle

The CEMS, as it is envisaged, must be able to tackle the issues raised in the foilowing
points.

Different sources of experience

As we said previously, corporate experience is largely held by the human brain, but is also
disseminated throughout a large amount of hard copy documents or data bases (which may be
made of computerized records or mere paper forms). {n all the documentation, we can furthermore
isolate a category of documents, in small number, which contain a high density of knowledge
deriving from the company's experience. These are all synthesis reports which describe the state of
the art, or the current situation of the activity. All these essential knowledge sources are to be
exploited.
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Different levels of aggregation

One will therefore encounter experience at all levels of aggregation: from “raw” facts worded in
a straightforward way, to already mind-processed information corresponding to synthesized
experience. It is important to keep track of how the latter were derived, by allowing reference to the
former ones.

One experlence archetype

Two requirements can be drawn from the exploration of existing types of document (like
synthesis reports) or data bases whose purpose is to gather experience:

- An "atomic” form is to be used to verbalize experience. We speak therefrom of "pieces of
experience”. .

- The constitution of a piece of experience is to abide by a stable archetype made of three
parts: a context describing header, a textual body, a list of references.The body comprises
itself three parts which must be short texts (typically the size of a paragraph [4] , rarely
more than a page). The first part of the body is a neutral description of the experienced fact
with its ins and outs; the second part holds the issuer's own opinion or commentary; in the
last part (optional), the issuer's expresses recommendations, which may whereby
participate in know-how improvement. Filling this last part presupposes that the piece of
experience has already been through some thinking process.

Various vocabularies and standpoints

Within the cycle, experience can be valorized either by dedicated services whose point is to
transform experience into corporate know-how, or directly by any individual who would need it in his
everyday tasks. People to whom experience is delivered may be of a different specialty or a
different culture (technical, managerial,...) from those who issued the experience. They will generally
have a different activity, use a ditferent vocabulary: their standpeints are dissimilar. This is the main
factor that impedes appropriate information retrieval in this context. Building the CEMem hence
implies to address this problem. In a classical approach, data bases contain document summaries
and other descriptors. These documents can be searched out by key-words which may be linked
together by logical operators. As the use of these data bases requires a good knowledge of their
contents, the help of a record research assistant is generally needed. it has been noted that this
creates a barrier that holds back the user from gaining access to the information. We then assert that
the utilization of the CEMem calls for a computerized go-between that would allow the user to direct
his resarch himself and would mimic the expertise of a research assistant. This expertise is made up
of:

- searching strategies,

- knowledge of thesauruses,

- knowledge of the database scope (domain coverage}),
- ability to understand the user's vocabulary,

- ability to comprehend the user's standpoint .

Limitations of available text retrieval systems

The eftectiveness of text retrieval systems is generallly assessed by means of two main
parameters named recall and precision ([5]} which characterize the quality of search results. Recalf
is the proportion of relevant material retrieved (i.e. the ratio of the number of relevant items retrieved
to the total number of relevant items in the parsed collection). Precision is the proportion of retrieved
material that is relevant (i.e. the ratio of the number of relevant items retrieved to the total number of
items retrieved). Most text retrieval systems are tuned in such a way that queries will either
produce high precision, but low recall (only a few easily examined items are retrieved, but many
useful iteams are overlooked), or, conversely, produce high recall but fow precision (large piles of
materials are retrieved containing a good portion of the relevant items but with a burdening number
of extraneaous ones). We consider that an effective retrieval system dedicated to the CEMem must
achieve simultaneously high recall and good precision.

4. __ Principles of the Rex Method

To address the above outlined functional specifications, the Rex method [6] proposes
procedures to constitute PExes (Pieces of Experience) and procedures to structure the CEMem
(Corporate Experience Memory). From the application of these procedures outcomes a computer
system that can be queried in natural language and displays retrieved PExes as an ordered file of
information (figure 7). Each PEx can be examined together with associated documentation obtained
via a connection with any existing document storage system.
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Question in natural language

(Infomulion about ... ? )
ANSWER FILE
Retreved Associated documeniation CEMem
relevant items - <§=—==-=====— (CORPORATE
- EXPERIENCE
[Srandarss | MEMORY)

Documentation

Specialists }{ Documents l Data bases I
SOURCE OF EXPERIENCE

CORPORATE EXPERIENCE MANAGEMENT SYSTE

Figure 7 : Principle of Rex CEMS

4.1. Pieces of experience : constitution procedure

The constitution of PExes (Pieces of Experience) is a key point to experience management
with the Rex method. PExes allow the materialization of experience whatever its origin. They are the
smallest units of knowledge handled by REX and determine the resolution of an application. Whilst
PExes may be of different types, which do not depend on the experience sources.but on the
system's objective, they all belong to a common archetype [context + short text + referencesj as
defined in §3.

The various experience sources condition the PEx constitution procedure:

- Information may be contained in one or more manuals used by the organization and which
represents an established, clearly structured know-how: this may correspond to regulations, a
calculation code, a technical reference document, a set of standards, procedures, etc.; the REX
method will consider, for example, each paragraph in such documents as a PEx. Similarly, a "one
record / one PEX" process applies when tackling already existing textual data bases.

. Information may represent the substance experience cumulated by the organization in the course
of its activity and that this organization is endeavouring to formalize and to organize; at this level,
there is no or little generalization effort for these knowledge elements: one tries to organize in a
consistent manner the memorising of the facts which will be reusable at a later date, for a
reasoning process by analogy; this can typically be comprised of sh&ets established for
memorising the ins and outs or events of interest (experiment sheets, discrepancy sheets,
experience feedback notes, jurisprudencial decisions, medical or technical diagnoses, exceptional
procedures, etc.).

Information may correspond to the experience cumulated by the individuals in the course of their
activity within the organization; the nature of such information is similar to the previous one, but it
is not expressed in the same manner since, in the best possible case, it is contained in personal
notebooks (whereas in the worst possible case, it is only "stored™ in the memory of the
individuals). The REX method proposes an interview technique to construct PExes from the know-
how of these individuals This “"information-taking™ procedure consists in a session of three hait-
day interviews with a given person on a given theme. The first interview is non-directive and aims
at covering the scope of all the person's recollections about the theme. The text of the interview is
then broken down into PExes. In the second interview, a provisional set of PExes is presented to
the interviewed person who may introduce complements and modify the contents. The purpose of
the third interview is to check that these modifications have been taken into consideration. Ultimate
corractions are possibly introduced.

4.2. CEMem structure : build-up procedure

A structured modelization of the domain is performed in order to meet the points stated in §3
which specified that the diversity of vocabularies and stand-points of various users had to be taken
into account, and that some expertise on the experience producing activities had to be putinto the
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system. The modelization process comprises two facets: the descriptive model of the standpoints
and the lexical items network.

4.2.1. The descriptive model

The descriptive model is buiit based on the various standpoints identified and selected in an
initial step. Several different specialities can use the same break-down structure to organize their
standpoint. These structures (often tree structures) are representative of the way in which the
complete field of knowledge can be broken down into elements. Each standpoint is thus represented
by a separate network of descriptive objects connected together. 1t is not necessary to have an
exhaustive model, which covers all identified standpoints as at any time the field modeling can be
enriched. This representation technique thus permits an application to be started up with only a few
incomplete descriptive networks and enables the networks to be increased according to needs. The
number of possible standpoints is not unlimited: a dozen seems a reasonable maximum for an
industrial activity. Moreover, one hardly ever has to break down over more than five or six levels.
For example, the "geographic” standpoint (or "topologic" standpoint) will be adopted whenever one
wishes to locate a given field of activity in space. The "process” standpoint is used to break down
a functional system into its various sub-systems.

To build up the descriptive network of a standpoint, concepts of the domain are contemplated
through the standpoint "prism®. interrelations between the concepts are represented by semantic
links belonging to a few well known categories: "set - element”, "general - specific”, “proximity”, "self
evolution®. It should be noted that the so-called "proximity" link accounts in fact for a variety of
context dependent relationships like "client - server®, “infout flux* "same function as", "next to",
etc...

4.2.2. The lexical items network

The rigidity of the descriptive model does not enable the system to behave correctly with
respect to requests worded in natural language To fulfill this requirement, a lexical items network is
constructed. It is made of objects which are words and nominal phrases belonging to the
vocabulary of the field considered. These objects are the textual symbols which form the legible
aspect of the concepts used to define the standpoints. The network is weakly structurated by
means of syntactic relations of the type: "kind-of" and “pertains to".

4.3. Activating the CEMem

A dual PEX integration principle
Rex proposes two complementary integration processes:

.

- -Qri " i : A PEx, considered as an elementary knowledge item, is
integrated in the CEMem model by attaching it to relevant objects in each standpoint descriptive
network, in order to identify it as a vector in a multidimensional space. This operation can be aided
by the system which is able to propose descriptive objects based on the recognition of lexical
items in the PEx text. The final choice of relevant objects remains a manned process.

- -Qfl * positionning : The textual representation of a PEx can be automatically indexed on
the lexical items network.

) These two integration principles may be applied with variable respective proportions which
condition the overall quality-to-cost ratio of the application. Figure 8 gives an overalf representation
of the CEMem conceptual model.

System query In natural language

The flexibility of the lexical items network associated with the domain modelization enclosed in
the descriptive networks enable the system to react correctly to a question worded in naturat
language. REX proposes an interface which permits a request to be freely expressed. This request
is analyzed by the system which, in reply, proposes candidate descriptive objects retated to the
lexical items that it has identified in the request. A subset of objects may then be selected if needed.
A detfault mode also permits to skip this step.

Starting from the underlying descriptive objects of the question, the searching process
propagates along the semantic links featured in the standpoints, thereby making use of the modeled
knowledge of the domain. Thanks to this process, a wider set of induced PExes can be retrieved
and restituted as a weighed list to the operator.
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Fiqure 8 : conceptual model of Rex CEMem

. Extension B nin

Several system prototypes, using Rex method, have been developped in France to manage
experience feedback issued from NPP operation. Presently, we are investigating how a Rex
system concerning NPP's operation experience feedback can be extended to a Case Based
Reasoning system oriented toward operation diagnostic.

In short a Rex system is able to collect and memorize elementary pieces ot experience and it
can determine among them which are the closest ones to a given question. The analogy between
experience ffedback and Case Based Reasoning can be easily found : each "pieces of experience”
can be concidered as a case, their collection therefore constitutes a Case Base, a "question” is a
given problem and a set of closest experiences to the question is a suggested diagnostic (figure 9).

( Glyen probem oa NPP )
ANSWER FILE \
Retrieved Associated documentation
Structured
":m - é Case Base

|Sandards

e
2

~
Specialists I Documents | | Data bases
SOURCE OF CASES

Figure 9 Analogy with Case Based Reasoning

The main application is to make use "on line" of the large NPP's event databases to improve
operation diagnostic.

The most important contribution of the Rex approach is to take into account the textual field
describing a case (i.e. an event) and to be able to calculate a similarity between this field and a
given problem formulated in natural language.
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Abstract

This paper is devoted to the representation of knowledge in an expert system
REPSAIES (Reliability Evaluation and Probabilistic Safety Analysis - level 1 - Expert
System). The prototype system has been designed to facilitate the probabilistic safety
analysis (PSA) of complex hazardous industrial systems and to support safety oriented
decision making during the design phase and operation of process systems. Taking
into account known difficulties to manage complexity of logical and probabilistic
modelling of nuclear power plants using the conventional PSA software packages we
decided to represent information in a graphical form, whenever it is justified, and to
automate the process of coding of objects to avoid errors. The software system
consists of a CAD package, data bases, a shell for building expert system and several
software modules to enable: the effective communication with the user, data and
knowledge acquisition, the initiation of inferring to support logical modelling of the
plant, selection of reliability models with input parameters as wel! as the quantitative
probabilistic evaluation of accident scenarios.

1. Introduction

Two approaches are usually used to support the decision making related to the reliability and
safety of nuclear installations, namely: the failure mode and effects analysis (FMEA) and the
fault tree analysis (FTA). Both FMEA and FTA are systems approaches. FMEA starts with the
primal precursor events and works forward to detect possible failures while FTA identifies a
specific failure and works backward to identify the precursor events that could cause the failure
to occur. For the probabilistic analysis of more complex systems, such as engineering safety
features of nuclear power plants, FTA is combined with the event tree analysis (ETA), working
forward to identify possible accident scenarios for potential initiating events (IEs). ETA and
FTA are basic elements of the probabilistic safety analysis (PSA) methodology adapted in most
safety studies of nuclear power plants.

The first step of successful PSA is to define the analysed systems adequately. Although this
may seem elementary it is for more complex systems one of the most difficult part of the
analysis (Lynch 1980). To handle the topological and functional complexity of such systems it
is necessary to decompose the problem. In the current version of REPSAIES the logical
modelling of the plant is performed using the event trees and fault trees, and an approach
called -as "large event trees - small fault trees" was adapted. However, the object oriented
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probabilistic modelling methodology proposed is quite general enabling the flexible
decomposing of the problem and to develop also larger fault trees.

Different decomposing approaches of a complex system make that modified topological and
functional dependencies between objects should be taken into account. An object is understood
very widely as an element (a single equipment component or human induced event) or as
a defined collection of components belonging to engineering safety features. It was decided to
apply an intermediate step before the fault tree construction, namely to define the functional-
reliability properties of the object using a digraph or digraphs (in the case of a multi-phased
mission of the system). It enables to extend the conventional reliability analyses to systems
containing the feedback or feedforward control closed-loops as well as the sequential systems
(Lynch 1980).

Three phases of the software system development have been distinguished, related to the PSA
methodology proposed and scopes of the analyses, ranging from a comparatively simple
system for simplified logical and probabilistic modelling to a complex software system with
various modelling techniques and Al methods applied. The proposed strategy of the gradual,
incremental system development corresponds with the research and software designing
resources planned to be involved in the project. It is also related to new methodological
challenges concerning PSA and foreseen gradually emerging possibilities to cope with. These
challenges include more adequate treating of uncertainties associated with probabilistic
modelling of complex hazardous technological systems including the human factor and
organisational factors (Bley et al. 1992, Fujita 1992).

2. Some methodological issues of computer aided probabilistic safety analysis
2.1. Uncertainty representation and treating

Despite growing maturity in probabilistic safety analysis (PSA) methods, there are several
issues that create discomfort among decision makers. These issues include the use of expert
opinions (Mosleh et al. 1988), the assessment of human reliability, and the impact of
organisational factors. These problems are all manifestations of the larger problem of
uncertainty in the real world and consequently how that uncertainty is presented within the
context of the PSA. The expert opinions issue is associated with a representation of the
gathering and evaluating of expert evidence (Bley et al. 1992). There are psychological aspects
and influences on the reliability and validity of expert judgements and, in particular, on
probability judgements (Bolger & Wright 1992).

On the other hand the PSA methodology might provide a framework to deal with uncertainty
issues in a more systematic way. Current PSA studies which include the human reliability
analysis (HRA) are, to a significant extent, computer aided. So the question can be raised how
to develop the computer programming tools to manage more effectively the complexity of
modelling and to document the analyses with inherent assumptions and expert opinions.
Identifying and treating uncertainty explicitly is the key to win among decision makers the
confidence in PSA results (Bley et al. 1992).

Current PSA/HRA methodologies have been developed adapting the Bayesian subjective
probability framework (Apostolakis 1989, Wu 1990) which requires precise defining of events.
On the other hand there are encountered cases of events in HRA/PSA practice which can not
be straightforwardly quantitatively assessed, due to insufficient knowledge (e.g. concerning the
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progression of physical processes for some accident conditions or dominant failure
phenomena) or imprecision of propositions (using often by experts in evaluations some
linguistic statements).

For dealing with cases of approximated evaluations other theoretical frameworks can be
considered, e.g. the theory of possibility based on the fuzzy set theory or Shafer’s theory of
evidence (Zadeh 1978, Dubois & Prade 1986, 1988). The problem of uncertainty is also an
important topic of artificial intelligence (AI). For representing and treating of uncertainty the
Bayesian and non-Bayesian methods can be proposed (Lemmer and Kanal 1988). Some
researchers are sceptical as regards applying these new theories for representing and combining
information under uncertainties in PSA (Wu 1990). We share this opinion when combining of
information from non-equivalent or contradictory sources, including experts, is of interest. In
such cases much more attractive is the Bayesian probability framework (Wu 1990). On the
other hand there are known some drawbacks of the Bayesian framework which can lead, in
more complex cases, to violating its basic principles (Lee 1987).

2.2. Modelling the human factor reliability

It is known that one of the most significant contributor to risk associated with operation of
industrial hazardous systems is so called human factor. There are several taxonomies of human
actions/errors. Human actions/errors can be classified to be related to the phases of an accident
into three categories (Dougherty 1988, IAEA 1992): (A) actions/errors in planned activities,
so-called pre-initiator events, that cause equipment (systems) to be unavailable when required
post initiator; (B) errors in planned activities that lead directly, either by themselves or in
combination with equipment failures, to initiating events/faults and (C) actions/errors in event-
driven (off-normal) activities, i.e. post-initiator events; these can be either safety actions or
errors that aggravate the fault sequence. Interactions of the last category can be further
subdivided into three different types for incorporation into PSA, namely: (C1) procedural
safety actions, (C2) actions/errors aggravating the accident progression and (C3) improvising
recovery/repair actions.

Described above behaviour types seem to involve different error mechanisms, which may mean
radically different reliability characteristics. Human errors are often classified to be one of two
kinds (Reason 1990): I slip - (1) an error in implementing a plan, decision or intention (the
plan is correct, its executing is not), or (2) an unintended action; a type of slip is lapse, an error
in recall, e.g. of a step in a task; II. mistake - an error in establishing a course of actions, e.g. an
error in diagnosis, planning or decision making. Errors are also classified as errors of
commission or errors of omission. Error of commission is often understood as incorrect
performance of a system-required task or action, or the performance of an extraneous action
that 1s not required by the system and which has the potential for contributing to some system-
defined failure. Error of omission is a failure to perform a task or action (Dougherty 1988).

For quantifying human actions/errors various methods/techniques are available which were
described synthetically e.g. in non-source publications/reports (Humphreys 1988, Cacciabue
1988, IAEA 1992, Kosmowski 1992). There are expressed opinions that some existing HRA
methods are adequate for modelling slips, especially in planned activities. For quantifying the
human reliability in such cases the THERP technique is usually applied. More challenging issue
is modelling of mistakes, especially in event driven situations. Mistakes, errors of omission are
usually quantitatively evaluated using TRC or HRC methods (Dougherty 1988, Humphreys
1988). Much more difficult is quantifying mistakes, errors of commissions. In such situations
other methods can be applied, e.g. the confusion matrix (CM) method (Dougherty 1988) or
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proposed recently a method for estimating probability of human based errors INTENT
(Gertman 1992). Conventional HRA techniques are criticised recently (Dougherty 1990). The
multi-expert SLIM method is often used to extrapolate probabilistic results, obtained from
single-expert techniques or experiments on simulators, with regard to some additional
Performing Shaping Factors (PSFs) which are important for a specific situation analysed.

There are also expressed opinions that the development of new human reliability models is
needed (Dougherty 1990), especially for modelling operator errors of commission in event-
driven situations. Two general premises for developing relevant techniques are formulated,
namely: they should be based on recent trends in error psychology and that Al technology
offers reach computer environments to model humans (Fujita 1992). There are already some
proposals to employ Al methods to create a cognitive environment simulation (Woods and
Roth 1987). Some other techniques published, related to psychological theories and Al
technology are described in a non-source report (Kosmowski 1992). Unfortunately, these
techniques do not offer new methods for quantifying human error probability (HEP).

2.3. Development of computerised PSA tools based on the expert system technology

PSA studies are time consuming, prone to make mistakes and very costly. There is also
evidence that results of HRA and PSA assessed by different groups can give discrepancy as
high as orders of magnitude. Therefore, an understandable tendency can be noticed to
computerise and standardise these analyses. The expert system technology offers potentially
such possibilities. There are already some examples to use this technology to support PSA
(Wang & Modarres 1988, 1990, Ancelin 1990, Poucet 1990). Most of these knowledge based
systems can be characterised as prototypes aimed at automation of some parts of the
probabilistic safety analyses of level 1.

3. The REPSAIES project
3.1. Features of the software system

As it was mentioned three levels of the effort to carry out the PSA/HRA have been
distinguished: 1, IT and III which correspond to the PSA/HRA methodological issues (methods
applied, details of modelling, the contribution of experts required) and relevant scopes of the
computer aided analyses. Assumed features of the software system supporting PSA of level 1
and HRA using the expert system technology are presented in Table 1. The software system
development has been scheduled to enable gradual and balanced realisation of designing works
with regard to research resources available. In Fig. 1 a classification tree of human event-
driven errors (the category C) is proposed which enables to select the appropriate technique
for the human reliability modelling. Another tree was proposed for pre-initiating (latent)
actions/errors (Kosmowski 1992).

Mistakes, especially errors of commission due to misdiagnosis are considered as most difficult
to model and quantify. The assessed probabilities of misdiagnosis errors of accident situations
in a short period after initiating events are usually placed as elements of so called confusion
matrix (CM). They represent the probability of confusing a transient j with another transient k,
possibly leading to erroneous actions (Hannaman and Spurgin 1984, Wakefield 1988). The
probabilities p, of such confusion depend on the similarity of symptoms such as alarms,

enunciators, values of various process variables or directions and rates of their changes (IAEA
1992).
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Table 1. Assumed features of the computer aided PSA1/HRA of different scopes using
the expert system technology
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These probabilities are usually subjectively assessed by experts. A method was proposed
(Kosmowski & Duzinkiewicz 1993) to reduce subjectivity of assessments and to support
judgements by the evaluation of some similarity measures of symptoms based on the simulated
responses of the plant for initiating events considered. The calculated distance or similarity
measures form the basis for creating distance or similarity tables for all pairs (j,k) of accident
situations Depending on the obtained values of distance or similarity measures, the probability
of confusion is then assessed by experts, e.g. using SLIM or APJ techniques. Linguistic
statements concerning confusion based on similarity measure can be also proposed, e.g. high,
medium, low or insignificant which can be then a basis for evaluation of probability (Wakefield
1988).

Taking into account some drawbacks of the Bayesian approach we propose to apply
alternatively another framework for representing uncertainties in PSA, based on the possibility
theory, in which values of probability will be represented as fuzzy numbers (Kosmowski and
Duzinkiewicz 1993). Such framework seems to be justified especially in cases when the
PSA/HRA studies can not be supported, for some important issues analysed, including the key
cases of HRA, by high quality opinions obtained from domain experts (Table 1, scope I and
1I).
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Abbreviations of the Human Reliability Analysis (HRA) techniques:

APJ - Absolute Probability Judgment

ASEP-HRAP - Accident Sequence Evaluation Procedure, Human Reliability Analysis Procedure
(NUREG/CR-4772, 1987)

CM (+MS) - Confusion Matrix (with Modelling Support)

HCR - Human Cognitive Reliability

INTENT - A method for estimating HEP for decisionbased errors (Gertman 1992)

SLIM - Success Likelihood Index Method

THERP - Technique for Human Error Rate Predictions

TRC - Time Reliability Correlation

Remarks on applications some of these techniques from the PSA perspective can be found in (Cacciabue

1988, Humphreys 1988); CM (+MS) method outlined in the paper (Kosmowski & Duzinkicwicz 1993).

Fig.1. Classification of human event-driven errors and some related quantifying techniques
for different HRA/PSA effort

3.2. Data/knowledge bases and functions of the system

Designing works and tests of the REPSAIES prototype modules concentrate at present on the
scope II (Table 1). Functions and processing phases of the software system are presented in
Fig. 2. The concept of the system (Kosmowski et al. 1991) differs in some respects to other
PSA expert systems by the user friendly graphical interface with advanced CAD functions and
a certain level of automation in creating of the declarative part of components/systems
knowledge bases.

Data bases are important elements of the REPSAIES system. Three groups of data bases are
distinguished:

(1) External data bases which are independent from the project. There can be one or more data
bases containing the reliability data of technical components (installations) and/or a data base
associated with the human reliability. These data bases are available for the user as read only.
They can be helpful for the creation and filling up the project data bases. The access to a new
external data base is to be made through a proper configuration file. In the prototype
REPSAI1ES system these data bases are designed in the dBase IV format.

(2) Project data bases which belong to a group of relational data bases in the dBase IV format.
They serve within the project for the collection of information with a fixed structure. Fields of
records of these data bases can be filled up with the contents of information found in external
data bases. Filling up of the fields can be made in an editor mode or in an interaction mode
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Fig 2 Functions and processing phases of a HRA/PSA software system

through a CAD support of the system. Four basic structures of these data bases have been
distinguished in the prototype system:

o CTDB - components' technical data base - contains a list of the technical data for typical

arrangements of components. Within these arrangements several categories of components
are distinguished: mechanical, electrical, instrumentation and control equipment. The
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description of components consist of the category, the catalogue type, basic technical data,
etc. This data base has a supporting character.

o CRDB - components' reliability data base - contains the basic reliability data of components
required for the calculation of reliability indices. Each component is identified with a
topological code and symbols. Fields of records of this data base can be filled up from
external data bases (optionally through a correction module).

e HRDB - human reliability data base - contains the human reliability data for various
situations analysed in the project. These data are obtained from different sources: an
external human reliability data base (optionally through an interpolation/extrapolation
module), the human reliability models/techniques (e.g. THERP) or assessments given by
experts.

o« IEDB - initiating event data base - contains a list of accident imtiating events with
comments. Its creation is related to the construction of the functional-logical diagram.

(3) Variable structure data bases - a group of data bases related to the graphical representation

of information created using the CAD support system. This information is stored in ASCII files

or binary files. There are five basic structures of these data bases:

e« TDB - topological data bases - contain the information about topology of systems. Data
bases of this type are created for each group of diagrams (mechanical, electrical, ...).

e« FLDB - functional-logical data bases - contain functional and logical relations between
defined objects selected from the front-line and supporting systems. Data bases of this type
are created for each initiating event. The information contained in relevant ASCII file is
then read by a program to fill up the structure of the declarative part of the systems
knowledge base created for semi-automatic event tree construction.

o TRDB - topological-reliability data bases - contain the topological information (connections
of components) for defined objects and functional-reliability information, concerning these
objects, represented using digraphs. TRDB is created programmatically by marking an
object on the selected system diagram and defining of a digraph for this object. The
information contained in relevant ASCII file is then read by a program to fill up the
structure of the declarative part of the components knowledge base created for the semi-
automatic fault tree construction.

o« ETDB - event tree data bases - contain symbolic information about event trees for each
initiating event which is used for their graphical presentation.

« FTDB - fault tree data bases - contains symbolic information about fault trees for each
defined object which is used for their graphical presentation.

The schematic interdependence of described above data bases within the REPSAIES system
are shown in Fig. 3. Data bases are filled up step by step. The system leads the user in a proper
order through an active menu. The user fills up some data in the interactive mode and/or
initiate some procedures. The transition into next stage is possible after filling up a minimum
required information in the previous stage. Modifications of the contents of some data bases
can be made. In the case of a data base related to the graphical representation of information
the changes are made using a relevant program for the graphical edition which generates at the
end of the edition a modified ASCII file. However, such graphical modifications will require
some consecutive changes in other files, what will be manifested to the user, that some next
stage files are irrelevant and must be also modified. The scheme of information handling in the
prototype REPSAI1ES system is shown in Fig. 4.

3.3. Examples of graphically represented information/knowledge

The functional-logical knowledge of the process system analysed is primarily represented in a
graphical form, acquired from an expert or user who uses a CAD computer program. Special
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Fig.3. Schematic interdependence of data bases in the REPSA1ES system

logical diagrams are constructed for each initiating event taking into account several types of
dependency between objects defined within the front line and supporting systems. Previously
constructed logical diagrams can be modified. An example of the screen of the functional-
logical diagram is shown in Fig. 5. At the end of the edition an ASCII file is created, as a part

of FLDB, containing information about mentioned objects and types of dependency between
them.

The topology of the systems is also represented in a graphical form, similarly as the design
engineering diagrams. The topology of the front-line and supporting systems, including cross-
connections between them, is presented on diagrams in special arrangements using a set of
icons and CAD mechanisms. The diagrams are drawn using a step by step procedure starting
from front-line systems. An example of the topological diagram is shown in Fig. 6. Each active
component on these diagrams can be additionally described using an interface module with
marking the input/output connections, e.g. the power supply and input/output control signals
(when more detailed information concerning the supporting systems is available). Previously
constructed topological diagrams can be modified. At the end of edition the binary and ASCII
files are created as parts of TDB.

In the next phase some objects, e.g. lines within the front-line or supporting systems are
marked by the user. It is possible to define for each active component its functional-reliability
state which corresponds with functions of given system for initiating event analysed. For given
object a digraph is then constructed with regard to defined by the user the process varables
and boundary influences (i.e. external disturbances, human errors). The process of the digraph
construction is partly automated. At the end of defining an ASCII file is created, as a part of
TRDB, containing information about its topology and functional-reliability properties. This file
form a basis for creation of the components object specific knowledge base. An example of the
components general knowledge base is shown in Fig. 7.
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Fig. 4. Diagram of information handling in prototype REPSA1ES system

3.4. Description of the software system and its design

The REPSAIES software system is designed to guide the analyst to follow consecutive steps of

the data/knowledge acquisition and the analysis. Some functions, e.g. the event and fault trees

construction and evaluation are automated. The entire modelling process is fully documented

enabling easy scrutinising. The system uses the Microsoft Windows 3 1 environment For the

creation of the application following programming tools have been used:

e Microsoft Visual C++v. 1.0,

» CodeBase v. 5.0 library in C/C++ language - for the data base service in dBase IV format,

* AutoCAD for Windows, v.12 - for creating the CAD support programs (applications
written in AutoLISP and C languages),

» KAPPA-PC v. 2.0.7 - a shell for building expert systems with an internal KAL language for

creating KAL files and C language for creating the DLL library using KAPPA-PC's 'C’
interface.
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Fig. 7 Example of the components general knowledge base

The prototype REPSA1ES application requires the installation on the computer of the software
system itself as well as AutoCAD and KAPPA-PC. The hardware configuration used at present
is as follows: processor 486/66 MHz, 16 MB RAM, a colour monitor 17" - SVGA (1025x768,
1MB) and a laser printer.

4. Concluding remarks

The development and practical use the knowledge based software systems is a promising way
to overcome some difficulties in performing and detailed documenting of PSA. The
methodology proposed enables to automate some parts of analyses releasing experts from
tedious, errors prone tasks (e.g fault tree construction), who can concentrate on more
intellectual tasks and on supervising the entire modelling process. Such approach should gain
the confidence of decision makers in PSA results The knowledge base proposed and logical
models generated can be useful during the plant design and its operation, also for the
probabilistic oriented after fault diagnosis Due to complexity of PSA it is proposed to develop
the related software system gradually in three phases

Additional research effort is required related mainly to PSA/HRA of the scope II and IIT It

should include such topics as’
o object oriented deterministic modelling of the plant to support the logical modelling and
probabilistic evaluation,
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« an advanced framework for representing and treating of imprecision and uncertainties at
different levels of the model hierarchy,

» more adequate modelling of dependent failures, including common mode failures,

« combining the quantitative information from different quality sources including experts,

» effective probabilistic evaluation of accident scenarios under uncertainties with regard to
the equipment oriented logic models, human induced failure events and recovery events,

o applying new psychological theories and AI methods for the analysis of man-machine
interface reliability including possibilities of human intention failures in event-driven
situations.

The expert systems technology and Al methods offer a promising platform for dealing more
systematically with some challenging issues of PSA to support more adequately the reliability
and safety related decision making.
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NUCLEAR POWER PLANT DIAGNOSTICS
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Abstract

Enhanced safety, reliability and operability of nuclear power plants may be
achieved by the application of neural networks as a diagnostic tool to define the
state of the plant at any given time. The paper presents a new neural network
methodology, based on the backpropagation learning algorithm, for malfunctions
management in nuclear power plants. It is shown that neural networks can be used
for identifying the nonlinear dynamic behavior of nuclear power plant components,
and for isolating the origin and extent of a failure, when occurring, using consecutive
samplings of sensors readings.

Introduction

Among the wide spectrum of tasks involved in plant diagnostics, the detection and isola-
tion of incipient failures, which is concerned with identifying the malfunctioning sub—unit
or sensor is exceptionally important. Several approaches to malfunction detection and
isolation exist, ranging from simple upper and lower bounds techniques [1], frequency
domain techniques [2-4] through expert-system methods [5-7] to algorithms based on a
state-space formulation [8-10]. Recently an artificial neural network (ANN) methods have
been suggested as a diagnostic tool. The potential applications of ANN to the operation
and safety of nuclear power plants are reviewed in [11-13]. A new neural network method-
ology, based on the backpropagation learning algorithm [14-16], has been demonstrated
by the present authors for malfunctions management of a nuclear power plant [17-19].
This methodology has been developed for identifying the nonlinear dynamic behavior of
nuclear power plant components, using consecutive samplings of sensors readings, and for
isolating the origin and extent of a failure, when occurring. The present paper summarizes
and reviews the main findings of this methodology.

Multilayered ANNs are considered a promising alternative to existing pattern recog-
nition and signal processing techniques. This is mainly because of their prospective short
execution time and their ability to learn from examples and build unique structures, for
particular problems, without requiring explicit rules. These characteristics makes ANNs
superior over competitive expert-system methods. It is especially true in practical en-
gineering systems where physical rules are too complex to define, and signals corruption
by noise are unavoidable. The inherent parallelism structure of the ANNs allows very
rapid parallel search and best-match computations, alleviating much of the computa-
tional overhead incurred when applying traditional non—parametric techniques to signal
interpretation problems.
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The performance of the ANN algorithm developed in the present work has been studied
and evaluated using benchmark problems related to the dynamic behavior of the High
Temperature Gas Cooled Reactor (HTGR, THTR-300). The test problems consist of
several possible malfunctions and Anticipated Transients Without Scram (ATWS) as well
as several possible normal operational transients that the ANN is trained to identify. The
input patterns which represent these scenarios are generated numerically by an originally
developed simulation code HTGRSS [20, 21]. The trained ANN was tested for its ability
to detect and isolate failures in the presence of noise. It was found that an ANN algorithm
can be derived to detect failures and locate their origin in more than 90% of the cases
studied when the noise-to-signal ratio is below 0.5 db.

The Test Problem

The computer simulation program HTGRSS [20, 21] has been formulated to predict tran-
sient behavior of an HTGR during normal operation and hypothetical accident conditions.
The program is written as a package system code describing the coupled thermal, fluid-
flow and neutronic (including decay heat) behavior of the nuclear fuel and coolant in
the reactor core primary circuit components and the steam generators. To simplify the
analysis, only two variables (sensor readings) were utilize in this work to characterize the
transient behavior of the power plan: (1) the in—core neutron flux and (2) the core outlet
coolant temperature. Noisy values of these two variables were introduced to the trained
ANN, to deduce the state of the plant.

The ANN was trained to identify eight operation scenarios, for which a set of state
variables was generated numerically as a function of time by the HTGRSS code. These
test scenarios are:

—t

. +1% positive reactivity jump.

2. -1% negative reactivity drop.

3. +5% positive reactivity jump.

4. -5% negative reactivity drop.

5. 20% power drop in the primary coolant blower.

6. 60% power drop in the primary coolant blower.

7. 5% increase in the Steam Generator (SG) inlet water temperature.

8. 5% decrease in the SG inlet water temperature.

ANN Training Procedure

We have applied a feedforward neural network algorithm, based on a backpropagation
learning [14], to analyze the simulated HTGR data. The goal of this study was to train
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the network to discriminate among time dependent data patterns that describe different
operational states of the plant, and to eventually enhance the system’s capability to handle

failures when occur.

The HTGRSS code was used to generate, as a function of time, the average neutron flux
and core coolant exit temperature. Noise was added to the simulated signals assuming an
independent, uniformly distributed, zero mean process with different levels of amplitude.
In practice, the simulated data—base may be eventually replaced by archive’s measured

plant data.

There is, one major difficulty in using a feedforward network along with backpropaga-
tion learning for dynamic system identification. Backpropagation learning has been used
and proven to work for static pattern identification. In order to apply the back prop-
agation method as a dynamic diagnostic tool, a basically quasi-steady process of High
Rate Pattern Recognition (HRPR) has been utilized. In this method the transient analog
signal of each sensor is divided into consecutive digital reading samples of time intervals 7.
In the learning phase, the first n samples (n = 3to5), from a transient inception, are used
as a learning vectors set which characterizes the initial stage of the scenario. The learning
set is then used as a standard against which measured digital samples of similar duration
are compared. In the pattern recognition execution phase, measured signal samples of
this duration are recorded continuously at time steps of A? « 7. When a set of measured
samples is found to be similar to a known malfunction pattern the ANN identifies it and

provides information on its origin.

The network is trained to identify a measured vector (pattern), out of a total number

of k learning vectors (patterns);
E=mxn (1)

where, m is the number of scenarios investigated. The first time interval initiated at the
beginning of the transient.

Each learning (or measured) vector, is made of a concatenation of ! vectors of si-
multaneous output signals samplings from ! different sensors which are connected to the
malfunction identification system. Each individual sensor vector consists of s entries of
discreet digital signals, '

s = T/At (2)

where, 7 is the sensor samplings time interval and At is the measurement time step over
which the sensor analog signal is digitized. All the signals are normalized to have values in
the closed range [0,1]. The magnitude of 7, At and n are selected according to the system
time constants, input patterns, decision regions complexity and required early warning
of the specific system under investigation. The dimension of the network input vector is
therefore,

I = sxl (3)
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Figure 1: Failure Identification and Isolation High Rate Pattern Recognition (HRPR)
System.

The pattern recognition process is described schematically in Fig. 1. A sampling-unit
is attached to each of the sensors connected to the network. This unit generates a new
measured vector (pattern) of s components for each individual sensor at every time step
At. The first (s — 1) entries of the new vector are obtained from the translation of the
previous vector entries by one location backwards, while the last entry is occupied with
the most recent measured digital signal. These new vectors are then concatenated to a
single measured vector and introduced to the network, as input for pattern recognition.
This approach is amenable to on-line operations of continuous sampling and examining
plant variable patterns at consecutive time steps of high frequency. The main assumption
underlining this method is that the network execution time, ¢,, is much smaller than the
sampling time step At;i.e., t, € At. The theoretical earliest alarm time of an incipient
failure in this method is 7. However, the verification criterion for a failure occurrence
which is usually defined as several subsequent identifications of the same failure, occurs
some time later.

Results and Discussion

We report here the effect of the selected isolation time interval, 7, on the system per-
formance in the presence of noise. Networks designed with various signal sampling time

interval of duration 7 are evaluated. The digitization time step was, At = 2sec.

The networks have been trained to identify and isolate eight failure scenarios (m = 8)
using two sensors readings (! = 2) as described in the previous section. The learning
vector set of each network consists of & = 8 patterns. The number of entries in each
input layer of the network depends on 7. All networks consist of one hidden layer of 10
neurons and 4 neurons in the output layer. The desired output is coded as a 4-bit binary
word which designates the scenario’s identification number (1-8). All the neurons outputs
are continuous-valued signals. In the output layer the signals values are converted to
binary values using a threshold of 0.5. Sigmoidal activation functions were used for all
the neurons with gain coefficient values of one for the neurons in the hidden layer, and
gain coeflicient values of two for the neurons in the output layer. The network weights
were initialized with randomly selected values in the range of [—0.1,0.1]. The networks
were able to study their learning vectors set with a 100% success.
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Figure 3: Network identification performance versus noise level and 7 for scenario 3.

Figures 2 to 5 depict, for several representative scenarios, the network performance in
terms of the fraction of the correct identification versus the level (in percent) of noise in
the measured vectors and the isolation time 7. Each point on the surface represents the
fraction of correct identification obtained from a series of 500 runs of pattern recognition.
Each run of this series had the same nominal measured vector corrupted by a uniformly
distributed, zero mean, noise with a given amplitude. The results show that for relative
noise levels of up to about 2% and isolation time above 30 sec the ANN identifies all the
scenarios perfectly. Using 7 > 35sec, a perfect correct identification can be achieved with
even higher noise levels of up to 3% in almost all scenarios. A 90% correct identification,
for instance, can be achieved with noise levels of up to 3% when 30 < 7 < 36sec compared
to the same success level which can be obtained with noise level of over 5% with = > 36sec.
Not all the scenarios can be identified at the same success rate. It can be seen, for instance,
that the surface corresponding to scenario 5 {declines at lower level of noise relative to
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Figure 5: Network identification performance versus noise level and r for scenario 5.

other scenarios. This is explained by the relatively large similarity between this scenario
and the other. As a rule, better performance of correct identification for wider noise levels
can be expected with a larger number of sensors connected to the pattern recognition
system, as this provides better separability between the measured vectors.

Conclusions

A new neural network methodology, based on the backpropagation learning algorithm, is
presented for malfunctions management in nuclear power plants. It is shown that neural
networks can be used for identifying the nonlinear dynamic behavior of nuclear power
plant components, and for isolating the origin and extent of a failure, when occurring,
using consecutive samplings of sensors readings.
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The results of this study provide encouraging preliminary evidence to support the
feasibility of ANN based failure identification and isolation techniques. Even for a simple
system which include only two sensors readings the identification of different dynamic

scenarios was quite distinctive.
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