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A Q U A N T U M - D R I V E N - T I M E ( Q D T ) 
Q U A N T I Z A T I O N OF T H E T A U B C O S M O L O G Y 

WARNER A. MILLER 
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 

and 

ARKADY KHEYFETS 
Department of Mathematics, NCSU, Raleigh, NC 27695-8205 

ABSTRACT 
We present here an application of a new quantization scheme. We quantize the Taub 
cosmology by quantizing only the anisotropy parameter /? and imposing the super-
Hamiltonian constraint as an expectation-value equation to recover the relationship 
between the scale factor D and time t. This approach appears to avoid the problem 
of time. 

1. Quantum-Driven Time (QDT) Quantization 
We present here an application of a new approach to quantum gravity wherein 

the very concept of time emerges by imposing the principle of general covariance as 
weakly as possible.1 In particular, the four constraints are imposed as expectation-
value equations over the true dynamic degrees of freedom of the gravitational field -
a representation of the underlying anisotropy of the 3-space. In this way the concept 
of time appears to be inextricably intertwined and woven to the initial conditions 
as well as to the quantum dynamics over the space of all conformal 3-geometries. 
This quantum-driven-time (QDT) approach will ordinarily lead to quantitatively 
different predictions than either the Dirac or ADM quantizations, and in addition, 
our approach appears to avoid the interpretational conundrums associated with the 
problem of time in quantum gravity.2 

In this short paper we apply this QDT approach to the Taub cosmology4 and 
numerically solve the QDT Schrodinger equation. 

2. QDT Quantization of the Taub Cosmology 
The Taub cosmology is an axisymmetric homogeneous cosmology parameterized 

by a scale factor Ct(t), and an anisotropy parameter fi(t). The line element may be 
expressed as 

ds2 = -dt2 + a0e™ ( e 2 ^ . a V , (1) 

where (ft) = diag(ft,j3, —2/3), and the one forms as, a1 = cosibdO + s'mtpdcj), a2 = 
sin xjjd9 — cos ipd<f>, and a3 = dij> + cos Bd<p. The scalar 4-curvature is expressed in 
terms of Q and /? and yields the action, 

Ic = 
lira3 r . • l ( 3 ) 

0 7 r a o / trh2 r>2\ l {(02-tf)-L R}e3Qdt. (2) 



Here ^R = 2̂ a 2ft(4 — e &0) represents the scalar 3-curvature. 
We treat here the scale factor Q(t) as the many-fingered time parameter 0 and 

the anisotropy /3(f) as the dynamic degree of freedom.3 The momentum conjugate 
to fi is obtained from from the Lagrangian, C. 

a/3 * 

The QDT Hamiltonian for this cosmology can be expressed in terms of this mo
mentum and the Lagrangian, 

1 m (• 1 ( 3 M 
nDYN=p^-C = —pl + j{Q2-- R\. (4) 

In the classical theory HDYN can be used to construct either the Hamilton-Jacobi 
equation or the two Hamilton equations; however, to complete the dynamics (i.e. 
to restore general covariance) we must in addition impose the super-Hamiltonian 
constraint, 

/ . 1(3) \ pj = m^ft2 + i Rj. (5) 

Using this QDT Hamiltonian (Eq. - ), the corresponding Hamilton-Jacobi equa
tion and the standard quantization prescription we obtain the Schrodinger equation 
for the Taub cosmology. 

The scale factor O in V and m in this equation should be treated as an unknown 
function of time, t. To complete the QDT quantization we impose, in addition, 
Eq. 5 as an expectation-value equation over j3 (where < • > s = / \&* • $!sdf3). 

V = f<PL>i)\1

<mR>. ( 7 ) 
\ m J 6 

This system of equations Eq. 6 and Eq. 7 provide us with a complete quantum-
dynamic picture of the axisymmetric Taub model, and when augmented by the 
appropriate boundary conditions can be solved numerically. 

We present a solution (Figs. 1 and 2) using an initially Gaussian wave packet. 

#o = Ce t ' 0 3 - / 3 o ) p o / A e"0 ? ~ / ? o ) 2 / A / 3 2 (8) 

with C2 = sj2/pi/AP, p 0 = -100, h = 1, ft = 0, A/3 = 0.1 and Q(t = 0) = 1. 
The solution was obtained using a 2nd-order split operator unitary integrator which 
preserves the norm exactly (up to round off errors). 6 



Figure 1: The QDT quantization of the Taub cosmology. The solid lines in each of the four graphs 
represent the quantum solution, while the small circular dots in the upper two graphs represent the 
classical trajectory. The scale factor's (Q) dependence on time (t) is shown in the upper left, while 
the expectation of the anisotropy (< 0 >) is displayed in the upper right. The lower left shows the 
variance in tf, throughout its evolution, and the lower right graph is a snapshot of the potential (V) 
at the end of the simulation. 
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Figure 2: The Taub wave function. The left column of three graphs shows the initial (t — 0) wave 
function (right most) together with a snapshot of the wave function near the bounce (t = 1) (left
most wave function). The right column is similar but displays the right-going wave function well 
after the bounce at t = 4. The first column plots $*^ , while the second and third are the real and 
imaginary parts, respectively. 



3 . T i m e a n d Q u a n t u m G r a v i t y 

We have introduced in this paper an application of a new approach to the quan
tization of gravity (this approach need not be restricted to quantum cosmology). 
When the Taub cosmology was quantized our theory generated a quantum picture 
based on a post-ADM t rea tment 3 of the gravitational field dynamics and appears 
to be free from the conceptual difficulties related with time usually associated with 
both the Dirac and ADM quantization procedures. Only the dynamical part , the 
underlying anisotropy (/?) has been quantized. The Hamiltonian participating in 
the quantization CHDYN) is not a square-root Hamiltonian. This abence of a square-
root Hamiltonan is a generic feature of our QDT-quantization procedure. 

We have demonstrated here using the Taub cosmology that the concept of time 
may very well be inextricably intertwined and woven to the initial conditions as 
well as to the quantum dynamics over the space of all conformal 3-geometries. 
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