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THE MOMENT APPROACH TO HIGH-ORDER ACCELERATOR 

BEAM OPTICS 1 

W. P. Lysenko 

AOT-3 MS H808, Los Alamos National Laboratory, Los Alamos, NM 

87545, USA 

High-current beams must be matched to high order to minimize emittance 

growth and particle losses. For matching problems, the moment approach, 

in which we describe the particle beam by the moments of its distribu­

tion, is particularly valuable. A variety of analytical results are available 

for linear motion. The moment approach is also the basis of the 3-D space-

charge simulation code BEDLAM, in which the dynamical variables are the 

moments. Moment simulation codes are particularly useful for computing 

beams matched to nonlinear systems. This paper outlines what is known 

about the moment approach, describes work in progress on new space-charge 

models, and describes further potential applications of and improvements to 

moment-method simulations. 

1 This work supported by the US Department of Energy, Office of Defense Programs. 
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INTRODUCTION 

For a large class of accelerator problems, we are interested in properties of the beam 

as a whole rather than in the single-particle motion. For example, when we are putting 

beam on a target, we usually do not care what the individual particles are doing. We 

just want the spot to be a certain size. In situations like these, it is advantageous 

to use the moment approach, in which we describe the beam by the moments of its 

phase-space distribution. In our approach, emphasis is more on the beam than on the 

beamline. An advantage of this is that space charge, which, of course, depends on the 

beam distribution, can be included in a natural way. 

When we deal with high-current beams, high-order effects (nonlinearities in the 

forces and finer details of the beam distribution) become important. Nonlinearities 

arise both from the focusing elements and from particle interactions (we assume particle 

interactions are in the electrostatic Vlasov regime, in which the space-charge forces 

depend only on the distribution function). 

An important problem is the reduction of emittance growth and beam loss, which 

we believe can be achieved by matching the beam to to the beamline (which may 

contain aberrations) to as high an order as possible. This differs from conventional 

approaches that try to eliminate aberrations to as high an order as possible. We believe 

our approach makes more sense in the high-current regime. Aberration reduction will 

have to involve beam distribution manipulation anyway, since space-charge forces are 

contributing significantly to the motion. 

MOMENT DESCRIPTION 

Consider a bunched beam in a rf linear accelerator or in some beamline downstream 
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of such an accelerator. The bunches are roughly ellipsoidal. We use a coordinate system 

fixed at the center of a bunch as shown in fig. 1. As the beam bunch travels down the 

machine, the forces seen by the particles in the bunch vary in time. The problem is 

to determine how f(x,p,t), the six-dimensional phase-space distribution function that 

describes this bunch, evolves. 

We describe the distribution / by its moments, which are just averages of monomials 

in the phase-space variables. For example, the moment < s 2 > is defined by 

/

oo /•oo 

d3p / d3xf(x,p,t)x2 (1) 
•oo J—oo 

1 N 

= jY,*l (2) 
1 = 1 

The discrete case, eq. (2),-is useful if we want to compute moments in a particle code. 

It is just a sum over particles. The moments have the desirable property that they 

are closely related to to observables such as beam positions (first moments) and sizes 

(second moments). 

MOMENT INVARIANTS 

The usual rms emittance is defined for one-dimensional (1-D) motion2. It is a 

function of the second moments. In our notation, the rms emittance in the x-direction 

is 

e2 = (JM)i/* = (<x2xpl> - <xpx>2)V\ (3) 

There are similar definitions for the x and y directions. The rms emittances are like areas 

in the 2-D projections of the 6-D phase space. For example, in the rotated coordinate 
2 Unless we explicitly say n-D phase space, by n-D we mean « degrees of freedom, which corresponds 

to 2n-D phase space. 
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system in which the correlation <xpx> is zero, €2 is the the product of the rms values 

of x and px. 

The importance of the rms emittance comes from the following dynamical property: 

it is conserved for linear, uncoupled (1-D) motion. The rms emittances can change 

either if there are couplings between the the degrees of freedom or if there are nonlinear 

forces. Even linear coupling, as caused by rotated quadrupoles, for example, can cause 

the rms emittances to grow. 

The idea of rms emittance can be extended to 2-D and 3-D. We have found that the 

following function of second moments is invariant for linear motion in 2-D. 

hi = <x2xpl> - <xpx>2 

+ <y2xpl> - <ypy>2 ( 4) 

+ 2<xy><pxpy> - 2<xpyXypx> 

Notice that this invariant consists of the sums of the squares of the rms emittances in 

the two directions, together with some cross terms. This quantity is preserved even if 

the forces are coupling the x and y directions. A similar-looking 3-D version of this 

invariant also exists. For 2-D and 3-D there is an invariant J2222 that is of degree four 

in the second moments and for 3-D there is an invariant I222222 that is of degree six 

in the second moments. There is an efficient algorithm for computing the numerical 

values of such invariants, given the second moments[l]. These invariants are useful as 

diagnostics in simulation codes. If we see see that these second-moment invariants are 

not changing, then we know that any observed emittance growth is being caused by 

couplings rather than by nonlinearities. 

Invariants for higher moments also exist. The following function is of degree two in 
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the fourth moments. It is invariant for linear motion in 1-D. 

I44 = <x4><p$> - 4<x3px><xpl> -f 3<x2pl>2 (5) 

Invariants of higher moments also exist. See ref. [2]-[4] for more information. 

For 1-D motion, we can define n-th order emittances as follows. For e2 and €4 we 

have 

e2 = ( J 2 2 ) l / 2 = (<x2><^> _ <^>2)l/2 

(6) 
e 4 = -(/44) 1 / 4 = {<x*Xp$>-4:<xzpx><xpl>+Z<x2pl>,i)1l* 

In general we define 

€n = (Inn)1/n, (7) 

where Inn is the moment invariant of degree two in the n-th moments for 1-D. All the e n 

are preserved for linear motion in 1-D, even for mismatched beams, and have dimensions 

of areas in phase space. 

It is well known that a matching section in a beamline composed of linear elements 

like magnetic quadrupoles can be used change the Courant-Snyder parameters a and 

/3 of a beam to whatever values are desired but cannot change its rms emittance. In 

a similar way, the en and other invariants of higher moments describe the higher-order 

features of beams that cannot be changed by linear matching sections. 

Table 2 shows the values of e n for various orders n for two distributions: a uniformly-

filled disk (a;2 + p\ < 1) and a hollow beam in which all particles axe on the circle 

B2 + Pi = 1- The value for c2 for the uniform beam is the familiar result that the 

rms emittance is one-fourth of the "total emittance." We see how the higher-order 

emittances axe more sensitive to the outer portions of the beam (halo region). For 

high n, the interior of the beam does not matter; e n is approximately measuring the 
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outermost area occupied by the beam. Because of this property, the higher emittances 

should be approximately invariant for nonlinear forces because phase-space volume is 

preserved even for nonlinear forces. For 3-D, there are other higher-order invariants and 

these will correspond to the other Poincare invariants. 

MATCHING 

Most discussions of higher-order particle optics involve aberrations, which are often 

eliminated by introducing symmetries into the beamline. This approach is essential in 

imaging systems, which must transmit any beam well (where we are not free to change 

the input beam in order to get the desired output beam). However, we will discuss an­

other approach, which is appropriate to a large class of particle-beam applications. This 

is the idea of matching beams to the beamline structure, which may have aberrations. 

Here, we are introducing symmetries into the beam rather than into the beamline in 

order to solve our problem, usually the minimization of emittance growth and particle 

loss. Since we are concerned with the evolution of the distribution rather than the 

single-particle motion, the moment approach is particularly valuable. 

What is matching? 

To understand matching, first consider a time-independent, linear force in 1-D. The 

single-particle motion is described by a harmonic-oscillator Hamiltonian. 

_ 1 o mv2 , .„. 

"=^+—* w 
Solutions are of the form 

x = A cos(vt + a) (9) 

and single-particle invariants of the motion are ellipses 

7a;2 + ftp2 = const., (10) 
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as shown in fig. 2. There is only one parameter, the focusing strength, which is described 

by the betatron frequency v. 

In general, a matchad beam is defined as one whose distribution function is a-function 

of the single-particle invariants. In the present case, we have 

f(x,px) = F(1x2 + pp2

x), (11) 

where F is an arbitrary function. The phase-space density must be constant on any 

ellipse but-the density can vary from ellipse to ellipse. An important property of matched 

beams is that the matched beam size decreases as the focusing strength increases. 

We can scale the variables x and px to make the invariant ellipses be circles so 

the evolution of any distribution is just a rotation. Fig. 3 shows this situation. The 

mismatched distribution shown (a disk with a piece cut out) rotates in time. Obviously, 

the centroid and all other moments of this distribution are going to oscillate at the 

betatron frequency. If the distribution were matched (no piece cut out), rotations would 

leave the distribution unchanged and the distribution (and thus all its moments) would 

be time independent, even though the individual particle motions are oscillating at the 

frequency v. 

Now consider a realistic focusing situation, an alternating-gradient focusing lattice 

consisting of alternating focusing and defocusing quadrupoles as show schematically in 

fig. 4. Suppose it takes time T to travel one period in this lattice. The focusing forces 

seen by the particles are now periodic in time 

H = ±pl + ^K(t)x\ (12) 

The function K(t), which has period T, describes the focusing strength of the various 
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beamline elements. The solutions are 

x = y/p(t)A c o s ( y i + «(*))» (13) 

where the beta function j3(t) and the phase a(t) are periodic functions with period T. 

Figure 6 shows a typical solution. We see that there two frequencies present: the slow 

betatron frequency v (the figure shows one betatron oscillation) and the fast frequency 

corresponding to the period T. In this example, we have a phase advance per period of 

60°, which means that the betatron period is six focusing periodslong. 

The single-particle invariants are ellipses 

7a;2 + 2axpx + {3px — const. (14) 

whose coefficients a, /?, and 7 are periodic functions of time. These invariant curves are 

called the Courant-Snyder invariants. The (3 in the the ellipse of eq. (14) is the same 

function appearing in eq. (13). The periodic functions a and 7 are simply related to 

the P function. This situation is shown in fig. 5. The ellipses at time t and time t + T 

are the same even though the location of any given point on the ellipse moves to a new 

location (as shown by the heavy dot in the figure). 

Distributions matched to periodic, linear beamlines are functions of the invariant 

ellipses 

/ ( » . Px, t) = Ffrx2 + 2axpx + ppl). (15) 

These distributions are periodic in time. We see that matched distributions contain 

only frequencies present in the Hamiltonian. The betatron frequencies present in the 

single-particle motion are not present because of the symmetry we have imposed on the 

beam, which makes averages away the f-frequency components. 
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For nonlinear forces, the invariant curves axe not ellipses. Nonlinearities caused by 

the external focusing forces (like higher magnetic multipoles) are different from non-

linearities caused by space charge. For external nonlinearities, the curves are elliptical 

near the origin and become distorted away from the origin. But nonlinearities caused by 

typical space-charge forces have their largest effect at the origin (assuming the beam is 

not hollow). We can match beams to nonlinear systems and include the effects of space 

charge, which is generally nonlinear. Matching to nonlinear systems requires numerical 

methods, which will be discussed below. 

Why is matching important? 

A beam matched to a periodic focusing channel has a periodic distribution function. 

This means that all properties of the beam are periodic. In particular, there is no 

emittance growth, halo formation, or particle loss. This is why it is so important to 

carefully match beams to accelerator structures. 

A matched distribution is an equilibrium about which mismatched beams move. 

A match can be stable or unstable. Although instabilities are important for circular 

machines because the beam spends a long time in the machine, we can usually neglect 

instabilities in linear accelerators and their associated beamlines. But it is always im­

portant to avoid mismatches even in stable systems (which is usually what we have). 

Mismatches can result in a rapid emittance growth in a time equal to a quarter of the 

plasma period. For space-charge dominated beams, this time can be substantially less 

than the betatron period. 

The concept of matching is also an important tool for deriving scaling laws. Scaling 

laws are relations between beam parameters (current, beam radius, emittance, etc.) and 
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machine parameters (focusing strength, period length, etc.). We get these relations by 

assuming the beam is matched to the machine. Usually, we use simple models that that 

describe only low-order behavior a^d are not exactly self-consistent. As an example, 

assume our beam bunches are uniformly-charged spheres. It is useful to define the 

space charge parameter /x as the ratio of the space-charge force constant to the external 

focusing force constant 

" = -ir- ^ 
™ext 

We can get the following scaling laws 

" ~ ^ ~ ^ - ( i 7 ) 

where I is the beam current, R is the matched beam radius, and e is the emittance. 

Since a low value of /J, is desirable (space-charge forces are likely to be nonlinear and 

lead to emittance growth because of the difficulty in matching to nonlinear systems), 

we see that large currents, small emittances, weak focusing, and large beams are all 

undesirable. In deriving the above simple formulas, we assumed the matched beam size 

is not affected by the current but the results are qualitatively the same even in the 

space-charge-dominated regime. 

C O U R A N T - S N Y D E R INVARIANTS 

In this section, we restrict ourselves to linear motion in 1-D. If we describe an ellipse 

in phase space by 

7 x 2 + 2axPx + PP2

X = e, (18) 

then the ellipse changes in time, but the following quantities 

7/3 — a 2 = const. 
(19) 

e = const. 
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remain invariant. This makes sense once we realize that the area of an ellipse is 

nt/VlP ~ a 2 # Eq. (19) is true for any ellipse, not just the invariant (matched) el­

lipse. For the invariant ellipse, Eq (18) is known as the Courant-Snyder invariant. We 

usually fix the normalization of the /? function by setting f3*y - a2 = 1 so that the area 

becomes simply ire. 

For a fourth-degree curve, 

cox4 + cix3px + C2X2pl + c3zpx + c4px = e2, _ (20) 

the analog of the first of eqs. (19) is 

C0C4 — 4ciC3 + 3c| = const. (21) 

We can verify this fact by transforming the x and px in-Eq. (20) by a general linear 

map of unit determinant and rearranging terms to determine the new coefficients. In 

general, there are no invariant fourth-degree curves for linear systems, expect for certain 

special cases. Beams matched to linear forces must have elliptical symmetry. 

MOMENTS OF BEAMS MATCHED TO LINEAR SYSTEMS 

The distribution matched to a periodic, linear focusing system is of the form given 

by eq. 15. where F is any function. The moments of such a distribution depend on the 

Courant-Snyder parameters and the arbitrary function F. The result for <x2> is 

<X2> _ L°°deeF(e) fi 
< X > ~ f0°°deF(e) 2 ^ 

with similar expressions for the other two second moments. We can eliminate the 

appearance of the function F by writing these relations in terms of the rms emittance 
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C2-

<x2> = /?e2 

<xpx> = —OKI (23) 

<Pl> = 7 *2 

These are relations among the three second moments that must be satisfied for the 

beam to be matched to second order. (These are the same formulas used in particle 

simulation codes for fitting particle distributions to ellipses.) 

We can do a similar thing to get the fourth moments of the matched dist-ributicnr 

For <x4> we get 

4 _ Sfdefm 3£ 
I"deF(e) 8 { M ) 

with similar expressions for the other four fourth moments. We, ran eliminate the 

function F from these expressions by writing the moments in terms of the fourth-order 

emittance 64. 
< 3 A > _ va *2,2 = # P 
<x3px> = - ^ aPel 

<*2PI> = ^ (l + 3a 2)el (25) 

<xpl> = - ^ a-yel 

<P> = ^ I2 e2

4 

These are the correct values for the fourth moments of a distribution matched to a linear 

system. For a distribution to be exactly matched, moments of all orders must have the 

right values. If the forces are nonlinear, which will almost always be the case if space 

charge L appreciable, then we can compute the matched values of moments numerically, 

using a moment simulation code. These distributions will not have elliptic symmetry. 

NUMERICAL SIMULATION BY MOMENTS 
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It is easy to compute the evolution equations for the moments. For the moment 

<xpx> we have 

Tt<xPx> = < ( i» ) f l r> + <<TtPx)> 

= ± < J £ > + <**•-> 
(26) 

= -^<pl> + <x(a0 + aix + a2y + a3z + • • •)> 

= ^ < P c > + ao<x> + a\<x2> + a2<xy> + a$<xz> H . 

Using a polynomial approximation for the force ensures that the right-hand side is a 

function of moments. The evolution equations for all the moments are similarly derived. 

We can truncate the moment equations at some maximum order, yielding a finite system 

of equations. One feature of this approach is the consistency between the description 

of the beam and the forces. That is, if we raise the maximum order of our system of 

moment equations, we include higher force nonlinearities and also describe the beam in 

greater detail (higher moments). The truncated system of equations can be integrated 

numerically, so we can compute the values of the moments at any time, given their 

initial values. This moment-simulation idea was introduced by Paui Channell[5]. We 

have been working on an experimental moment simulation code at Los Alamos called 

BBDLAM[6], which is a fourth-order3, 3-D code 4. As shown in fig. 7, BEDLAM computes 

the final moments, given the initial moments and the external focusing forces. The 

external forces are specified by a table of potential-expansion coefficients at each time 

step. The space-charge potential expansion is computed internally by BEDLAM at each 

time step from the spatial moments. 
3 This is equivalent to a third-order conventional optics code because an n-th order moment code 

includes forces up to order n — 1. 

4 A 2-D moment simulation code, suitable for electron or ion beams, is described in ref. [7]. 
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The moment-evolution equations are not in the form of Hamilton's equations (the 

moments cannot be paired into coordinates and conjugate momenta). This means we 

cannofc use symplectic integrators to solve the differential equations. However, the mo­

ment equations do have a Lie-Poisson structure, which is related to the Poisson bracket. 

We have developed Lie-Poisson integrators[10] that preserve this bracket structure ex­

actly. This provides the numerical stability analogous to that provided by symplectic 

integrators for single-particle motion. 

A moment code is more efficient than a particle code because of the small number of 

equations (one for each moment) that have to be integrated. This difference is especially 

important in 3-D. Suppose that a 2-D particle code has a 20x20 mesh on which the 

space-charge forces are-computed. A 3-D code of equivalent accuracy would require a 

20x20x20 mesh, which means there are twenty times as many field equations to solve 

and also twenty times as many particles required to fill the bins. So it takes about 

twenty times as much work to the the 3-D calculation compared to the 2-D calculation. 

Now look at the situation for moment codes. Table 1 shows the total number 

of moments for orders 2 through 8 for both 2-D and 3-D. We see for a fourth-order 

simulation, for example, that the number of moments in 3-D is only about three times 

as many as in 2-D. 

HIGHER-ORDER S P A C E - C H A R G E E F F E C T S 

The moment approach used in BEDLAM makes more clear (compared to the particle 

approach) how space-charge effects modify the beam behavior as we go from linear 

to nonlinear motion. Let us compare here what goes on in a second-order moment 

simulation (using the TRACE3D code[8]) to what happens in a fourth-order simulation. 
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Below, we assume 1-D for simplicity, although both the TRACE3D and BEDLAM codes 

are actually 3-D codes. 

In both cases we start the space-charge computation by determining the parameters 

of a model charge distribution. In the case of TRACE3D, we assume a uniformly-charged 

ellipsoid and choose the parameters of the ellipsoid by making its second moments equal 

to those of the beam being simulated (remember that all the moment code knows about 

the beam is a collection of moments). In the case of BEDLAM, we use a more-complicated 

31-parameter model and match spatial moments up to fourth order. At this point we 

have a charge distribution. Its corresponding field we call the model field. Now the 

problem is to get a polynomial approximation to the model field. 

In TRACE3D, we want a linear approximation 

eEx = knx, (27) 

where the space-charge force constant ku is determined by 

fai<x2> = <xEx>, . (28) 

where Ex is the model field. The quantity <xEx> is what appears in the moment 

evolution equations (see Eq. (26)) so we are choosing k\\ to make <xEx> come out 

right. This approach is based on the work of Sacherer[9]. We have found that these 

ideas can be extended to higher order. 

In BEDLAM, we want a cubic field 

eEx = kz\x + k32x2 + k33x3. (29) 

We choose the constants k3i, k32, and £33 by requiring 

<a;2>A;3i + <x3>k32 + <x4>k33 = e<xEx> 
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<x3>k3i + <x 4 >fc 3 2 + <x 5 >fe 3 3 = e<x2Ex> (30) 

<x 4 >fc 3 1 + <z 5 >fc 3 2 + <x6>k33 = e<x3Ex>, 

where Ex is the field of the BEDLAM charge model. In both cases, we are really making 

least-squares fits, weighted by the particle distribution, of the linear or cubic approxi­

mations to the model field. 

The cubic approximation is, of course, a better approximation to the actual field than 

is the linear approximation. This is illustrated schematically in fig. 8. The important 

feature here is that linear part of the cubic fit is larger than that for the linear fit, i.e., 

&3i > fen- This difference can be a large effect and leads to qualitative differences in 

beam behavior between second and fourth orders. 

The space-charge parameter fi is the ratio of the space-charge force constant (fe3i or 

kn) to that of the external focusing force constant. In the linear model, a beam close to 

the space-charge limit will have a fi value close to but less than unity. The same beam 

using the cubic model (or the actual space-charge force) can have a \i > 1. Because 

of this behavior, it is difficult to compare linear to nonlinear motion. For example, 

space-charge tune depression is not defined for fi > 1 (the tune-depression factor is 

y/1 — fi). Even though fi is larger than unity, the motion can be stable, consistent with 

the smaller-than-unity value of fi given by the linear model, in which the whole beam 

is modeled by a different, smaller, effective space-charge force constant. Fig. 10 shows 

the phase-space trajectories for such a situation. For small \x\, the orbits look locally 

hyperbolic, a characteristic of unstable motion. However, the overall motion is stable 

because the orbits enclose the origin. 

We can see this effect more physically by comparing a uniform beam with a more 
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realistic, nonuniform distribution, such as a Gaussian. Fig. 9 shows charge density p as 

a function of r for a uniform sphere and a spherical Gaussian. Both beams have the 

same total charge.and second moments (equal to 1). The graph is to scale. The central 

density of the Gaussian is about three times that of the equivalent uniform beam. One 

consequence of this factor-of-three effect is that current-limit formulas (or other scaling 

laws based on linear models) may not be reliable even in the moderate-space-charge 

regime of fi « 0.5. 

HIGH-ORDER NUMERICAL MATCHING USING MOMENTS 

We have tested the idea of computing matched beams using a moment code[6]. This 

was done by a matching code that runs as a separate process from the BEDLAM code. 

The matching code reads the final moments computed by BEDLAM and generates a new 

file of input moments, which can be used by BEDLAM. Our present matcher code is 

trivial (it simply averages the input and output moments of the previous BEDLAM run 

to generate the new input moments) but works well. To compute a matched beam, 

we just execute BEDLAM and the matching code alternately until the moments stop 

changing. Fig. 11 shows this process. This approach of using a separate code to do 

the matching is practical because because the amount of data being moved is small 

(203 numbers). For our example, we took a permanent-magnet quadrupole channel 

without space charge. To enhance nonlinear effects, we used short magnets with small 

bores. With the nonlinearity of the magnet fringe fields temporarily turned off, we 

found that we obtained the same matched beam found in the conventional approach 

using the TRACE3D code. We used the relations given in eqs. (23) to get the Courant-

Snyder parameters from our computed moment values. Of course, we obtained more 
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information than in the conventional approach. We got the matched values of all the 

moments up to fourth order. 

We found that using this matched-to-the-linear-system beam was no longer matched 

when we turned the nonlinear fringe fields back on. (The initial moments were not 

equal to the final moments.) Moveover, we found that the rms emittances were not 

preserved in this case. Rematching to the nonlinear forces, however, made the input 

and output moments equal and preserved the rms emittances. We should point out 

that the introduction of the nonlinearities changed all the moment values. Thus, even 

though we did not change the linear forces when we turned on the nonlinearities, the 

matched values of even the second moments (and thus the Courant-Snyder parameters) 

were changed. 

3-D SPACE-CHARGE MODEL IMPROVEMENTS 

The space-charge problem is to, at every time step in the simulation, take the vector 

of spatial moments 

TT = (<x2>,<xy>,<xz>,...<zA>), (31) 

and from it to compute a polynomial approximation to the space-charge potential 

<j>ac{x, y, z) = uxx2 + u2xy -) V u3iz4. (32) 

We are interested only in methods that are efficient, for example, we would like to go 

from moments to potential expansion by doing just a single matrix multiply 

31 

Ui = Y^ Mij*h t" = 1, • • •, 31 (33) 
3=1 

at each time step. If the matrix M is fixed and not computed at each time step, such a 

computation will be extremely fast. This approach promises to make possible not just 
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simulations but optimization codes which include high-order, 3-D space charge effects. 

This is a capability that is clearly not achievable with particle-in-cell codes without vast 

improvements in computing power. 

Recently, Paul Channel introduced some new ideas that have been investigated by 

Hyo Ahn. We present here some of the preliminary results. 

Instead of using a 31-parameter space-charge model, we consider a fixed collection of 

a large number N (several thousand) points in space (let's call it a mesh). Now consider 

a point charge at each mesh point. Adjust the magnitudes of all the charges so that all 

the moments up to fourth order are the same as those of the beam we are simulating. 

This is an extremely undetermined system. To get a solution, we minimize the sum of 

the squares of the charges at the points 

£«?, (34) 

subject to the constraint that the moments are exactly right. This method selects, from 

the infinite number of distributions that have the correct moments, the one that has 

maximum smoothness. This seems like a reasonable approach but there is significant 

improvement we can still make. The problem is that this procedure tends to spread 

charge over as much space as it can and some of the charges are negative. Instead of 

minimizing Eq. (34), we minimize 

N 

E(°«-^)2, (35) 
i= l 

where /z,- is a constant vector of N numbers. If we set the fi vector so that it resembles 

a reasonable beam (i.e., concentrated near the origin), then this process generates a 

charge distribution that is close to our reference beam m but satisfies the moments 

exactly. This procedure was tested and produces good fits to a wide variety of beams. 
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The second part of the problem, now that we have the model charge distribution, 

is to fit its field to a polynomial potential. One way to choose the potential coefficients 

Ui is to do a least-squares fit of the polynomial to the points on the mesh, i.e., we try 

to make the value of the polynomial approximation as close as possible to the potential 

of the model charge distribution over the whole region. Actually, we get much better 

results if we weight the fitting with the values /z,-. Ideally, we want to weight by the 

actual charge. That is, we want good accuracy in the polynomial approximation where 

most of the charge is, and it is less important to be accurate where there are hot many 

particles. Unfortunately, it is not possible to get an algorithm of the form of eq. (33) 

when we do this. However, using m for the weight vector works fairly well and is of the 

form of eq. (33). In a practical simulation code, we would precompute a collection of 

matrices M, each corresponding to some different beam size. Whenever the beam size 

in the simulation changes appreciably, we switch to a new matrix, closer to the present 

beam size. 

There are 31 potential coefficients to choose. When we do the fitting, we can do so by 

making the 31 quantities <TO,-<£> correct, where the m,- are the phase-space monomials 

of orders two through four. However, the moment evolution equations really depend on 

the quantities that we call the generalized Sacherer integrals <m,\Ej>, where here the 

TO,- are the monomials of orders one through three and Ej are the field components in the 

three directions. The problem is that there are 57 such generalized Sacherer integrals and 

only 31 potential coefficients to vary. We cannot make all the Sacherer integrals exactly 

correct. What we have found is that when we do field fitting instead of potential fitting, 

we can get the Sacherer integrals like <xEx>, <x2Ex>, and <x3Ex> exactly correct, 
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but not terms integrals like <xyEx> in which the monomial contains coordinates in 

directions different from the field direction. Our procedure gets 31 quantities correct 

and some of them are the Sacherer integrals, as mentioned above. The other quantities 

that it gets correct are things like <xEy + yEx>, which are not Sacherer integrals. 

Fortunately, in real cases, such quantities are much smaller than the Sacherer integrals 

that we do get right. The distinction between potential and field fitting is probably 

only important for a fourth-order code. At higher orders, the difference between the 

potential and field fit is not great. 

FUTURE DIRECTIONS 
• • 4 

Our future work will concentrate on developing techniques for designing nonlinear 

matching sections. Also, we plan to study the feasibility of fundamental improvements 

in the moment approach that will enable us to study the beam halo problem in a new 

way. 

Nonlinear matching sections 

We have seen that because the moments are a description of the distribution, because 

of the efficiency of the moment simulation, and because of the small amount of data 

that has to moved around, it is easy to compute beams matched to periodic linear 

or nonlinear focusing systems. In a similar way, we believe it should be possible to 

design nonlinear matching sections that take a given beam and transform it into one 

that matches a given structure. Just as we had an external matcher code, we can use 

an external optimizer code that varies the external-force file (again, a relatively small 

data set) and adjusts the forces (beamline elements) so that the final moments come 

out correct. 
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An important use of a nonlinear matching section would be to correct a beam gener­

ated by a linear accelerator before it is injected into a storage ring. The storage ring is 

a periodic, very-nearly linear device but the beam we are injecting has been subjected 

to unavoidable space-charge nonlinearities at the low-energy end of the machine. A 

nonlinear matching section will be able to can adjust both the core and halo regions of 

the beam, undoing, to some extent, the harmful effects of previous nonlinear effects. 

New dynamical variables 

It may be useful to examine if the moment invariants- (or some functions of them) 

can be used as dynamical variables instead of the moments themselves. An advantage 

of this approach is that, in the absense of nonlinearities, the variables will be constant 

in time. Thus we will be solving directly for nonlinear effects. This is analogous to 

using amplitude-phase (action-angle in the Hamiltonian framework) variables in single-

particle motion. We know that the higher-order emittances en are more sensitive to the 

beam halo than the lower-order emittances. Using the moment invariants as variables 

will be advantageous in studying the behavior of beam halo. 

Actually, if we interested in halo motion, it may be even more useful to investigate 

the idea of some kind of "halo variables." The philosophy of the moment method is 

that we make the things we are interested in (properties of the distribution) into the 

dynamical variables instead of trying to extract this information from single-particle 

motions. So some of our variables should directly measure the amount of beam in the 

halo, and we should compute the evolution of this quantity directly. We know that we 

can use other basis functions besides the monomials to get new variables. However, it 

is difficult (maybe impossible) to make the truncated system of new moment equations 
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into a Lie-Poisson system, which is what is required to preserve the Hamiltonian nature 

of the motion. This is a concern because we use Lie-Poisson integrators in moment 

simulation codes. A reasonable approach would be to study to what extent we can 

live with the problem of not preserving the Hamiltonian structure in our simulations. 

(This is like working with nonsymplectic integrators; usually not desirable but possible 

to do.) For short times, this should work. We should be able to study effects in which 

halos are generated quickly. The advantage of doing this without using particles is that 

the fraction of particles in the halo is low. The halo-variable approach overcomes the 

statistical problem of particle codes. 
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order number of moments 

2D 3D 

2 10 21 

4 65 203 

6 205 917 

8 490 2996 

Table 1. The number of moments from second to the given order for 2-D and 3-D. We see that the 

number of moments required to describe the beam in 3-D is only several times as many as for 2-D. 

order €n e n 

n (uniform) (hollow) 

2 0.250 0.500 

4 0.380 0.685 

6 0.462 0.734 

10 0.567 0.811 

20 0.697 0.886 

100 0.895 0.968 

400 0.964 

1000 

Table 2. The n-th order emittances for a uniformly-filled disk and a hollow distribution, both with a 

total emittance of 1. For high orders, e„ is insensitive to the interior of the distribution and tends to 

measure the total area in phase space. 

<3> <E> £> 

Fig. 1. Coordinates move with the beam bunch and measure displacement relative to the bunch center. 
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;aak focusing 
""" (large beam) strong focusing 

(small beam) 

Fig. 2. For time-independent, linear focusing forces, the phase-space trajectories are the invariant 

ellipse, which are constant in time. 

x2 + p'= const. 

Initial distribution 

Fig. 3. For time-independent, linear forces we can scale the variables so that the invariant ellipses are 

circles. The evolution of any distribution is then a rotation. 

0 B,Q I i O I 
t t+T 

Fig. 4. A bunch traveling down an alternating-focusing lattice sees forces periodic in time. 

Fig. 5. For period, linear focusing, certain ellipses (the invariant ellipses) are unchanged in one period, 

even though individual points on the ellipses are at different locations. 

26 

•• M'irrrrr^-'.v-. ••*' iu,??-••• ;>\WT.<•;:»-"•.'tvw- ••"•V ~*t j - i i 1 ^ ; ^ - 1 - - ^ 1 ; >'.>v 



x(t) 

Fig. 6. The solution for a periodic focusing system in which the phase advance is 60° per period. 

initial 
moments 

BEDLAM final 
moments 

initial 
moments code 

final 
moments 

t k 

external 
forces 

Fig. 7. The 4-th order, 3-D moment simulation code BEDLAM computes the moments at any given 

time, given the initial moments and a table describing the focusing forces. The space-charge forces are 

determined by BEDLAM in terms of the spatial moments at each time step. 

TRACE3D 

actual 

2 

Fig. 8. For a typical charge distribution, BEDLAM'S cubic-force model is more like the actual space-charge 

force than the linear model in TRACE3D. 
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Fig. 9. Gaussian and uniform charge distribution in 3-D. Both charge distributions have the same total 

charge and second moments {a = 1) but very different central densities. 

x ' 

Fig. 10. Motion in phase space for nonuniform beams like Gaussians when ft > 1. Motion for small 

\x\ appears unstable (locally hyperbolic) even though overall motion is stable (circles origin of phase 

space). 
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initial 
— . .. . 

BEDLAM 
code 

final 
moments 

— . .. . 
BEDLAM 

code moments 

/ . 
• 

matcher 
code 

• 

matcher 
code 

Fig. 11. Data flow for matching with BEDLAM. The BEDLAM code transports initial moments to their 

final values. The MATCHER code computes a suggested initial set of moments for BEDLAM to try. This 

process is repeated until the moments stop changing. 
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