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Abstract 
The electrical conductivity, thermopower and the electronic contribution to the thermal con­

ductivity of a superlattice, are calculated with the electric field and the thermal gradient applied 
parallel to the interfaces. Tunneling between quantum wells is included. The broadening of the 
lowest subband when the period of the superlattice is decreased produces a reduction of the ther­
moelectric figure of merit. However, we found that a moderate increase of the figure of merit may 
be expected for intermediate values of the period, due to the enhancement of the density of states 
produced by the superlattice structure. 

During the last two years, several papers were published analyzing the application of quantum 
well superlattices to improve the efficiency of thermoelectric coolers.fl, 2, 3, 4] Experimental work is 
being done seeking the confirmation of the theoretical predictions. [5, 6] To our knowledge, the first 
proposal that a superlattice structure may be a highly efficient thermoelement was done by Mensah 
and Kangah.[l] However, calculation of the transport properties of superlattices have been previously 
reported.[7, 8, 9] The first quantitative result was given by Hicks[2] where a huge increase of the ther­
moelectric figure of merit is predicted as the width of the quantum wells is reduced. The thermoelectric 
figure of merit is a measure of the quality of a material to be used as a thermoelement[10] and is defined 

where S is the thermopower, a the electrical conductivity and K the thermal conductivity. Z has units 
of inverse temperature and is usually referred as the dimensionless quantity ZT where T is the absolute 
temperature. Hicks' calculation was welcome by both the workers on thermoelectric devices and those 
in the field of semiconductors superlattices. The former are seeking for creative ideas to break the 
traditional barrier of ZT « 1, and the latter welcome a new application for a very well developed 
technique. 

In this communication, we want to revisit the calculation of the transport coefficients involved in 
Eq. (1) for a superlattice. We incorporate two elements in the model of superlattice that change the 
prediction of a huge increase in the thermoelectric figure of merit. These are the tunneling probability 
between quantum wells and the finite thermal conductivity of the material forming the barriers. The 
quantum mixing between quantum wells produce a broadening of the lowest subband that changes the 
density of states from a two-dimensional shape to a three-dimensional one. On the other hand, as was 
pointed out by Mahan and Lyon,[4] the finite thermal conductivity of the barriers produces a parasitic 
effect of backflow of heat, without helping the thermoelectric pumping. As a result, we found that as we 
decrease the period of the superlattice, there is a moderate increase in ZT until it reaches a maximum, 
and a further reduction of the period reduces the figure of merit. 
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Figure 1: Potential profile for the conduction band of the superlattice used in the calculation. 

The dynamics of electrons in the conduction band of the superlattice is described using the envelope 
function approximation. [11] Thus, neglecting the electron-electron interaction, the problem is reduced 
to the study of electrons with effective mass components mx, niy, and mz in a potential profile as shown 
in Fig. 1. The energy levels in the superlattice are given by 

c 5 \'"Xl "'y: ^Z) — 
h2kl tfk* — - + —-
2mT 2m 

+ Es{kz) (2) 

where kx and ky are the wave vectors in the x and y direction (parallel to the plane of the interfaces) 
and Es(kz) is the dispersion relation of the subband s of the superlattice. This dispersion relation is 
given by the solutions to the equation[12] 

K2 — a2 

cos(kzd) = cos(qa) cosh(Kb) - 1 — sin(ga) sinh(/f6) , 
2qK 

where 

Q = 
(2mzE\l/2 

and K = 
2mz{V -E) 11/2 

fta 

(3) 

(4) 

for energies E lower than the conduction band offset V. Here a is the well width, b the barriers width 
and d — a + b the superlattice period, as illustrated in Fig. 1. 

The low field transport coefficients are defined by 

J = o-E + crSVT, 
JQ = -TaSE-KoVT, 

(5) 
(6) 

where J is the electric current, 3Q the heat current, E the electric field, T the temperature, a the 
electrical conductivity, and S the thermopower. The thermal conductivity, usually measured at zero 
electric current, is given by 

K = «o — TaS2 4- Ki , (7) 

where KI is the lattice contribution to the thermal conductivity. In the case of a superlattice this 
transport coefficients can be calculated as 

g2 oo |.+oo r+oo r+ir/d / 
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where e is the electron charge, /o the Fermi function, vx the group velocity of the electron in the x 
direction, r the relaxation time, kB the Boltzmann constant, \i the chemical potential and we assume 
the electric field and the temperature gradient applied in the x direction. The summation runs over the 
different subbands produced by the superlattice structure. In what follows we will only consider the 
lowest energy band with 5 = 0. 

We will calculate these coefficients in the simplest possible form in order to make more evident the 
effects produced by the superlattice structure. Assuming a constant relaxation time we can carry out 
the integration over the momentum components parallel to the interfaces, obtaining that, 

a = ^ ( ^ ) ( m x m , ) 1 / 2 / o ( / i , r ) 1 (11, 

a S = i = f ( i F ) (mim*)1/2 J iGu,T) • ( i2) 

kBh\ (2kBT\2 (my\W , . _ . , 1 0 
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where we have defined 

I0(H,T) = - ^ £ dx F 0 (O , (1-1) 

hi^EEJ-J^dxpF^O-CFoiO] , (15) 

I2(n,T) = ±£dx [3/^(0-4^(0 + ̂ 0(0] , (16) 
with 

ix - ^ 0 (x/d) 
^ kBT 

We have used a notation as close as possible to the one used by Hicks [2] in order to facilitate the 
connection between both approaches. In the formulas above, fj,x = eT/mx is the mobility in the in­
direction and Fi the Fermi integrals defined by 

™=L dx7^n- < 1 7 1 

These Fermi integrals for integer I are related to the polylogarithms functions and can be easily 
evaluated. [13] 

From the given formulas of the transport coefficients we obtain our first result. In the limit of 
decoupled quantum wells, i.e. when the barriers are wide (or the conduction band offset large) the 
lowest subband is flat, and we obtain expressions for the transport coefficients similar to those in Ref. 
[2] (Eqs. (12), (13), and (14)),'with the difference that instead of having the width of the quantum 
well a in the denominator, our expressions have the period of the superlattice d. This difference gives 
the proper dependence of the transport coefficients on the parameters of the superlattice. Under the 



assumption of a constant relaxation time the conductivity can be written a s a = ^ L n where n is the 
density of electrons. If the width of the well and the chemical potential are kept fixed while increasing 
the width of the barriers, the density of electrons n should decrease and in the same proportion the 
conductivity a should decrease. This dependence is not reflected in the expressions of Ref. [2]. 

In order to calculate the thermoelectric figure of merit of the superlattice we need the lattice contri­
bution to the thermal conductivity. Neglecting transversal heat flow across the interfaces,[4] the lattice 
thermal conductivity of the superlattice can be written as 

a « [ a ) + b n\b) 

a + o 

where «} a ' and K\ ' are the lattice thermal conductivity of the well and barriers respectively. 
The thermoelectric figure of merit can be calculated as 

^ = wfrw ( 1 9 » 
where Jn — In((j,,T) and 

1 (2kBT\ 1 / 2 k%Tfis 
B = T~l ~TT~ F * " ^ • (20) 

Again, in the case of a flat lowest subband, where 

h = F0 , 

h = 2Fx - C F 0 , 

and 
J 2 = 3F 2 - 4C Fx + C 2F 0 , 

our result is similar to that of Ref. [2] but instead of the well width a in the denominator of B' we found 
the period of the superlattice d. We can obtain their result for B' if we assume a flat lowest subband 
and zero lattice thermal conductivity for the material forming the barriers of the superlattice. This 
situation is far from any experimental realization. 

In what follows, all our results have been calculated for a superlattice where the wells are made 
of Bi2Te3 — one of the best thermoelectric materials known at room temperature.[2] We have chosen 
the orientation of the layers perpendicular to the ao-axis of the material. Therefore, we use a mobility 
in the x direction \ix = 1200 cm 2 /V sec, the effective mass in the direction of the superlattice is 
mz = 0.32mo, where mo is the free electron mass. The other effective mass components have been taken 
as mx = 0.021mo and my = 0.081mo. The thermal conductivity for this layers K\\ — 15 mW/cm K 
is a reasonable value for Bi2Te3 at room temperature. For the material of the barrier we assume a 
conduction band offset V = 1 eV as a typical value for semiconductors. The results presented here does 
not depend in a critical way on the assumed value of this parameter. 

As can be seen from our formulation, assuming K\' = 0 is one of the possibles ways of avoiding the 
parasitic effect of the barriers. A way very difficult to realize in practice. This was previously discussed 
by Mahan and Lyon. [4] 

Another way is to reduce the barrier width b in order to decrease the amount of material that do not 
contribute to the thermoelectric heat current. In Fig. 2 we show this effect. We plot the thermoelectric 
figure of merit times the temperature of the superlattice (ZT) as a function of the well width, for three 
different values of the barrier width b= 20, 45 and 90 A. The calculation has been done for 100. 200 
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Figure 2: Thermoelectric figure of merit times the temperature (ZT) vs. the width of the well a for 
three different thicknesses of the barriers at temperature T=100, 200. and 300K. The lattice thermal 
conductivity is assumed to be the same for both materials. 
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and 300 K as indicated in the figure. The chemical potential has been adjusted in order to maximize 
the figure of merit in each case. We assume that the lattice thermal conductivity is the same in both 
layers. Except for the case of a barrier of 20 A, the general behavior is an increase of ZT as we 
reduce the width of the wells a or the width of the barriers b. As long as the lowest, subband can be 
considered as dispersionless (flat) reducing a or b reduces the period of the superlattice d, increasing 
B' and therefore, ZT. In our problem, the lowest subband can be considered flat when the chemical 
potential lies above its top at a distance grater than the typical thermal energy. A square density 
of states, like in a two-dimensional electron system, is very favorable for the thermoelectric efficiency. 
Electrons above and below the Fermi level have opposite contribution to the thermopower as can be 
seen in Eq. (9). Reducing the period of the superlattice without tunneling between quantum wells is 
as increasing the density of states without changing its squared shape. Therefore, this is a method of 
increasing the number of carriers per unit volume, without reducing the thermopower of the system. 
However, this method is impossible to be realized in this system. As can be seen from the curve 
corresponding to the thiner barriers (6=20 A) ZT increases until the mixing between states in different 
quantum wells produces a broadening of the lowest subband, becoming a three dimensional density of 
states (as expected!) and reducing the thermoelectric figure of merit. As can be seen from Fig. 2, the 
behavior at the three temperatures shown is the same, with an overall reduction of the figure of merit 
as the temperature decreases. 

To make more clear the argument presented in the last paragraph we present in Fig. 3(a) the behavior 
of ZT as a function of the barriers width b for a fixed wells width a=15 A. The full line show the result of 
our calculation, while the dashed line shows the result of neglecting the tunneling between wells. Both 
approximation coincides when the barriers are thick and the figure of merit is low. When the barriers 
thickness decrease, the approximation of independent quantum wells shows a divergence because of the 
piling up of two-dimensional layers without quantum mixing. The proper consideration of the subband 
broadening gives a reduction of the figure of merit when the chemical potential enters into the three-
dimensional like density of states of the lowest subband. This is shown in Fig. 3(b) where the short 
dashed lines represent the band edges of the lowest subband, and the full line is the chemical potential 
that maximizes ZT in each case. The conduction band offset is also shown as a long dashed line to set 
the proper scale of energies involved. 

The other way of increasing the figure of merit of the superlattice is to reduce the lattice thermal 
conductivity of the barriers K\ . However this may be difficult, considering that we want to use a good 
thermoelectric material in the well. The thermal conductivity of this layer will be low for a crystalline 
solid, of the order of the value we have used in our calculation («;} ?sl0 mW/cm K). If we want to 
use for the barriers a material with a lattice thermal conductivity ten times lower than that, we will be 
searching in the range of values characteristic of polymers and not of crystalline solids. 

Our calculation was done considering onl}' the lowest subband of the superlattice because the well 
known fact that one band materials are better thermoelectrics. This assumption is confirmed in Fig. -1 
where we plot ZT as function of the chemical potential in a superlattice with barriers width 6=50 A 
and well width a=50 A, assuming a band offset of leV. In the figure we can see two peaks. The arrows 
show the subbands bottom. The first peak, much higher than the second, corresponds to the chemical 
potential near the first subband. The second peak appears when the chemical potential reaches the 
second subband. From the difference between both peaks it is clear that only the first subband has to 
be included in the search for good thermoelectric superlattices. 

In summary, we have presented the calculation of the thermoelectric figure of merit for superlattices. 
We use a simple model in order to show the effects arising from the superlattice structure itself. We 
show that there is an improvement of the figure of merit, produced by the enhancement of the density 
of states at the bottom of the lowest subband. This enhancement is produced by the increase of the 
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Figure 3: (a) ZT vs. barriers width b for a fixed well width a=15 A. The dashed line is the result 
of neglecting the tunneling between quantum wells, considering the independent. Th efull line is the 
result of our calculation, considering the broadening of the lowest subband. (b) The chemical potential 
that maximizes ZT (full line) corresponding to the calculation shown in (a), displayed together with 
the lowest subband band edges (short dashed lines), to show the correlation between the reduction of 
ZT and the chemical potential entering between the limits of the subband. 
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Figure 4: ZT vs. chemical potential for a superlattice. The arrows show the position of the subbands 
bottom edge. In the calculation the barriers and the wells are 50Awidth. The temperature is 300 K 
and the band offset leV. 
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effective mass in the direction of the superlattice. The improvement is obtained by a reduction of 
the period of the superlattice. However, a further reduction of the period reduces ZT because of the 
broadening of the lowest subband, approaching a three-dimensional like density of states. From our 
calculation of the transport coefficients becomes clear that the correct normalization is given by the 
period of the superlattice and not by the width of the well. This is an important point to be considered 
in experimental works searching for the apparent a - 1 behavior that emerges from the formulas given in 
Ref. [2]. 

This research was sponsored by the Division of Material Sciences, U. S. Department of Energy 
under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. and Cooperative 
Research and Development Agreement (CRADA) No. ORNL92-0116 between Marlow Industries, Inc. 
and Martin Marietta Energy Systems, Inc. 
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