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PREFACE

This report summarizes the progress on grant No, DE-FG05-89ER40530 during the

period March 1, 1993 to April 30, 1994.

By extending our previous work on the fluid dynamical treatment of the nuclear collective

motion, we deduced from the Boltzmann-Langevin (BL) model a set of transport equations for N

collective variables and calculated the associated transport coefficients. Work has also continued

on investigating the relation between the BUU model and the BL model for the average evolution.

The principle investigator spent a fruitful summer (1993) at LBL, where in collaboration with J.

Randrup, we developed a numerical method for simulating the stochastic evolution of the phase-

space density near local equilibrium. Two papers have appeared in Phys. Rev. C and Nucl. Phys.

A, two papers have been accepted for publication, both in Nucl. Phys. A, and two manuscripts

have been submitted to Z. Phys. A for publication. Several seminars/contributed talks were given

at various meetings and an invited talk was presented at the NATO Advanced Study Institution

Hot and Dense Matter, Bodrum/Turkey.

Most of the work done in collaboration with Y. Abe, M. Belkacem, D. Boilley, Y. B.

lvanov, W. Norenberg, J. Randrup, V. N. Ruskikh and E. Suraud. Their collaboration has been

very stimulating and much appreciated.

The secretarial and accounting duties for this grant have been performed by Gloria Julian,

CPS, of the TTU Department of Physics, and I wish to express my appreciation. I also wish to

thank the theory groups at LBL and at GSI for their hospitality during my visits.



1. SIMPLIFIED SIMULATION OF BOLTZMANN-LANGEVIN EQUATION
(with J. Randrup)

We summarize the recent progress in deriving approximate analytical expression for the

transport coefficients associated with the Boltzrnann-Langevin (BL) model and describe a

numerical method for simulating the stochastic evolution of the phase-space density f(r,p). In

the BL model the evolution of the phase-space density in the semi-classical limit is determined by

a stochastic transport equation [1,2],

a.
j -{h(f),f} = K(f)+ SK. (1.1)

Here, the l.h.s, describes the Vlasov propagation in terms of the effective one-body Hamiltonian

h(f). In the r.h.s. K(f) denotes a binary collision term of the BUU form, and _K is the

fluctuating collision term, which is characterized by a correlation function

(_K(r,p,t)_K(r',p',t')) = C(p,p')S(r- r')S(t - t') (1.2)

assumed to be local in space and time without the memory effects.,

It is possible to derive a simple approximate expression for the correlation function

C(p,p') at local equilibrium, where the average phase-space density is of the Fermi-Dirac form,

f0(r,p) = 1/[1+ exp(e- _)/r]. For this, we employ a method developed in connection with the

study of Fermi liquids [3], and which is accurate when the temperature is low in comparison with

the Fermi energy, x << eF We then obtain for the correlation function [4],

C(p,p') = Wo[fo(1-fo)h'S(p-p')-fo(l-fo)Spcfo'(1-fo')] (1.3)

ii ' , , i ii ii ii ,11, ' , i i ' iii ' ' ' ' ' II ' ' i , , ..... , t , , ff _l



where W0 determine the relaxation rate Wo = 1/t o, and Spp, expresses the correlations induced

between the occupancies at the moment p and p' as a result of the binary collisions. Up to the

leading order in _'/ev , the relaxation rate is

in agreement with the expression derived for the Fermi Liquids, and the correlation coefficient is

given by

- 0 0

Spp, P@o sin_ 2cos_

where _o = 3r/2eF, P is the local density and 0 denotes the angle p and p'. The approximate

expression (1.3) provides a very good approximation for the overall behavior in energy and angle

of the correlation function near local equilibrium. As an example, figure 1 shows the angular

dependence of the covariance part of the correlation function. The exact result obtained by

numerical Monte-Carlo evaluation is shown by the solid dots, with the open dots indicating its

positive and negative parts, The curves show the corresponding quantity for our analytical

approximation which, aside from a normalization, is given by eq. (1.5).

The BL transport problem can be solved by direct numerical simulation. Given the phase-

space densityf (r, p,t) at a time t, the task is to calculate the density f(r,p,t+A0 after a short time

interval At has elapsed. According to the BL eq. (1.1), this change has two parts, the evolution

associated with the collisionless propagation by the one-body Hamiltonian h(f) and a change Af

resulting from the stochastic two-body collisions. The collision-induced changes constitute an

ensemble {Af}which is constrained by the transport coefficients,



(Af(r,p)) = K(f)At, (Af(r,p) Af(r',p'))= C(p,p')S(r- r')At. (1.6)

We can obtain one of the possible new densities, f(r,p,/+At) =f(r,p,t) + Af(r,p), by picking the

random increment Af (r,p) according to the constraints (1.6). This procedure is then repeated on

the basis of new density, and, in this manner one entire historyf (r,p,t) is generated. An ensemble

of N independent histories {f c,J(r,p,t)} can be obtained by performing N such "runs," each time

starting with the same specified initial densityf (r,p,_-O). The simple approximate forms derived

for the transport coefficients make it possible to calculate these extremely fast. Consequently, the

numerical simulation of realistic scenarios has been brought within the realm of practicality,

provided that a suitable fast method can be devised for picking the random charges Af (r,p)

according to eq. (1.6).

A paper on this topic will appear in Nucl. Phys. A (1994).
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"2. LONG-RANGE CORRELATIONS IN BOLTZMANN-LANGEVIN MODEL

The BL model provides a useful basis for studying processes involving large density

fluctuations such as phase-transitions and nuclear multifragmentations. It is also interesting to

investigate the evolution of the average phase-space density on the basis of the BL model. As

long as the density fluctuations remain small, the average description of the BL model is

equivalent to the one provided by the BUU model. However, when the density fluctuations

become large, as it happens for example near the region of instabilities, as a result of non-linear

evolution of the fluctuations, even the average description of the BL model can be very different

from the one described by the BUU model.

We consider the quantal version of the BL model for the fluctuating s.p. density /_t)

matrix,

where h(/_) is the mean-field Hamiltonian, K(_3) is the binary collision term and 5K the fluctuating

collision term which is characterized by a correlation function similar to the semi-classical fol"rnof

eq. (1.2). A transport equation for the average s.p. density p(t)= (_t)) is obtained by statistical

averaging of the BL eq. (2.1),

ap+ i[h(p),p] -- K(p)+ Kc(P) . (2.2)

Here, K c (p) denotes an additional collision term arising from the long-range correlations induced

by collective density fluctuations [5,6],

Kc(p)= -i([&h,6p]) (2.3)



with tEh=/1(/:3)- h(p) and 6p =/$-p are deviations of the mean-field and the s.p. density from

their averages, respectively. The BUU model corresponds to the semi-classical limit of eq. (2.2),

when the density fluctuations are small so that the collision term Ke(p) can be neglected. In low-

energy nuclear processes Kc(P) describes a surface dissipation mechanism, which dominates the

damping of collective motion [7]. Also, the magnitude of Kc(P) becomes larger as the system

moves toward the region of instabilities due to the growing of density fluctuations. Hence, it can

strongly modify the average evaluation of the s.p. density near the regions of instabilities, where

the effects of the BUU collision term become small. It is, therefore, important to derive an

explicit expression for K c(p), which eventually may be incorporated into numerical simulations.

For small amplitude density fluctuations, it is possible to derive an explicit expression for

Kc(p) by employing the linearized BL equation around the average. For simplicity, we limit our

treatment here to small-amplitude, long-wavelength density fluctuations arounda spatially

uniform average density. In this case, the average density is diagonal in the momentum

representation (PlgqP') = 6(p - p') fp(t), with fp(t) as the average occupation factor, and eq.

(2.2) becomes a transport equation for the average occupation factors,

-_f(,) = X(f)+ Xc(f) (2.4)

where K (f)is a binary collision term of the BUU form, and Kc(Y)is given by

Kc(f)=_[ dp' M(p,p')[fp-f¢] (2.5)_(2_z)3

Here the transition rate M(p, p') is determined in terms of the density correlation function, which

can be calculated using the linearized BL eq. (2.1). For a weak collisional damping, we find



0 2 nk2 7t[6(t.o,- ¢0)+ 6(C0,+tO)] (2.6)m--U.i

with k = p- p' and co= ep - e¢. Here, n denotes the average density and the frequencies of the

collective vibrations are found from the dispersion relation, 1+ _ U_, z(k, cok) = O, with 7,.as the

free response function. The quantity Nk can be regarded as the phonon occupation factor, and it

goes over the expected result at high temperature T, N, _ 2F/a_, [8].

A paper on this topic has been submitted to Z. Phys. A (1994) for publication and another
one is in preparation in collaboration with Y. B. Ivanov.

3. A BOHR-MOTTELSON MODEL OF NUCLEI AT FINITE TEMPERATURE

(with D.Boilley, Y. Abe and E. Suraud)

The BL approach can be applied to study the gross properties of nuclear collective motion

at low energies, including inelastic collisions and induced fission. In particular, it can be used to

deduce collective transport models and calculate transport coefficients associated with collective

variables. In a previous work, considering a particular situation in which the collective motion is

described by a single collective variable, we derived a transport equation within a fluid dynamical

treatment by retaining only the two-body dissipation mechanism [9,10]. Here, we generalize this

treatment for N collective variables, however, still keeping only the two-body dissipation

mechanism.

We consider a large amplitude collective motion characterized by N collective variables,

q-(q_,q2,..qu). In the spirit of ref [11], we study the collective motion in a diabatic

approximation and assume that the collective dynamics is characterized by a set of N linearly

independent, irrotational velocity fields,

u(r,t) = _.,(Ij(t) V#jtr). (3.1)



Furthermore, we assume that the density is determined in a quasi-static approximation

p(r,t) = P0[r,q(t)], and it is not affected by the relaxation process. As a result, the velocity fields

are related to the density variations by scaling conditions in each independent direction. We can

deduce equations of motion for the collective variables, by multiplying eq. (1.1) with p. V_, and

by integrating over the phase-space. We obtain,

(3.2)

Here, M_, is the irrotational inertial tensor and E denotes the mecha_fical energy associated with

the collective motion,

1

E(q, ¢i) = _ Y-_q,,qjMjj, + V(q) (3.3)

in which V(q) may be identified with the liquid-drop potential energy. The coherent coupling

between the intrinsic degrees of freedom and the collective motion induced by the velocity fields

gives rise to an additional dynamical force, Fj = Cj +Q j, which has a part Cj due to the

compressibility and another part QJ arising from the distortions of the Fermi surface of the local

momentum distribution. The dynamical force due to the deformation of the Fermi surface can be

calculated explicitly with the help o the linearized BL eq. (1.1). This yields a Langevin equation

+ qj, = -' + 6Ka (3.4)

where F_, and Irj_, denote the stiffness and the relaxation matrices, respectively, and the

correlation function of the random force Qj is given by

(6Kjtt)6Kj,(t')) = 2Djj,6(t- t'). (3.5)



Here the diffusion tensor D u, can be expressed in terms of the temperature and the relaxation

matrix 'r_,,. The Langevin eq. (3.4) describes a relaxation process. Due to the coherent coupling

between s.p. and collective motion, the collective kinetic energy is initially stored as a dynamical

potential energy and subsequently it is dissipated into incoherent excitations by two-body

collisions. As a result, the dynamical force Qj appears as a retarded friction on the collective

variables.

A paper on this topic has been submitted to Z. Phys. A (1994) for publication.
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