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Abs t r ac t 

A direct variational method based on a energy principle is applied 
to obtain approximate magnetohydrodynamic equilibria for tokamak 
plasmas. The geometry of the nested magnetic flux surfaces is speci
fied by a model that includes displacement, elongation and triangular
ity effects. The radial dependence in flux coordinates is described by 
a set of consistent trial functions which allows analytical calculation 
of the flux-surface averaged internal energy density of the plasma. 
Approximate solutions of the variational problem are obtained for 
arbitrary aspect-ratio tokamaks using a one-parameter optimization 
procedure. 
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1 Introduction 
The magnetohydrodynamic (MHD) equilibrium of an axisymmetric toroidal 
plasma can be described by variational principles, either in the energy form 
[1] or in the Lagrangian form [2]. Usually these variational problems are not 
solved directly, but by reducing the problem to one involving a quasilinear 
elliptic partial differential equation, the Grad-Schluter-Shafranov equation 
[3] [4] [5], or a system of coupled, nonlinear, ordinary differential equations 
as in the function parametrization method [6] or in the variational moment 
method [7]. These differential equations can be solved analytically only in a 
small neighborhood of the magnetic axis, i.e., using the small toroidicity ex
pansion, or for some special geometries, or. in general, by numerical methods. 
However, to find an approximate solution over the plasma cross-section, with 
prescribed boundary conditions on the plasma edge, it can be advantageous 
to use direct variational methods. 

The direct method reported here uses simple analytical expressions for the 
description of the flux surface geometry which are valid for arbitrary aspect-
ratio. The approximate solutions generated by the method allow straight
forward calculation of all the relevant equilibrium parameters and profiles. 
These solutions should be suitable for transport, current drive and stability 
studies. The accuracy of the solutions can be improved by a sequence of 
trial functions of increasing complexity and with increasing number of free 
parameters. An attractive characteristic of the method is the possibility of 
obtaining fast approximate equilibrium solutions with modest computational 
resources. 

In section 2 the variational problem is formulated in a manner suitable for 
direct methods of solution. A consistent set of trial functions is constructed in 
section 3 starting from a Taylor series expansion near the magnetic axis. The 
expressions derived there correspond to a truncated Fourier series expansion 
for the inverse mapping which includes displacement, elongation and triangu
larity effects (the triangularity approximation). In section 4 the flux-surface 
averaged coefficients in the equilibrium equation are evaluated in terms of 
the trial functions. Finally, using a one-parameter optimization procedure 
approximate solutions for the equilibrium of two different tokamak config
urations are presented in section 5, with a brief discussion about possible 
extensions of the method. 
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2 Variational Principle 
Consider the functional 

Q(a) = / / / ^ £ ( $ P , V $ P , / l c ) 
V{a) 

where a denotes the plasma boundary, $p is the poloidal flux in an ax-
isymmetric toroidal plasma equilibrium, ( is the toroidal symmetry angle 
and h{ = d r /<?£ is the distance to the symmetry axis. The Lagrangian 
density is defined by 

r _ B P B\ 
2fi0 2fc0 

where p($p) is the plasma pressure and 

BP = |V$p|/(27r/> c), 
BT = fi0I{^p)/{2Thc) 

are, respectively, the poloidal and the toroidal components of the induction. 
Here I($p) is the total poloidal current between the symmetry axis and a 
given magnetic surface. For a fixed boundary condition 5$p(a) = 0, the 
extremum of Q(a) is reached for that function $p which is a solution of the 
Grad-Schluter-Shafranov equation [6] 

A 2 $ P = 2irnohcjT, 

where 
<•> , dV Vol dl 

JT = —£Trli{ ' d$P 2irh{ d$p 
is the toroidal component of the current density. 

In flux coordinates (/?, 0, £) the functional becomes 

Q(a)= fadp{jC){^P,d^p/dp,p), 
Jo 

where 
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is the flux-surface averaged Lagrangian density and the coefficients 

V(p) = 2*]]s MMO, 

iTi J J ST iiQ 

give, respectively, the volume enclosed by a magnetic surface, the inductance 
of the toroidal solenoid which coincides with a given flux surface, and the 
inverse kernel to calculate the self-inductance of the plasma loop [8]. 

Let 3>p denote a generalized coordinate so that the toroidal plasma cur
rent through the poloidal cross-section ST{P) of a magnetic flux surface, 

IT(P) = K{p)d$p/dp, 

represents the generalized momentum. Then, the total energy 

"̂  - ///Sr (S + S + p ) = 1° d p (w> ($"h'p) 

V(a) K ' 
is given in terms of the flux-surface averaged Hamiltonian density 

( ' 2K(p) 2 dp R P > dp 
Now, using the canonical system of Euler equations for the functional Q (p, 
$P, IT and (H) are the canonical variables), it is easy to show that W(a) is 
stationary under the transformation of the topological radius 

P~=P + €, 

where the virtual displacement £ obeys the boundary conditions 

m = £(«) = o. 
Integrating the second term in the expression for (7i) by parts, one can 

separate the contribution of the magnetostatic energy due to the external 
induction BT,O, 

WT,0(a) = JJJd^^=1-L(a)P(a). 
V(a) ^° 
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This contribution of the vacuum field does not involve the plasma itself and 
can be omitted in the course of the variation for a fixed boundary problem. 
Hence one can define the internal energy of the plasma 

U(a) = WP(a) + WT(a) + Wth(a), 

where 

are, respectively, the internal magnetostatic energy stored in the plasma 
loop, the internal magnetostatic energy stored in the plasma solenoid and the 
thermal energy of the plasma. Using the equilibrium equation (flux-surface 
averaged Grad-Schluter-Shafranov equation) 

d$P d ( d$A _ _dL_ dl_ _ dV^dp 
dp dp { W dp J ~ dp ^P'dp dp dp 

the total poloidal current I(p) is eliminated in terms of the toroidal plasma 
current IT(P)' 

W (a\ - r rln M2L (Ili^^l + ^ l l ) 
wT(a) - JQ ap d L j d p y R ^ ^ -f- ^ ^j . 

The variational problem consists in finding stationary values of the in
ternal energy 17(a), under virtual displacements, for given profiles Ir{p), 
p(p) and fixed values of the total toroidal plasma current 7 j ( a ) a n d plasma 
pressure at the magnetic axis p(0). It remains to evaluate the flux-surface av
eraged coefficients V(p), L(p) and K(p) in the equilibrium equation in terms 
of the plasma geometry. For completeness, the following integral relations for 
the toroidal magnetic flux $T(/>) ' t n e safety factor q(p), the poloidal plasma 
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current Ip(a) and the total poloidal current I{p) are presented: 

kT/dp I(p) dL 

UP) = \a)+ fadp' 
J P 

2 flT{p')dIT dV_d£ 
dL/dp' \K{p') dp' lpdp', 

1/2 

where 
/(a) = 2i?R0{a)B0/p0 

and B0 is the external magnetic flux density at the geometric center Ro(a) 
of the plasma cross-section. On the magnetic axis one has 

7(0) = 2TrRmBrn/p0 

where Rm is the distance to the axis of symmetry and Bm gives the induction 
on the magnetic axis. 

Finally, using a normalization appropriate for the low toroidicity limit 
p —y 0, one defines the internal inductance £,-. the current diamagnetism p,i 
and the current beta /?/ in terms of the energy content of the plasma: 

ii = Wp{a)l{poRmPT{a)), 
IH = 4WT(a)/(p0RmI${a)), 
fa = W'tkW/inoRnlKa)), 

where the total toroidal plasma current is given by 

IT(a) = — (jBPdEd) . 

The internal self-inductance of the plasma loop is 

-Ma) = ~2~C'-
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3 Trial Functions 
A set of consistent trial functions which describes the plasma geometry can be 
obtained from a Taylor series expansion of the poloidal flux near the magnetic 
axis. For an axisymmetric and up-down symmetric MHD equilibrium, a third 
order expansion in cylindrical coordinates gives 

where ip = <&p/<$>p(a) is the normalized poloidal flux function and ( i ^ O ) 
corresponds to the position of the magnetic axis. Consistently with this ap
proximation one represents the transformation to flux coordinates (R, Z) —> 
(p, 0) by the truncated Fourier series expansions [9] 

R{p.d) = R0(p)-^^- + pcos0 + ^^-cos29, 

Z(p,0) S PE(p) (sin0 - ? M s i n 0 0 J , 

where Ro(p) represents the geometric centers of the flux surfaces, T(p) is 
the triangularity coefficient and E(p) is the elongation coefficient. On the 
magnetic axis one has i?o(0) = Rm and E(0) = Em. The small toroidicity 
expansion gives: 

Ro(p) = Rm + pR'0(0)+p2R'^0)/2 + O[p]3, 
E(p) * Em + pE'(0) + O[p)\ 
T{p) * T(0) + pT'(0) + O[p}2. 

The corresponding truncated Fourier series expansions become: 

R(p,6) £ Rm+p(R^(o)-lM + cos0 + lip.cos2e\ 

4 ^ ( 0 ) - m + m c o s 2 , j + O W 3 , 
Z(p,0) £ pEm (sin9 - ^p-sin20 J 

+p2 (E'(0)sm9~ Em^^-sm20 - £'(O)^sin20 ] +0[pf . 
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Furthermore, the small toroidicity expansion of ?/>(/>) to third order is 

Substituting the Fourier series expansions for R(p. 9) and Z(p, 6) in the Tay
lor series expansion for ip(R, Z) one obtains the consistency relations: 

R'o(0) = 0, 
£2^,(0,2) = ^{2.0) s 

T(0) = 0, 
B»{0) = _^(3.o)/ (3^,(2,0)j , 
E'(0) = 0. 
7"(0) = ( 3 £ ^ { 1 , 2 ) - ^ ( 3 , 0 ) ) / (6^ ( 2 > 0 ) ) • 

A complete power series solution can be found by substituting the expan
sions for R, Z and ip in the Grad-Schluter-Shafranov equation. One finds, 
firstly, that p(p) and I(p) must be functions of p2, i.e., must have zero odd 
derivatives on the magnetic axis for the assumed symmetry. Secondly, that 
the coefficient ip**2'0) can be eliminated in order to cancel the leading order 
term of the equation. The expression for xp{p) immediately yields 

, ( ) ^ Em Hl§J(0)J»(0) - ^p0Rlp"(0)}1/2 2 , 0 r 14 
2 ( ^ + 1 ) 1 / 2 

Next, the coefficient ^( 3 ,°) is calculated in order to cancel the remaining 
term of the Grad-Schliiter-Shafranov equation and the coefficient tp(1'2) is 
evaluated in terms of the triangularity T{a) at the plasma edge. Finally, 
Rm is evaluated in terms of Ro(a), the geometric center of the plasma cross-
section, and Em in terms of the elongation E(a) at the plasma edge (assuming 
always the validity of the small toroidicity approximation). 

A different approach, that will be pursued in this paper, is to consider 
the expansions of the Fourier amplitudes as trial functions in a variational 
calculation valid for arbitrary aspect-ratio. Extending the expansions of the 
Fourier amplitudes up to the plasma edge one obtains the following trial 
functions in the triangularity approximation: 

Bo(p) = Rm-[Rm-Ro(a))(p/a)2, 
E{p) SS Em^E(a), 
T(p) = T(a)(p/a). 
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In this context the truncated Fourier expansions R(p,9), Z(p,8) for the in
verse mapping are taken as parametric equations for the self-similar flux 
surfaces. One can immediately write the expressions for the partial deriva
tives: 

dR/dp £ R'0 + cos9-Tsm29, 
dZ/dp ^ Em{\ -Tcos9)sin9, 
dR/dd = -/>(1 + Tcos0)sin0, 
dZ/de ^ PEm {cos 9 + T/2-T cos2 9). 

Note that the coefficients of triangularity T(a) and of elongation E(a) at 
the plasma edge are related to the geometric triangularity 6(a) and to the 
geometric elongation /c(a) by 

T(a) = | * (a ) - 4 V ^ 1 + lp(a) 

x sin 
1 / y/% [135 -1682(a)} 8(a) 
— arctan 

E(a) = n(a)-

3 \27^96 - l l5 2 (a) + 32£ 4(a) / 

4 2T(a) 

3 + y/l + 2T 2(a) U^Ji + T*(a) - 2 + 2T 2(a) 

The inverse relations for arbitrary radius p are: 

3 ( , / l + 2T*{p) - l ) + I » 
* W = 4 T W ' 

*(/>) = E(P)—i-j J ^ . 

For small T(/>), clearly, $(/t>) £ T(/J) and n(p) £ £(/>). 

4 Flux-surface Averaged Coefficients 
The coefficients V(p), L(p) and K(p) can be evaluated in a straightforward 
manner using the trial functions derived in the previous section. It is useful, 
in the first place, to evaluate the area of the poloidal cross-section (the in
tegrations carried out here are exact; the approximation corresponds to the 
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use of trial functions) 

ST(P) = f Jo 
2" ' R % ) M s " 2 £ » (> - T] 

The volume enclosed by a magnetic surface is 

V(p) = 7T f 
JO 

277 '#M) d e s 2, (R0 - £ ) ST. 

Introducing the local aspect-ratio 

A(p) = R0(p)/p 

the relevant metric coefficients in the transformation (R, Z) —* (p, 9) to curvi
linear coordinates are given by 

/ T T \ 
/i c = R = p{A-— + cos6 + —cos29\, 
L 2 (8R\2 fdZ' 
* = (Wj + [-6$. l + ^ ^ - + (El + 2)Tcos9 

+ (£l-l)(l-T*)cos*9-2(El + l)Tcos:ie + (£i-l)r2cos<9}. 

The Jacobian yfg can be obtained from 

= pE, 

dR8Z__8R.dZ_ 
dp 89 89 dp 

RoT 
1 + ^f ~ Y + (*o ~ | ) (cos9-Tcos*9) 

Since ^/g/h^ is real and positive one verifies that the coefficient of tri
angularity is restricted to the range —2 < T(p) < 2 and that the rate of 
increase of the Shafranov shift R'0(p) must satisfy the conditions: 

- 1 < R'0 < 
(7 - 4T 2) T 
2(1 + 2T2) 

- 1 < R'0 < 1 
(7 - 4T 2) T 

for - 2 < T < - 1 

2(1+2T») < B * < 1 

for 

for i < T < 2. 
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Hence one may write conditions for maximum positive Shafranov shift and 
plasma cross-sections of positive triangularity as follows: 

^ - ^ < I for 0 < T ( a ) < I , 

Rm - Ro(a) I [7 - 4r2"(a)] T{a) 1 j l 
a < 4 [ l + 2 ^ ( « ) ] f ° r 2 < T ( a ) < T -

Furthermore, since /i^ is also a real positive quantity and A > 1. the triangu
larity coefficient must satisfy the constraint (the plasma edge is tangent to 
the symmetry axis at the upper limit of this inequality) 

T < A + VA2 - 1. 

Thus one may write in general 

- 2 < T < min [2, A + VA2 - l] . 

If A > 5/4 and T = 2 the plasma cross-section described by the parametric 
equations in the triangularity approximation presents three cusps. However, 
if 0 < T < 1 the cross-section is always D-shaped, which is the configuration 
of interest. 

Now, using partial fractions decomposition, the flux-surface integral for 
the inductance coefficient L(p) becomes 

6 + 2A (2A - T - 4/T) + 2 (5A - T - 4/T) cos 9' 
2A - T + 2cos6 + Tcos26 

which results in the final form 

d6 

L(P)L^T+1_2A 4 - ( 5 ^ - 3 V ^ n ) T + ^ 
fiopEm 2 T T^l-T(A-y/A?^l) 

In the limit T —»• 0, that is, for a plasma of elliptical cross-section, one obtains 
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Similarly, the inverse kernel K{p) of .the internal self-inductance is given 
by the integral 

K{P) K(A,Em,T,R'0) = -±- f2" 
Air fio Jo 

[ 4 ( ^ - 1 ) , 1_ 
TTfX0E„ 

4 -
r 
T2 

de 

h2gd9 

Ci + (A + cos 9) C2 

-2R'0 + T D(2A-T + 2cos9 + Tcos29) 
C3 + [2 - R'0T + (2R'0 - T) cos 9) C4 

-2R'0 + T D [2 + R'QT - T2 + {2R'0 - T) (cos 9 - T cos2 9)] 

where 

d = -48[l + (E2

m-l)A2}R'0 

+8[3(3^ + l)-(5^+3)A 2 + 3 (^ + 4)A^-4(^ + 3)A3^]r 
+4 [4 {E2

m + 3) A 3 - (E2

m + 12) A + 6(E2

m- 2) R'Q + 12A2R'0] T2 

+2 [4 (2E2

m - 3) A2 - 2 (7E2

m - 6) + 3E2

mAR'Q] T3 - E2

m (5A + R'Q) T\ 
-lQ(9E2

m-l)(l-AR'0) 
+8 [3 (E2

m -1)A~ (18EI + 1 ) ^ + 4 (ZE2

m + 1) A2R'0] T 
+4 [21E2

m + 4 - 4 (3££ + 1) A 2 - 12£* AR&] T2 

+2 [4A + (3E2

m - 4) Ro] T3 + SE2

mT\ 
-2±(E2

m-l + R>2)R>0 

- 4 [oE2

m + 3 + 4 (E2

m + 3) AR'0 - 3 ( 1 + AAR'Q) R'2} T 
+2[4(E 2

m + 3) A + (UEl + 12)R'0 - 12 (A + R'0)R'2)T2 

+ (5EI - 12 + 4E2

mAR'Q + 1 2 ^ 2 ) T 3 - 2££ (A + 2R'0) T\ 
-32 (1 - AR'0) R'0 + 4 (3E2

m + 5 - 5 i # ) T - 8 (A - R'0) T2 - 3 ^ T 3 , 
- 24 (1 - AR'0) RQ + 8 [2 - Ai% - (3 - 2A 2) i%2] T 
- 2 [A - (13 - 8A2) RQ + 4A.Ro2] T2 - (9 - 4A 2 - 4Ai% - R'Q

2) T3. 

Co = 

C3 = 

C 4 

D 

Integration over the poloidal angle 9 gives 

fi0EmK(p) = 2 ( f ™. Jl + d + Ciy/A2^! 
R'0 + T/2 w^A2_iJi_T(^A_ y/A^V) 

(1 - T 2 /4) [C3 + 2 C 4 V / ( l - i ^ 2 ) ( l - r 2 / 4 ) 

x 

I 1/2 
(- i% + r /2 ) ^ ( l - i ^ 2 ) ( l - T 2 / 4 ) 

- ^ + r / 2 
_- i% (1 - T 2 ) - 3T/2 + 27^(1 - R%) (1 - T 2/4)_ 

12 
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One verifies that L(p) and K(p) are real if the previous conditions involv
ing A, T and R'0 are satisfied. Taking the limit T —> 0 yields for an elliptical 
plasma cross-section 

fioEmK(p) 
x^o 1 - AR'0 

l + (El- 1) A2

 + -R'0 + (El - 1) I (-R'0) 

JA^T Jl-R'o2 

E2 - 1 (E2 + 1 
J-Jm x I J-,m > *• 
(-R'0) p-° 

Using the limiting values of L(p) and K(p) the value of the safety factor on 
the magnetic axis becomes 

m _ ( E l + l)Bmi.mfTEmP

2\ (El + l)Bm 

lioEmRm P-Q\IT{P)J p-oEm RmhW 

The derivatives dV/dp and dL/dp can be calculated directly. Alterna
tively, one may resort to integrations according to the definitions 

dV_ _ [2* ( 
dp Jo \ 

dRdZ dRdZ\ J n 

dp Jo \ dp 86 d9 dp J 
dL 
dp 
dL _ po_ /**• l_ (dRdZ_ _ dRdZ\ 

2TTJ0 R \ d P 86 dO dp) ' 

Finally, one may point out that the coefficients in the flux-surface aver
aged equilibrium equation can be calculated analytically for trial functions of 
arbitrary dependence on the topological radius and for an arbitrary number 
of terms in the Fourier series expansions R(p, 9) and Z(p, 0), as will be shown 
in a future paper. This effectively reduces the solution of the variational prob
lem, either by the direct method described here or by the moment method 
[7], to a one-dimensional problem. The discussion in the present paper is 
restricted to a particularly simple model that leads to explicit expressions 
for the equilibrium coefficients in terms of algebraic functions. 

5 Examples and Discussion 
For the geometry under consideration the two-dimensional fixed boundary 
equilibrium problem has been reduced, in accordance to the Ritz procedure, 
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to the optimization of a single parameter.which is the position Rm of the mag
netic axis. The radial integration in the functional U(a) has to be performed 
numerically. It depends on the profiles specified for the plasma pressure p(p) 
and the toroidal current IT(P) which are here assumed of the form 

P M = p(0){l-(f,/af}°*, 

T(P) = ' * ) (£)' (> + i ) -
aj 

The model described in this paper was implemented using the Mathemat-
ica package [10]. The search for stationary points of the internal energy U(a) 
as a function of Rm can be easily carried out using the numerical minimiza
tion functions provided by Mathematica. In order to illustrate the method, 
the results of two different tokamak configurations are presented: (1) an 
equilibrium solution for the small-aspect-ratio NSTX tokamak and (2) an 
equilibrium solution for the advanced TPX tokamak. The parameters for 
these two configurations are listed in table 1. In both cases approximately 
parabolic profiles are assumed with av = 2 and Q/ = 1/2. The peak pressure 
p(0) listed in table 1 corresponds to a value go = 1 of the safety factor on 
the magnetic axis for the small-aspect-ratio configuration. The standard-
aspect-ratio equilibrium represented by TPX corresponds to a beta value of 
approximately 6%. The plasma beta is the ratio between the thermal energy 
and the magnetostatic energy of the vacuum field in the plasma region 

0 = Wth(a) 
WT,Q{a) 

The toroidal beta and the average plasma pressure are defined by: 

Zp(a)/2 
0T,O = 

p{a) = 2Wth(a) 
3 V(a) ' 

Figure 1 shows the flux-surface contours for the NSTX equilibrium and 
figure 2 shows the flux-surface averaged toroidal plasma current density 
jr{p) and safety factor q(p) profiles. The poloidal and toroidal components 

14 



NSTX TPX 
Major radius Ro(a) [m] 0.80 2.25 
Minor radius a [m] 0.55 0.50 
Elongation /c(a) 1.6 1.7 
Triangularity 6(a) 0.4 0.4 
External toroidal induction B0 [T] 0.5 4.0 
Toroidal plasma current IT{O) [MA] 0.9 2.0 
Pressure on the magnetic axis p(0) [MPa] 0.010 1.2 
Internal inductance £,• 0.54 0.65 
Current diamagnetism \ii 0.51 -1.58 
Current beta /?/ 0.11 2.52 
Plasma beta /3 0.028 0.062 
Toroidal beta 0T,O 0.038 0.065 
Safety factor on the magnetic axis q(0) 1.00 1.06 
Safety factor at the plasma edge q(a) 5.5 2.7 

Table 1: Equilibrium parameters of the NSTX and TPX equilibria 

jp(R,0)i JT(R,0) of the plasma current density, respectively, and Bp(R,0), 
BT(R,0) of the induction on the horizontal midplane (Z = 0), are shown in 
figure 3. The same sequence of contours and profiles are shown in figures 
4, 5 and 6 for the TPX equilibrium. One verifies the slightly paramagnetic 
nature of the small-aspect-ratio equilibrium near the pressure limit. 

The calculations where carried out using a PC type computer. The ra
dial integrations were performed using Gaussian quadrature with as few as 
three points to obtain two to three digits precision in the results. One ex
pects that the simple model presented is sufficiently accurate to represent the 
equilibrium of D-shaped tokamak plasmas. The set of trial functions can be 
improved by allowing radial variation of the elongation coefficient. However, 
this implies introducing quadrangularity effects in order to get a consistent 
expansion of the trial functions to fourth order near the magnetic axis, ac
cording to the procedure outlined in section 3. In this way, the list of free 
parameters to be optimized increases with the inclusion of the elongation Em 

on the magnetic axis. Finally, one may point out that the direct method can 
be easily applied to find equilibrium solutions consistent, for example, with 
experimentally measured profiles of the plasma pressure. 
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Figure 1: Magnetic flux surfaces contours for the NSTX small-aspect-ratio 
tokamak equilibrium. 
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Figure 2: Flux-surface averaged toroidal plasma current density and safety 
factor profiles for the NSTX equilibrium. 
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Figure 3: Poloidal and toroidal components of the plasma current density and 
induction on the horizontal midplane for the NSTX equilibrium. The point 
indicates the position of the magnetic axis and the curve in gray corresponds 
to the external induction. 
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Figure 4: Magnetic flux surfaces contours for the TPX advanced tokamak 
equilibrium. 
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Figure 5: Flux-surface averaged toroidal plasma current density and safety 
factor profiles for the TPX equilibrium. 
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Figure 6: Poloidal and toroidal components of the plasma current density and 
induction on the horizontal midplane for the TPX equilibrium. The point 
indicates the position of the magnetic axis and the curve in gray corresponds 
to the external induction. 
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