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Abstract 

At the Z° or a B factory, there are two tests for non-CKM-type leptonic CP 
violation in the x —• pv(ajv) decay channel by inclusion of p(aj) polarimetry. By 
CP invariance, the moduli ratio of, and. the phase difference between, the two 
helicity amplitudes for %~ -* p'v(afv) decay should equal those for x + —• 
p+v^ai^v) decay. Formulas are given for a L-handed v^, and also for an arbitrary 
mixture of VL and v R neutrino helicitie's. Statistical errors are listed for both the 
case that the t" momentum direction is not known, and when it is known via a 
silicon vertex detector. 
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Introduction 

After almost 30 years, the fundamental origin and significance of the observed 
CP and T violations in kaon decays is still a mystery. On the other hand, it is 
possible to use new collider data to rigorously search for CP and T violations in the 
tau lepton decays.1 While such an observation would be surprising, nevertheless 
we won't be sure of its absence unless we search for i t Spin-correlation effects 
plus decay polarimetry enable 2 , 3 such a search in e"e + -*Z°, or y* —»"C"x+. 

As shown in Ref. 1, by use of p polarirnetry, there are two tests for 
"non-CKM-type" leptonic CP violation in T-*pv decay. 

This is easily seen because by rotational invariance there are two independent 
helicity amplitudes for i" -» p" vx decay 

A(-l,-1/2) «IA(-1,-1/2)1 e ' * - \ A(0,-1/2) = IA(0,-1/2)1 e f < ) ) ° (1) 

assuming a L-handed v-j. The CP-conjugate decay t + ~* P + v T depends on 

B(l, 1/2) = IB(1,1/2)1 e £ * ! , B(0,1/2) = IB(0,1/2)1 u ' * ' (2) 

assuming a R-handed v T . By CP invariance B(Xp, \y) = A(-Xp-, -\y). The 

two tests are that the phase difference and moduli ratio for the two amplitudes for 
f —»• p" \ x decay must equal those for the CP-conjugate decay. That is 

p a = p b (1st test) (3) 

where P a a tf.x - fc», p b s <|)1

b-<|>0

b; and 

r a = r b (2nd test) (4) 

in terms of the moduli ratios 

r e IA (-1,-1/2)1 = IB (1,1/2)1 
IA (0,-1/2)1 ' b ~ IB (0,1/2)1 w 

It is important to realize that any leptonic-CKM t-type phases will equally affect 
the A(-l, -1/2) and A(0, -1/2) amplitudes. Therefore, they will cancel out in p , 
and in r a. Hence, p„ = p b and r, = r b test for a non-CKM-type leptonic CP 
violation. 

In the standard lepton model (pure V-A and no CP violation), P a = Pb = 0 and 
the moduli ratio r a = r b « \ 2 nWmj = 0.613. These two tests, (3) and (4), should 
be compared with the classic CP test for partial width asymmetry of CP-conjugate 
reactions: 
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*r.£t (« 
where, e.g. r = T (x" -* p" vT) and T = r ( x + -*p + v . t ) . For x two-body decay 
modes, the denominator of (6) is known to (1 to 4)%, so (at best) we know Ap ~ 
(1 to 4)% whereas we find (see below) that the fractional uncertianty of the mo duli 
can be measured to the (8 rj/r,, ~ (0.1 to 1)% level from data, respectively, at y* 
energies (at the Z°). 

Contents of this Paper 

This conference contribution extends the analysis of Ref. 1 in three ways: 

(a) Ref. 1 considered the x —* pv decay mode. Here the two tests for 
non-CKM-type leptonic CP violation are extended to the x —• aj v mode. 

(b) Ref. 1 assumed a L-handed vx f ° r m e t ~* pv mode. Here formulas are 
given for a mixture of V-A and V+A couplings, and for both left-handed and 
right-handed neutrinos in r —»p" v (af v) decay. 

(c) Ref. 1 assumed that the x" momentum direction was only known 
kinematically up to two possible directions. However, by a silicon vertex detector, 
the x" momentum direction may be known at a B factory. Here we obtain and 
discuss the improvement in the statistical errors for the two tests for the x -*• pv 
mode when the x" momentum direction is measured. 

Formulas for x" —»p' v including both V±A, and both v helicities. 

Including both VL and VR helicities and using a "compact boldface 
formalism," we find the composite decay density matrix for x" —* p' v —* (it" Jt°) v 
is 

R 
(R++ e f* i X r + .> 

(7) 
^e-«* i X r . +

 R - -

The diagonal elements are 

R±± = n , [ l ± f 1 c o s e 1

T ] 

=F (1/7*2) sinO/ 1 sin 2 6, [cos($ 0 - P J I A(0,-l/2) II A(-l,-1/2)1 

- cos ($,+ P a

R ) IA (0,1/2) IIA(1,1/2)1] (8) 

and 
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«••- = (T.S 
= n a f a s ine 1 ' t 

+ (1/V2) sin 2 6, {[cos 9 ^ c o s f o - p . ) +1 sin (ft - PJ] I A(0,-1/2) II A(-l,-1/2)1 

- [cos 6 ^ cos (ft + p s

R ) + i sin (ft + p a

R )] I A(0,1/2)1 IA(1,1/2)1} (9) 

Note that the two observable phase differences are 

P. s 4\ - <f>o 

Pa* = • l - « R 

(10a) 

(10b) 

In Eqs. (8-9), 

f n. 

n„fa 

= cos 2 9 S (IA (0, -l/2)l2 ± IA (0, l/2)l2) 

± - i s in 2 6 a (IA (-1,-l/2)l2 ± IA(1,1/2)I2) (11) 

Similarly, for the conjugate process x + -» p + v -> (jt+ JI°) v , including both 

v R and v L helicities, 

R = 

^e-*4*r. + R-. 
(12) 

where 

R±t = nb(,l*tbcose2

x) 

± (1/7*2) sin e 2 ' t sin 2 9 b [cos ( ft, + p b )l B(0,1/2)1 IB(1,1/2)1 

- cos ($i, - p b

L ) IB (0, -1/2)1 IB(-1, -1/2)1] (13) 
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f+. - (r. +)* 

= - n b f bsin92 T 

- (1/V2) sin 2 6 b {[cos 62

x cos (ft + P b ) +1 sin (ft + pt)] I B(0,1/2) II B(l, 1/2)1 

- [cos Q2

X cos (ft - p b

L ) + t sin (ft - p b

L )] I B(0, -1/2)1 IB(-1, -1/2)1} (14) 

In Eqs. (13-14), 

Pb = • ? - « 

PbL = ,bL 

(15a) 

(15b) 

and 

^n b f b 

= cos 2 8b (IB (0, l/2)l2 ± IB (0, -l/2)l2) 

± -1 sin2 6b (IB (1, l/2)l2 ± IB (-1.-1/2)!2) 

The full "Stage 2 Spin-Correlation" function (S2SC) is given by 

I 7 = I 7 ( R - * R , R — R) 

(16) 

(17) 

where the I7 function on the right-hand side is given in the next equation from 
Ref. 1. The simpler I7 of Ref. 1 assumed a L-handed v in T —»• p' v, and a 

R-handed v in %+ -*• p + v . 

I 7 = K ^ L E J , <j>; e t , ft; 6 2, fo) 

- h J h 2 ITCh, , h 2 )F R h i > h i R h 2 > h 2 

+ e*t> T(++) T*(--) r + . r + . + e ^ T(--) T*(++) r . + r . + 

where T ^ , X^ are the helicity amplitudes4 describing Z°, y*—*TT + . 

Similarly, the simpler 4 (5) variable S2SC functions are 

(18) 

4 

h.S = k 5 + (^R)2 14.5 ( P - P R ) + &D2 U.5 ( P - P L ) 

+ (XR XL) 2 14,5 (p - p R , p - p L ) (19) 

where the ratios of the R-handed to L-handed r —»• p' v moduli (and vice versa for 

T + - * p + v ) are 

, B IA(0t 1/2)1 ( 2 0 a ) 

* w IA(0,-1/2)1 

L IB(0,1/2)1 l ; 

In Eq. (19), the 4-variable S2SC of Ref. 1 is 

I (E p - , E p +; e 1 ( Gj) = IT(+-)I2 p + + p . . 

+ IT(-+)I2 p.. p + + + IT(++)I2 p + + P++ + IT(--)I2 p.. p.. (21) 

with the integrated, composite decay density matrix for t" —> p' v .̂—* (jC rc°) v x 

with t" helicity %i = hp. 

Phh = (1 + h cos ei T)' [cos2 tOj cos 2 e t + 1/2 sin 2 coj sin 2 9 J 

+ fr«2/2) ( l -hcose i*) [sin2co! cos 2 ?! + l /2( l + cos 2a»i)sin 2e' 1] 

+ h fra/fe cos p a sin ©, sin 2 cĉ  [cos2 fy -1/2 sin 2 9 J (22) 

For the CP conjugate process with i + with helicity X2 = h/2, 

Ph,h = P-h.-h (subscripts l - > 2 , a - * b ) (23) 

The additional p R and p~L needed for Eq. (19) are defined (and given) by 

P±± - T J 0 dft , A ( 0 > 1 / 2 ) | 1 

= P-h-h ( r . - » r t

R , P . - P . R ) (24) 

with p t

R given in Eq. (10b), and 
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R = IA(1,1/2)1 . 
a ~ IA (0,1/2)1 V ; 

Also 

- L • _ 1 f 2JI , jj(£) R ± ± 

= P-h-h (rb-*^ 1-, Pt-^Pb1-) (26) 

with P b

L of Eq. (15b) and 

r bL . IB (-1,-1/2) 
IB (0, -1/2)1 

For the 5-variable S2SC, the additional formulas are 

H ± * 2 j t Jo "<Pl | A ( 0 i l / 2 ) | 2 

= (p|±)* (28) 

and 

P?. = -P + . f r . -*r* ,p . - -P . R ) (29) 

P ± T - s Jo d ^ , B ( 0 ; 1 / 2 ) | i 

= (PT±)* (30) 

pjr. = -p + .(r b-*r b

L , Pb-*-PbL)- (3D 

SeeRef. 1 for the definitions of P+. and p"+.. 

Additional v R / v~L Tests for CP Violation 

There are two tests of "non-CKM" type leptonic CP violation if R-handed 

v (and L-handcd v) exist: 
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P. R = PbL (1st v R / v L test) 

r a

R = r b

L (2nd v R / v L test) 

where the phase differences are defined by Eqs. (10b, 15b) and the moduli ratios 
by Eqs. (25,27). 

In the case of both (VTA) couplings and possibly m v & 0, the i" —» p' v 
amplitudes for ^ = -1/2 are 

A(0,-l/2) = g L t ^ T 2 - ) V r ^ ^ + qp) -gR (^P_SP_) ̂  m, (Ey-qp) (32a) 

A(-l,-l/2) = g L V2m t (E v + q p) -gR V2m T(E v-q p) (32b) 

For Xv = 1/2 they are 

A(-l,l/2) = 0 

A(0,1/2) = -gL ( ^ J ^ - ) V m, (Ev - q p) -gR ( ^ ^ ) V m, (Ev + q p) (33a) 

A(l,l/2) = -gL V2m r (E v -q p ) -gR V2mT(E v + q p) . ( 3 3b) 

Note that g ^ respectively denote the chirality (V T A) of the T" -+ p" v coupling 
whereas %y = Tlfl denotes the handedness of the (massive) tau neutrino. 

Formulas for %' —^a^v including both V±A, and both v helicities. 

First, note that in kinematically describing the V —* VL{ V —* (7tf itf %+) 
mode, one can use the normal to the (icf n^ ih?) decay triangle in place of the TC" 
momentum direction of p" —»• Ttf T^0 of the f —» p" v decay mode. Then, the 
various S2SC functions given above still hold, Eqs. (17) and (19). 

Including both v L and v R helicities, we find composite decay density 
matrices for the V —* afj^Tif %" 7C3+)v decay sequence5 

R v = Sj + R + + S{ R" (34) 

where R* have the same form as Eq. (12) except the elements have "±" 
superscripts (see below). S ^ describe af -* ref nf nf. When the 3-body 
Dalitz plot is integrated over, only the Sj + term remains. In Eq, (34), the R + 

matrix elements are 
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R±± = {Eq. (8) except ( ^ ) -> ( - ^ ) } (3 5 a) 

4± - <r+f 
= {Eq. (9) except ( ± ) - • (-•]£•)> 

V r v V2> (35b) 

with 

/ n a "\ = s in 2 £ (IA(0,-1/2)I2± IA(0,1/2)I2) 

^ n. fa J ± (1 - - | sin2 Ga ) (1A (-1. -l/2)l2 ± 1A (1, 1/2)!2) (36) 

Similarly, the R' matrix elements are 

R ± ± = -»»»' (l^cose,"1) 

=F V2 sin G^ sin Ga [cos (ft - P.) IA (0, -1/2)1 IA (-1, -1/2)1 

+ cos (ft + P a

R ) IA (0,1/2)1 IA (1,1/2)1] (37a) 

with 

i f > cos 9, (IA (-1, - l /2)l 2

? IA (1, l/2)l2), (37b) 

UfO and 

r+" = (>T+)* 

= sinG^ cosGa (IA(-1,-1/2)I2 + IA(1,1/2)I2) 

+ V2 sin Ga {[cosO^ cos (ft-p a ) + tsin(ft-P,)] IA(0,-1/2)1 IA(-1,-1/2)1 

+ [cos G^ cos (ft + P a

R ) + t. sin (ft + Pa

R)] IA (0,1/2)1 IA (1,1/2)1} (38) 

For the conjugate decay sequence, t + —*• a^ v —» (n!+ K£ %') v, 

R 7 = V R + + S2" R- (39) 

The R + matrix elements (see Eq. (12)) are 

R±± - {Eq. (13) except ( ^ ) - ( - ^ ) } (40a) 

with 

= {Eq. (14) except ( ± ) - ( - i ) > ( 4 0 b ) 

f n b ^ = sin26b OB(0,1/2)I2± iB(0,-l/2)l2) 

± (1 - \ sin2 Gb) OB (1, l/2)l2 ± IB (-1, -1/2)!2) (41) ^ n b f b y 

The R" matrix elements are 

R±± = n b - (1 ±cos e ^ 

• =F V2 sin 6 / sin % [cos (ft + P b) IB (0,1/2)1 IB(1,1/2)1 

+ cos ( f t - P b

L ) IB (0,-1/2)1 IB (-1,-1/2)1} (42a) 

with 

/ n b - U cos 6b (IB (1, l/2)l2

 ? IB (-1, -l/2)l 2), (42b) 

r+T = ( O * 

= sin 6^ cosGb (IB(1, l/2)l2 + IB (-1,-l/2)l2) 

+ V2 sin Gb {[cos 6^ cos (ft + P b) + * sin (ft + P,,)] IB (0,1/2)1 IB (1,1/2)1 

+ [cos G^ cos (ft - PbL) + * sin (ft - p b

L)] IB (0, -1/2)1 IB (-1, -1/2)1} (43) 

Ideal Statistical Errors 

r -»p" v mode with L-handed v: 

Tables 1, 2 and 3 list the ideal statistical errors6 of Ref. 1 for the CP and 

TpS discrete symmetry tests. Here Tps is the approximate 
time-reversal-operation which holds only if possible frnal-state-interactions are 
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neglected. Such effects are indeed negligible in the usual V-A, m n = 0 lepton 

model. By T F S the decay amplitude (A or B above) is purely real. 

See conference contribution ICHEP-0099 for further discussion1,7 these 
statistical errors. 

C —*a'v mode with L-handed v: 

Tables 4, 5, 6 list the analogous ideal statistical errors for the CP and T F S 

discrete symmetry tests in the case of the x -* axv decay mode. 

Improvement from measurement of r momentum direction: 

As discussed above, by use of a silicon vertex detector it may be possible to 
uniquely determine the r momentum direction. Table 7 shows the improvement 
for the 2 tests for "non-CKM" type CP-violation in x -* pv decay. 

|OA 

Conclusions About Ideal Statistical Errors 

AttheZO, 10 7 Z° ' s are assumed, and at each y energy We assumed 10' T ' T+ 

pairs. Notice that in the measurement of the phase differences at 7* energies, versus at 
the Z°, there is not as much improvement as would be expected due to the increase in the 
number of events. This is because in using p-polarimetry (or aj-polarimetry ) a Wigner-
rotation is involved in going from the center of mass frame's p-observables (or a j -
obserables ) to the respective T rest frame's p-observables( or a i-observables). For 
instance, see Tables 3 and 6. 

r spin correlations are necessary to measure /? a at 7 energies; a t theZ 0 , without 
using spin-correlations there would be an extra suppression factor of < P r > = -0.13 8. 

Since the direction of the initial e" beam has been integrated out, there is no 
obvious source for a violation of Tps invariance for the S2SC processes considered here. 
For instance, unlike in K£j decays, since v T is only weakly interacting there is no "old 
physics" source for electromagnetic rescattering of the v7 and the p" ( or aj ) . 

The tables for the a | decay modes show approximately the same patterns as those 
for the p decay modes obtained earlier in Ref. 1 and shown here in the first three tables. 
However, the net sensitives differ—the sensitivity for the /? a = /3D test is about 10 times 
worse in the ai mode, but the normalized sensitivity is about the same for the r a = rj, 
test for both the p mode and for the aj mode. "Normalized sensitivity" refers to the value 
of the fractional error { a{ r a ) / r a }. 

For measurement of /? a at 7 energies, knowledge of the r momentum direction 
improves the sensitivity by about a factor of ( 1 fr/2 = 0.707) which is what would be 
expected by statistics. However, there is a small ( about 10 % ) improvement in the 
measurement of r a by measurement of the r momentum direction. 

In conclusion, at 7* energies one can perform the 1st test, 0 a = (3 D , to about 
the 0.5° level, and the 2nd test, r a = q,, to about the 0.1% level by the p decay mode. 
For the ai , the sensitivity for the 1st test is about 10 times worse, but is about the same 
for the 2nd test. 
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Table Captions 

Table 1: At E^,=Mz, ideal statistical errors for two tests for CP violation in x —* 

pv by the simpler S2SC function I(Ei, E2 9 l f §2), see Eq. (21), for the 

sequential decay Z°—*x'x* with x~ —*• p"v —* (it"jt°)v and 

x* -> p + v, Jt+ v , or t \t v x . We use 107 Z° events. 

Table 2: At £„„ = 10 GeV and 4 GeV respectively, ideal statistical errors for two 

tests for CP violation in x -* pv by the simpler S2SC function, Eq. (21), 

for the decay of an off-mass-shell photon y*—*x~x+ with x~—»p"v—* 

(jt"rc°)v, and x + -*p + v , 7t+ v , or P vt \ x . We use 107 -f-+x'x+ 

events. 

Table 3: Ideal statistical errors for CP/T violation tests based on the full S2SC 

function ofEq. (18) for the {p'p+} sequential decay mode. Note that 

p s p , - p b and p ' s p a + p b. 

Table 4: Ideal statistical errors for CP tests for r -* af v -* (K^ %£ jt0

+)v at Z° 

from the simpler I(E l t £261, 62). 

Table 5: Same as Table 4 except at E c m = 10 GeV and 4 GeV. 

Table 6: Ideal statistical errors for CP/T violation tests based on full S2SC for {af 

ai+} sequential decay mode. 

Table 7: Percentage improvement for tests for x —* pv mode (compare Table 3) 

when x~ direction is known, e.g. via silicon vertex detector. 



TABLE 1 

Ecm"* h Number ol Ideal statistical cxrors 
Mode 

h 
events. c W oOtf 

(P"P + 

20,302 0.0065 (12°) 2 

{p-K+ 

9,847 0.0091 (12°) 2 

{p-f + ) 29,074 0.0056 (15°) 2 

Sum of above 
modes 59,223 0.0039 0.6%] (10°) 2 

TABLE 2 

Number of 

events. 

E c m = 10GeV 
" 

E™ = 4 GeV Number of 

events. o W cCP.2) 
" ofc) o-CP.2) 

(PV) 605,127 .0012 (S.5°)5 

.0011 (8.8°) 2 

{p-K +) 293,527 .0017 (5.9°)2 .0016 (9.1 0 ) 2 

(p-n 866,658 .0010 (7.5 0) 2 

.0010 . (11.5 0) 2 

Sum of above 
modes 1,765,312 .0007 

[0.1%] 
(4.7°)2 

.0007 
[0.1%] 

C7.30)2 

TABLE 3 

.0007 
[0.1%] 

B 
Number of 

IP'P*) 
events 

Ideal Statistical Errors Number of 

IP'P*) 
events o(P ) c(P0 o(PJ 

M z 20,302 1.88c 3.15° 1.84° 

lOGeV 605, 127 0.43° 0.74° 0.42° 

4GcV 605,127 0.86° 1.13° 0.71° 

TABLE4 

Bcm-M z Number of 

events. 

Ideal statistical mors 
Mode 

Number of 

events. 0 ( 0 afjS.2) 

{af»i +) 2,718 0.019 (41°)* 

{»i"P+} 7,428 0.011 (220)1 

{afic*} 3,603 0.016 (24°)2 

{af/+} 10,638 0.009 (290)2 

Sum of above 
modes 24,387 0.0062 [0.6%] (18°)2 

TABLE 5 

Number of 

events. 

E O T 
«10 GeV Ecm = 4 GeV 

Mode 
Number of 

events. ofc) ^(P.2) 0 ( 0 °(P.2) 

Ufa t ) 81,000 .0035 (21 0) 2 .0035 (26 0 ) 2 

{afP+> 221,400 .0021 (10°)2 .0021 (15°) 2 

{af>f} 107,388 .0030 (11°)2 .0030 (15°) 2 

U f / + } 317,070 .0018 (14°)2 .0018- (19°) 2 

Sum of above 
modes 726,858 .0011 

[0.1%] 
(5°)2 .0012 

[0.1%] 
(12°) 2 

TABLE 6 

Number of 
(af a 2

+ ) 
events 

Ideal Statistical Errors 
Ecm 

Number of 
(af a 2

+ ) 
events 

o(P) a(P0 o(P.) 

M z 2,718 20° 32° 17° 

lOGeV 81,000 4° 6° 5° 

4 0eV 81,000 8° 10° 8° 
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