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1. Introduction

The purpose of this work is an eulesyging of =il poor zeo of 3D iwfegrahle
lattice models. We say the model to be integrable if it possesses a family of
commuting transfer matrices. The existeuce of such family is eusured, for
example, by the construction of solutious of the tetrahedron equation, which
is a three dimensional generalization of the Yang - Baxter cquation [1
an example we cag mention the N - color trigonometric tmodel by Bazhianov
Baxter [6]. Although its integrability has been proved by i differeat wethed.
the Doltzmann weights of this model are the solutious of the tetrahedem
equation [7). This solution, as well as the first known Zanmlodehikav's ane
11,2) (which is a particular case of the Bugbanov-Baxuer model when X =
2) can be | ized ic functiows < li

in torms of trig cic pending un
tetrahedron angles, In our previous paper [§] we have coustructed an elliptic
two - color solution of a modified system of the tebrabedron equations, which
provides the commutativity of two - layer transfer-matrices. This s
in 2 sense is not “full” aud carresponds to the case of the so called ~static”
limit of tetrahedron cquations.




1o difference from Bazhanov - Baxter model, for which the solution of
tetrahedron equations coptains six angular variables (five of them are in-
dependent), the static solution of the modified tetrahedron equations from
[8] can be parametersized by three angle ~ Iike variables and one additional
pararueter {the modulus of elliptic functions).

Io this paper we generalize this elliptic solution to the case of an arbitrary
number N of spin values and obtain gue more parameter, on which weight
functions depend. This additional parameter is the same for all weights and
new solutions are still static. Boltzmann weights of the new models like
the weight functions of Bazhanov - Baxter model have the so called Body -
Ceatered - Cube (BCC) form, invented by Baxter in [9). This fact allows us
to use the technique of the Star - Square relations, developed in [7).

‘The paper is organized as follows. In Section 2 we recall main definitions
and notations, give the form of the Boltzmann weights and write out the
modified tetrahedron equations. In Section 3 we formulate conditions for the
BCC ansatz for weight functions to abey the modified tetrahedron equations.
In Section 4 a natural parameterization of the obtained solution is given in
termos of elliptic functions. In Section 5 we disc ymmetry properties
of weight functions of the model. At last, Appendix contains a detailed
consideration of N = 2 case and an explanation of the transition to the
weights of the mode] from paper [8].

2. Body-Centered-Cube (BCC) ansatz
for weight functions

Ta this section we recall some definitions from {7,10] and give the explicit
form of weight functions. We also write out modified tetrahedron equations,
which provide a cormutativity of two-layer transfer matrices {8].

Consider a simple cubic lattice £ consisting of two types of elementary
cuhes alternating in checkerboard order in all directions (see Fig. 1).



Fig. 1
At each site of £ place a spin variable taking its values in Zx, for any

integer N > 2 {clements of Zy are given by IV distinct numbers0.1,... . N =1
considered modulo N). To each “white” cube we assign a weight fnction

W (alefglbcd|h) (see Fig. 2).

= W(ale. f.glb.c.d|h)

Fig. 2
and to each “dashed” cube - a weight function W(alefglbcd|h). where as
usuala,. ..,k - spin variables placed in the vertices of each clemeutary cube.
Then the partition function of the model reads
Z= 5 I Wialefaibedih) TI Wialefglbedlh. (2.1
eI vl
Following [§] suppose that weight functions W’ and TF satisfy the following
equations:

b W{adlez, o1, calby, by, bald) (e1]by, a3, bufer. du o)
x Wi(bi|d, cq, e5laz, ba, Bales )" (dlba, ba. byles, ez, clar)



= g W (bier, o, Calaz, as, as)d) W' {1}z, a3, a4)d, 2, colns)
x W (adrz,d, cslaz, by, a5 )W (dlar. a3, azleq, cs, cslba), (2.2)

where W, W/, W”, W™ and W, W', W*, W™ are four independent pairs of
weight functions. Suppose that the dual variant of (2.2) is also valid {with
all W’s replaced by W's and vice versa). We call this pair of equations as
a system of modified tetrahedron equations. Nnte that if put W = W in
(2.2), we come Lo the standard version of ions (Eqs. (2.2)
of {3]). In the Bazhanov - Baxter model all weights entering in tetrahedron
equations are parameterized in terms of six angles #y,...,8s satisfying one
quadrilateral constraint. The explicit dependence on spectral parameters can
be exhibited as (W = W)

W~ W(0,01,01), W' — W(r — 0,01, - ),
WY s W (l5, 7 — Ba,m — 8g), W™ — W (65,05, 66). (23)

In the static Kmit three spectral parameters &;,62,83 in weight fuactions
W (61,2, 62), W(6),05,05) are constrained by relation 8, +8; +63 = x. Then
formulas (2.3} are transformed as follows:

W — W(6p,00,7 — 8y — Oa), W' — W (8 + 05,8, — 0y — 0y — 85),
W = W{l5, 00 + 03,7 — 0y — By — 5), W™ — W(fs, 0, m — 03 ~ 65) (2.4)

and the same for W weights. Note that in this rase the quadrilateral con-
straint between tetrahedron angles is satisfied automatically.

As it is shown in [8] the system of modified tetrahedron equations pro-
vides a commuting family of two-layer transfer-matiices. Let us construct a
horizontal transfer-matrix T(W, W) from alternating weights W and W as in
Fig. 1. Here we imply tbat ingoing indices of the transfer-matrix correspond
to the spins of the lower layer, outgoing indices ~ to the spins of the upper
one and the summation over the spins of the middle layer is performed. As
usual partition function (2.1} can be rewritten as

Z=Tr{T(W,W)}*, (2.5)

where 23/ is a numher of horizontal layers of the lattice and we imply periodic
boundary conditions. When equation (2.2) and its dual variant are satisfied,
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we have the following coramutativity relation:
T(W,W)T(W' W) = T(W' . W)T(W, W). (2.6)

Now let us specify the explicit form of weight functions. To make it,
deaoie
w=exp(2xi/N),  w'? = exp(ri/N). @70
Further, takiug r.y, 2 to be complex parameters constrained by the Fermat
cquation
Ny =2V (2.8)
and { to be an element of Zy, define
!

wz,y, o) = 1=]l ﬁ (29)
Iu addition, defiue the function with one more argument
wlz,y 2|k, 1) = wiz,y, 21k = DOQ), k1€ Zn, (2.10)
where
Q) =S, (2.11)

Let us mentian also twe formulas for w functions, which are useful for calcu-
lations:
w(z,y, 2l + ) = wiz, g, 2l hwizot, y, 2H), (212)

w(z,y, 2k, 1) = o fwlz w2y wzll, £). (213)

-8 and 2y,

Now introduce the set of homogeneous variables x;
T4, Isg, Tgr satisfying

N__N_ N N_ wW_.N N_ N N _N_ N__N

= -2,z =13 -z, ==z ~f, sg =15 —27. (214)

Using all these notations we define the weight function W(ajefg(bcd|h) as

w(zy, 713, 51|d, &t + o)w(we, T, Tala, g + 0)

w olbe dlr) =
{ale . oltc.dip) uszz,. w(zs, Tss, Sole, ¢ + o) w(zr/w, zer. T6|f, b + )
(215)



In fact, the Boltzmann weighta of form (2.15) generalize the weight fanc-
tions of the Bazhanov ~Baxter i »del [6,10]. Up to inessential gauge factars
the latter corresponds to the chaice

Iy=z), Tg=2 IT=5, TeTI (2.16)
Following paper (6] we will call formula {2.15) as a Body-Centered-Cube
(BCC) ausatz for weight functions.

3. Star-square relation and the proof of mod-
ified tetrahedron equations

Iu paper {7} hed jons for the Bazl ~ Baxter model with N
states were proved using the so called Star-Square and “inversion”™ relations.
We will follow the method of this paper for weight function (2.15).
First recall “inversion” relation for functions w(z,y, z|k,!):
w(z,y,zlk, 1) {1-2z/1)
vezw Wz ywzlk,m) 1- N[Ny
where I, m € Zy, z,y, z satisfy (2.8) and 8, is the Kronecker symhol on Zy.
To write down the Star-Square relation introduce a non-cyclic analeg of
w function, defined recurrently as follows:
wiaf) 1
w(zl~ 1)~ (1-zuf)’
where Z is the set of all integers, It is obvious that
w(z,y2ll) = (g)'w(z/zu), 1€ 2y, (33)
where index I, being considered modulo N, is interpreted as an element of
Zy. Then we have the following identity
{ wizy, 31, 21la + o)w(za, v, h|b+v)} -
o€z W(z3: b3, sl + o)o(zaya 2ld+ o) o
(zan/nim)* M/ zan) (2s/ys) (2e/w)°
F(a - bl

x w(wrstanzfazazyzjc+d—a - b (3.4)

4% 2 Bw(Ee— R T IN
W(Eld—a)w(n’:]c b)w(z‘:’h: ﬂ)w(:,qld b)

(31}

= Nomg

w(zlo) =1, iez, (3.2)




the Thos of
(3.4) is normalized to nuity at zera exteriog spans. aned the following constiamt
i imposed

where the lower index =07 after the cerly brackets indi

2]
We call relation (3.4) as the Star-Square one. Note that the separ:
in the r.is. of {3.4) are not single-valued functious ou Zy, while the wholv
expression is eyelic an the exterior spins v, be 4

The proof of (3.1). (5.4} e i [7] and we refer the interessed
10 this paper.

Now we tnru to relation {

Insty

). ' of weights W17 ¥ W el
us sulstitute inte (2.2) explivit formala (2.15) with correspaneding sets of

parameters:

WL WY WY Wy ) W) W ) WL )

WP T — Wiz, o, ) WL W 1 L

Let us multiply both sides of (2.2) by the folluwsiug product of - weights

i z"z,:'g’z. r’g' g, g+ bs) _wlE TG T
w{Zy fw T(3, 27 [eg, @) F Vw2, Saue

o (T T T il oo miy) wony, T, %r‘_::::‘% W

w3y Tyl (b, iyl T,

and sum over aj,eg, g, dp. by, by bt Nove that due to “ilversion” refatior
{3.1) we do not Jose any inforu

ion after sl transition from spins a by e
Lom;.

The functiony w in expression (3
relation (3.1) we can caleulate the suis over the spins ag, ez,
and those over by by, by, by i the rhus.
the snmmations aver the spins a’s, which come fror expression (2.15) for the
fnctions W's and TV's. Now let us cousider appheability conditions {3.5) of
Star-Square relation {3.4) for the sums uver @y, a9, a3, aq in the rhus. and over
b1, by, by, by iu the Lh.s. of the obtaiued cquation. We obtain eight conditions
on z's and ¥'s. Applying relatien (3.41) right times and calenlating the
aver d spin in the bhus. and rhs (the sofa structure of the suws wver o Las
the form of relation (3 1) and we demand that cocresponding variables r, y. 2

77 ave chosen iu such a way that using

agmthe s

of the obtained equation and cancel

IIRY
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entering in the arguments of functions w(z, y, z|k,{} are constrained in such
a way that relation (3.1) can be used), we come to the equation without any
summation. The Lh.s. and r.h.s. of this equation consist of the products of
ten w functions with the same spin structure and expressions like z7* coming
from relation (3.4). Let us impcse all necessary constraiuts on parameters
Zi, Zij, T; and Zy; to satisfy this equation. On obeying  these constraints
one can show that spin independent multipliers coming from rclations (3.1),
(34) coincide.

We also have to satisly the dual variant of (2.2). Hence, we must add
a dual set with = replaced by ¥ and vice versa to all obtained constraints
on parameters x and ¥ . We will not write out here all the-~ relations. A
detailed analysis shows that we have two solutions. The first one corresponds
to the choice

.8 (38)

and the same for ', z°, z”. This choice corresponds to the Bazhanov -
Baxter model, considered in [7].
But there is also another possibility. It will be convenient to fix a nor-
lization of all z in W functions as

=i, Ti3 = 13, ¥4 = Ty, sy = Te, Tor = T, 1 =

=1, =1 n=1, =1 (3.9)

for all sets z, 2/, ", z* and ¥, ¥, *, . Then all parameters ¥ can be
expressed in terms of z as:

i =1fzy, FTa=1l/m, Fy=1/2, Zs=1l/zs,
~1/12; -1/2 1!
Fy=w ‘“—,’;‘, T =u“’%ll-‘, Tsg = ,.,-“’5,661, 2 =w I (3.10)
Let u3 introduce the following uotations:
= DI - & - o — TERE
R et

N

eI, o= W%;‘%}%}, Ja=zs%6 (3.11)
and the same for the sets of ', z°, z”. Then all constraiuts on parameters
take the form
n=t, n=h H=H H=4 f=8 H=1,
hv=Jgs h=gy Gi=ip A= =i A= (312
s=d =8"=s", Tuzl =y




Relations (3.9-3.12) together with consistency relations {2.14) are sufficient
conditions for « ~ight functions (2.15} to satisfy modified tetrahedron equa-
tions (2.2) and their dual variant. In the next section we will obtain a natural
parameterization for relations {2.14), (3.11-3.12) in terms of clliptic functions.

4. Parameterization

Recall that consistency relations (2.14) connect N-th powers of z, and z;,.
Heace, it is convenient to consider N-th powers of {3.11-3.12) and introduce
new parameters

S=o, TPootfys, B

i=1,...3 (1

From (3.11-3.12) we see that parameter S is the same for all weights entering
in relation {2.2).

Pacameters 5, T;, Ji, i = 1,2,3 are defined by four independent variables
Iy, T3, 23, Ts. Therefore, therc are three additional constraints between these
values, After simple calculations we obtain

T - Ty (T} - TH(1 + ShELNT)
p=ghte g LTl Shh i) 12
*TRR-Th DT (STADmG: - T 2
and g
p=StT- (.3)

where we intrcduce a new parameter P.

Note that definitions (4.1) contain only the second powcrs of variables §,
T, Ji and in {4.2-4.3) we have chosen some signs in a convenient way. Using
(4.2) it is easy to ohtain that we can add the case i = 3 to relations (4.3).
The validity of formulas (4.2-4.3) can be checked by substitution of relations
(3.11), (4.1) and consistency conditions (2.14).

Introduce an elliptic curve

_S+2' -84+ 57Y)
e

Points (T;, Ji}, i = 1,2,3 helong to this curve. We can uniform it in terms of
elliptic functions (see, for example, [11]). Note that formulas (4.2) take the

P (44)

9



ot eddition theareras for ellgptic fauetions. Then we obtain

e iy — uy)
EACTN

P = <Y Feagpientypebaly), § = wesa¥{), (1.5,

Ty = swn,) ) = 3.

j=

Wikt st da are elliptie funetions of modulns m and

L

uy 4 My (4.6)

¥ and 2. When we

appears, Making an appropriate
s that (3.11-3.12) £ valid we obtain the following

hoa way we ean obitain the paraneterization for 7

oot o Ntk powers, a phise wubiguity

ot theae phis

faripmlas

L[y = ughaly)} Y
s

e = Mty = g eatadsulegsageg) )Y,

an(u sy = ud VY e sn{u)su(y = ugd) VN
T MR b oo

- iyt )
4.0
o BNy — )y — y 1‘/4'
AL S = u,)()(r,)ll(u )
) e Bl OUIG (Y — uy - ll;_)l/.\‘
I U260~ 86 (m 160 .
AT SINTI( (1 — ) LIV
= {3
= ‘{ O =y HONO HTagy } '
gl M OO ~ e IOy — 1y ‘/N |
= M e n\)()l.u, . (4.8)

and O

ters iy ~

rann elligtic functions (ser [11]). Suppose that
I

M nag <y 2, (4.9)

whoete Atis the consplete integral of the fiest kiud of the modnlus m. These
vodttwns guarntee that all values of the clliptic functions in (4.7-4.8) are

1.



non-negative, and we choase the positive values of all roots of N-th power in
formulas (4.7-4.8).

Now we can rewrite the Boltzmann weight as a function of four new
parameters: W(uj,uz|m,n) (we omit the dependence from spin variables).
It is on easy to check that dual weighta W can be ohtained by the shift of
parameter 7:

Wur, uglm, 1) = W(uy, uglm, g +iM'), (4.10)
where A’ is the complete integral of the first kind of the complementary
modulus m' = VT~ m?. Equations (3.12) relate the sets of new parameters
in different weights. Then we obtain

W= Wug,uy), W — Wluz+us,u),
W7 — W(ug,u +uz), W — W(us,u). (4.11)

Parameters m and 5 are the same for all weight functions and we omit them
in {4.11). Also note that we have chosen three independent parameters in
{4.11) 88 u;, uz and uy to ize the ion of our p izati
with static limit one (2.4).

5. Symmetry Properties

In this section we discuss symmetry properties of weight functions (2.15)
of the mode] with respect to the gronp G of transformations of a three-
dimenaional cube (see {10,12]).Recall briefly some definitions. Group & has
two generating elements p and 7. Any element a of G can be expressed as a
composition of these two elements, We define the action of elements r and p
on the et of apins {ale, /, g|b, ¢, d|h} as follows

{ale, f,glb, c, d}h} = {alf, e, glc, b, djh) (5.3)
and

plale, £, glb,c,d|k} = {glc, a,blf, hye, |d}. (5.2)
Further it will he ient to remove lizati ditions (3.9) and to

restore the hnmngeniity of the parameters z’s.

1



it is easy to sce that weight function {2.15) is invariant uuder the action
of clement r, if we make the following transformation of paruneters:

(za s, 5) = (T 33, 31), (20,220 72) — (24,720, 20),

(za,258,25) = (T7/w, 261,76}, (77, T67.76) — (2T6.T5e,75). (5.3}

The action of clement p is less trivial and can e obtained with the help of the
Fourier transformation (see [10]). Introduce two more additional parameters
u and v which are defined as

NN _ NN NN _ N.H
N_T3Ts ~INTr  n_TaZg —Tals

y 5.4
o 7 i {5.4)

The pbases of parameters » and v can be chosen in an arbitrary way. Then one
can show tlat the following identity is valid:

< _w(zy zis, o)l b+ gYulzs. 2, 22la, g 4 0) 3o =
o2, WiTe, 338, 35le, ¢ + o)1/, 77, 26 fLb+ 0) 10
By A TV EP Y
W{TyTyg, 214, TsTszle, d + 0)w(Tates, Tav, 2eTalg, b + 0) }
neZy W(zszrs, Wi wE) z1lc, h + 0 )ulzezes, 2av, Tyznla, f+ 0"

x

where the lower index "0" ‘after the curly brackets implies that the expression
in the curly brackets is divided by itsell with all exterior spin variables equated
to zero.

The arrangement of spins in the smw of the r.hs. in (5.5) correspends
to the p-transformed set of the indices (see (5.2)). Heace, we can define the
aciion of p trausformaiion ou the parameters as

{2, z,21) B (mrmig 2w mazsr), (34,200, 72} & (29758, Tov, To7m),
(zn251,70) D (@ynin,were,wzizsr)s
(xs, e, 76) L (wrzen, 220, To7). (5.6)
Using (5.5) we can choose gauge fuctors before formula (2.15) in such a way
that the whole W' function will bo invariant under the transformatisns from

the group G. We will not write this symiaetric forin of weigbt functions here.
Note ouly that after p transformation (5.6) W function is transformed iuto

12



W and vice versa. Using relations (4.7-4.8) from the previous section we can
write the following transformation rules for paramecters 1y, uz,f with respect
1o the elements r and p from the group G:

wlu, whuw, 7, (67
w M ~uw, mButu-iM, plgtiM (5.8)

We hope to use these symmetries for the calculation of the partitien function
for our models.

Appendix. A detailed consideration for the
case N =2

The BCC form of the weight is useful for proving the modified tetrahedron
equations. But for other purposes a ical form of the
weigbts, which differs from the BCC oge by some gauge transformation, is
more preferable. In this section we find this gauge multipliers for the case
when N = 2 and ohtain a table of Boltzmann weights analogous to Baxter's
table from [9] and endowed by ohvious symmetrical properties. Also we show
that fixing 7 = M we obtain the particular case considered in [8].

We start from a simple gauge transformation of our BCC weight (2.15)
and consider the weight W':

W(ale, f,9lb, c,dlh) = (—1)H¥eerorhiatseh-dbropsep-df

YeaneYpceaYehsy
xoedheYacealehbe oo £ olb o dlh), Al
VirsTonasVodrn (ale, f. glb, e, d[4) (A1)
where
. .
Yasss = cxp{-ig g} explinab(f ~ )} - (4.2)

It is convenient ta introduce spins (—1)° = 1 instead of a = 0,1. Further
we shall use cnly the multiplicative spins and write @ instead of (—1)°, etc.
Absolute values of these weights ( both W and W') depend only on three
Baxter's sign variables abeh, acfh, adgh, abed. Therefore up to signs there
exist sixteen different weights (A.1). In terms of multiplicative spins we can

13



write the following parameterization:

W' = EWex
x exp{(M, + N\)aghf + (M, = Ny)cedh+
+H{M; + Nidagee + (Ma ~ Nabfdh+
+{M3+ N3darfg + (M — Nadeghf+
+(My + Noyabed + (Mp ~ Nolefgh}, (A.3)

where, caleulating all sign factors, we parameterize Ws as follows:

abeh | acfh | adgh | Wlalefglbedi)

[

D+ +
]
S
g
]

L4+ 0+ 4
¥
s
2
ool

)

)
)
o
2
Z
kS
£

Parameter € in (A.3) is a normalization factor and we choose it so that
% = 1. Now we can obtain exp{16;), exp{16:¥,) and W3 just by multiplymg
and dwiding BCC weights for several sets of the spins.
It is usefal to express the answer in terms of elliptic functions of auother
madulys & instead of the used functions of the modulus m

l1-m

b=

(A4)

Dewoting the complete clliptic integrals of the first kind of the moduli m and
as M and M, and of the moduli & and ¥' = V1 -k as K
and A7, we have the connection between them

K'=(1+mM, 2K = (1 + m)M’. (A5)



One can easily obtain the reparameterization of z? and z%; using

sn(z, k)
@lz, kyda(z, k)’
To calculate expressions for Ws, exp(2/4;) and exp(2)V;), we need three more
complicated identities:

2z
im"2sn(v, m) = ¥ —iv. '
im'a(v,m)y =¥ where T iv, ({A6)

s(v1 + vz) - sn(v1) — sn(vz) — msn(vy)sn(vz)sn(v) + v5)
sn(v; + 12) + su(v;) + sn(v2) ~ msn(v, )sn(r)sn(v; + v2}
_ so{z1)su(za)
= cd(z)ed(zs)’
so(v1) + sn(v2) + s0(v1 + 12) + msm(v))sn(va)sn(v; + va)
sn{v1) + 6n(v) +sn(v) + v2) ~ msn(v; )an{vy)sw(v) + v2)
el 5
~ ed(nijed(za)’
sn{v1) + sn(vz) — sn(vy + v2) — msn(vy)sn(vy)sn(v) +v2) _
sn(v1) + sa(vp) + sn(vy + #2) — tsn(vr)sn{vy)sn(o; + v2)
= —k%an(z,)sn(z)cd(z) + 22),

(A7)

where in the LHS we imply the modulus m, and in the RIS - &, the arguments
v; and z; being connected by (A.6).

‘We would like to obtain a madel with real weights Ws. To do this we
have to consider a regime when ), uz, u3 are pure imaginary satisfying
0 < Imty 93 < M and 7 = M + ie, a small € being real. Defining further the
variables zj 43, ) by

2y . _ 2
T =-iug atntn=K S=in (A8)

and using repeatedly (A.7), we obtain the exponentials

exp 2N) = e*/A{—iksn(A + z))ed(A + 1)}/,
exp 2Ny = {—iksn(} + zz)ed(A + z2)}/4,
exp 2Ny = {~iksn(} — zg)ed(X — z)}4,
exp 2Ny = {~iksn{A)cd(A)}/4; (A.9)



(A + =)

) . ety ",
ORI P o2ty = (S0E
B A
23 - Y, exp'\l.,—(—-vm( ))"' (A10)
o bl 5 e eal. 0 € 2 < K. and A = #0/2 4+ ¢, ¢ being small

ab The sions contained in the curly brackets beloug to the fiest
ek quantrants of the complex plane, the fourth power roots of these
v defined so that they belong to the same quadrants. As to Wy, it
with the elliptic solution of ref. [8]:

"

T _ (=)
Jn(z) = \‘:(:—))(d(:k). (A1)

Voo & ane coy permitation of 1,2,3. Here the square roots of the
Lt s supposed Lo be also positive. Qur weights coincide with
e ofosp sl
A
Aeig ey=M. (A.12)

P sl weiphts W can be obtained from these ones by the changing
so that the terms M 23 and Ny a3
angr of the system of the modified tetrahedson cquations and
crence with the case (A.12) consists in the Mg and ¥p terms.
iLal the extraction of the A dependent terows exp(My) and exp{No)
ipliers of the A independent weight Wy is the property of
whet N # 2 this property fails.

M,

3, and Sy — -
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