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CHARACTERIZING MULTIFRAGMENTATION 

X. C A M P I and H. K R I V I N E 
Division de Physique Théorique1 

Institut de Physique Nucléaire 
914O6- Orsay Cedex, France 

ABSTRACT 
We discuss various methods to characterize the fragment size distributions in nuclear 
multifiagmentation. The goal is to find the best signals of a phase transition associ­
ated to multifragmentation. We review the concepts of scaling and critical exponents 
and we examine the possibility to determine them in finite nuclei. The fluctuations of 
the fragment size distribution and a possible signal of intermittency are also discussed. 

1 Introduction 

The main deexcitation mode of a nucleus at energies up to a few MeV/nucleon is light 
particle emission. The mechanism of this mode is sufficiently well understood theoreti­
cally to allow a precise study of the thermodynamics of nuclear matter at low tempera­
ture. At excitation energies of the order of five to ten MeV/nucleon, this mode is relayed 
by the emission of medium mass fragments. Unfortunately the mechanism of fragments 
production in nuclei is still poorly understood and a similar study is not yet feasible. 
This is particularly straitening because in this energy range one predicts a phase tran­
sition of nuclear matter similar to the liquid-gas phase transition of standard fluids . 
Proving the existence (or the absence) of this transition and studying its properties is 
one of the major goals of heavy ion physics. 

How nuclear fragment emission reveals the presence of a phase transition is still 
unclear. The emission of various intermediate mass fragments in the same event -
what we will call multifragmentation- is one possible signature of a phase transition. 
This association is suggested by simple fragmentation models, like the Fisher droplet 
model , percolation , lattice-gas^ and statistical equilibrium models. However this 
multi-fragment production is not enough to sign a phase transition. Refined analysis of 
the characteristics of the fragment size (mass or charge) distributions are needed. 

Nuclear fragmentation is a statistical process in the sense that at a microscopic 
level the initial conditions are never completely determined. Even if one could repeat 
many times a nucleus-nucleus collision with exactly the same macroscopic conditions 
(bombarding energy, impact parameter, etc.), the internal degrees of freedom of the 
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nuclei (positions and momenta of the nucléon...) will change from one collision to an­
other. Because of this statistical nature one has to study first the mean (statistical 
average) distributions and secondly its fluctuations. These studies become, in principle, 
experimentally feasible with the arrival of a new generation of very efficient Air fragment 
detectors • 

The aim of this contribution is to offer an overview of various methods that have 
been proposed recently to characterize the fragment size distributions (FSD) in nuclear 
fragmentation. Section 2 is devoted to the statistical average of the FSD studied with 
the method of moments, to the determination of critical exponents and to the finite size 
effects. In Section 3 we deal with the fluctuations. We first study the statistics of the 
largest fragment and secondly we discuss the relevance of the concept of intermittency 
in nuclear fragmentation. We conclude in Section 4, with some warnings concerning the 
application of these methods to experimental data. 

2 Mean Fragment Size Distributions 

Let us consider the fragmentation of a system of size (charge or mass) S. From a theoret­
ical point of view, the basic quantity in a fragmentation process is the probability P{n} 
to observe a partition {rii,n25 ns}- The experiments (or the numerical simulations) 
give only the frequency f{n} of the partitions. Because of statistical fluctuations, f{n} 
is only a rough representation of P{n}. On an other hand, in a first step we do not need 
the full information carried by P{n}. Hence we perform partial integrations on f{n} 
(statistical averages). For example, the mean fragment size distributions < na,a > of 
partitions of class a are a natural compression of the information. The choice of a is 
very imposant. We will call a the control parameter. Let us discuss this point in some 
detail. 

Consider a random mechanism that generates partitions of an integer number and 
some choice for the criteria of the statistical averages. Let's take for instance, partitions 
with the same multiplicity of fragments. For a given multiplicity mo the mean fragment 
size distribution < n3,m0 > would look like the thick line of fig 1. The shape of the 
curve may °f course depend on mo. One could perform similar averages taking partitions 
according to other criteria, for example the same number of intermediate mass fragments 
(IMF), the mass of the largest fragment Smaxi the sum of all observed fragments mass 
but s = * (abound), etc. On fig. 1 we have also shown the mean fragment size s and 
the width o-?, of the mean distribution. The doted curve represents the fragment size 
distribution n[j>> of an event (partition) j with same multiplicity mo- Because of the 
finiteness of the system every realization is rather far from < na >. For a fixed size 
s it is interesting to look at the frequency distribution of ny\ One expects a curve 
centered around < n3 > with some width &[„,] (see window of fig 1 ). We know that 
for a Bernouilli process the ratio ~&4; g 0 e s to zero as 1/^/mô. Any deviation from 
this behaviour indicates the existence of the so called "non-statistical fluctuations". In 
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Figure 1: Schematic representation of the various quantities discussed in the text. The 
mean fragment size distribution (thick line) with mean fragment size s and width cr^. 
The doited line is the distribution n^ of a particular event j . For a fixed size s, the 
distribution ofns is also represented, with mean value < na > and width o-[nij (window). 

contrast with statistical fluctuations that aTe just a "noise", these fluctuations may-
contain interesting information. We will show some examples in Section 3. 

2.1 Moments of the Mean Fragment Distribution 

The data of a fragmentation experiment can be represented as a list of partitions { n ^ } 
(where j = 1,2- . . N is the event number) forming a matrix. This matrix can be 
examined by rows (horizontal analysis, event by event) or by columns (vertical analysis). 

The vertical analysis will consist in the statistical average of events of same class 
a (same excitation energy, same multiplicity mo, etc.) as discussed previously. We will 
denote this vertical average by the symbol < > . 

We will consider the following definition of the mean fragment distribution, 

<«.>=^E(»ij)-^-^L))> (i) 
3 

where s = 1,2-. . ^S and where N is the number of events of class a and where the 
contribution of the largest fragment 3 ^ x produced event by event has been dropped out 
in order to keep the optimal information with Z7-shape distributions when calculating 
the moments. 
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This (mean) distribution can be characterized by its moments 

mk = J2 jk < n° > • (2) 
a 

With the above definitions m 0 is the mean multiplicity (minus one) and 
Î7Ï1 = S~~ < stnax > . 

Usually, three or four moments suffice to characterize accurately a FSD that does 
not show too complicated structures. A fragmentation can then be represented by one 
point in the three or four-dimensional space of these moments. Often projections in a 
plane are simpler to interpret . Another interesting combination of moments is given 

7 7 i 2 m 0 

72 = - ^ p (3) 

which is related to the variance <rfa of < nt > (width of this curve) by 
<y2 = a2l < s > 2 + l . This quantity (that may be called the reduced width of < n, >) 
has been frequently used to compare experimental and theoretical results1^ H. 12, 13 
We stress that this quantity has a -priori nothing to do with the statistical fluctuations 
of n, that we will examine in Section 3. 

2.2 Scaling Hypothesis and Critical Exponents 

We will consider for a moment a system of infinite size and we will discuss latter finite 
size effects. When the system manifests a second order phase transition, the behaviour 
of < ns > is particularly interesting in the vicinity of a critical point4, *>. 3, The basic 
idea of a scaling theory of < ns > is that near the critical point there exists a typical 
largest cluster size 3ç ~j e \~i'a of spatial extension £ ~ | e |_", where v and a are two 
critical exponents and e is the "distance" of the control variable to the critical point. For 
example e = T - Tc in thermal phase transitions and e = p — pc in percolation theory. 
The hypothesis is then that for all small values of e, the function < ns > will look the 
same if w e plot them as a function of (s/sç). Monte Carlo simulations suggest as general 
form < ^ ( e ) > /S = «- r / (* /* f ) , with / (0) = 1. Or < res(e) > /S = s~TF(z), with 
z = | e I «" and F(0) = 1. 

The momenis m* can then be calculated near e = 0 by replacing the sums with 
integrals: 

m* = T > f c < n,(e) >= (1/cr) | e \^~k-^ f°° | z f+^V* l/zF(z)dz. 

Hence the singular sing{mk) part of the first three moments define the following re­
lations between critical exponents : sing{mQ) = | e \{-2~a\ with 2 - a = (r - l)/o- ; 
sing{mi) = | e ^ w i th /3 = (j ~ 2)/<r and sing(rn2) =\ e |~7, with 7 = ~{r - 3)/<r. We 
see that moments with k > T — 1 diverge when | e |—> 0. 
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The determination of these critical exponents from data is in principle straight­
forward. For example, first one localizes the critical point by looking for at the maximum 
of TTI2 a S a function of the control parameter. After that , one plots I117712 versus ln\ e |. 
One expects two parallel straight lines with same slope 7 . The choice of the critical 
point is rather strict, small changes in its value destroying the linearity of the two lines. 

Critical exponents are like the "fingerprints" of phase transitions. Each universal 
class (Liquid-gas, percolation, ferro-magnetic-paramagnetic.) has its own set of expo­
nents. Comparing this universal values with, experimental ones is the only serious way to 
characterize an unknown phase transition. In contrast, other quantities like the critical 
temperature or the critical density are not universal and do not serve to characterize 
the transition (for example, normal fluids have different critical temperatures, but same 
critical exponents). 

2.3 Control Parameter and Finite Size Effects 

The first worry one encounters when applying the concepts of critical phenomena to 
atomic nuclei is how to specify the control parameter e. In principle, looking for a thermal 
phenomenon one would like to choose e = T — Tc, but unfortunately this information is 
not directly available from experiment. When looking for a "geometrical" phenomenon, 
like a in percolation fragmentation, one would took e = p — pc, where p is the bond 
activation probability and pc its critical value, but this quantity is even more inaccessible 
experimentally. One possible solution is to substitute the temperature (or p) by another 
quantity that is measurable and that is strongly correlated with it. Furthermore, if 
this correlation is strictly linear in the critical region, (this is the case of the control 
parameter p and the moment mo in percolation theory*") then taking e = m0 — m0crt-, 
one can determine directly the correct values of the critical exponents. In thermal phase 
transitions, the relation between the température T and the multiplicity mo (or other 
control parameter) has to be carefully studied. We will discuss below a method that 
overcomes this difficulty. 

Percolation 
Lattice-gas 

Statis. Equil-
Au -f emul-

Au+C 

T 

2.20 
2.21 
~2.2 

2.17 ±0.1 
2.14 ±0.06 

0 
0.45 
0.33 

-
-

0.29 ± 0.2 

7 
1.76 
1.24 

-
-

1.4 ±0.1 

1 + 0 / 7 
1.25 
1.27 

2.63 ± O.07 
1.2 + 0.1 
1.21 ± 0.1 

Table 1: Critical exponents for various systems. Fromrefs: Percolation "»,Lattice-gas1", 
Statistical Equilibrium Model , experimental data on 1 GeV/u Au fragmentation in 
emulsion ° and in Au + C reactions . 
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Figure 2: Mean value of 1112/S as function of m0/S for small (S = 125^ and large 
(S = 125000,? percolation systems. 

The second and more serious difficulty concerns the finite size of atomic nuclei. 
Strictly speaking, w e cannot talk about critical behaviour in a finite size system because 
none of the moments mk can diverge. Nevertheless, some aspects of this behaviour 
remain valid. The critical point is replaced by a "critical region", the width of which 
increases when decreasing the system size. In the middle of this region, finite and infinite 
systems behave very differently, but on both sides, these differences are much smaller. 
Hence it is in principle still possible to extract some information on the exponents by-
looking at these two regions, but avoiding the central one. This is shown in figure 2, 
where the quantity mijS is plotted as a function of the control parameter TUQ/S for 
a large percolation cubic lattice and for a small one of the typical size of a nucleus. 
The similarity is e v e n stronger for the quantity (S - m i ) / S = < amax > /S which plays 
the role of the "order parameter" in percolation-like theories. In infinite systems, this 
quantity is finite in the "percolating" phase and zero in the other. We see in figure 
3 that for m0 <ç m0Crit, small and large systems behave similarly but very differently 
elsewhere. 

These two examples give an idea of the difficulties to extract accurate values for 
the exponents 0 and 7 in nuclear fragmentation. The members of the EOS Collaboration18 

have tried to extract these exponents from their data on 1 GeV/nucleon Au projectiles 
fragmentation. The control parameter is the multiplicity mo- The critical multiplicity 
is determined by looking at the best linearity of the curve In < &max ^ f ° r 771Q < TMocrit 

and at the best linearity and best parallelism of the two branches of m 2 . These curves 
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Figure 3: Mean value of the largest fragment, < smax > / S as function of m0/S for 
small (S = 125 J and large (S = 125000J percolation systems. 

are drawn as a function of ln\ Tn0 — m0crit \. The slopes 0 and 7 are rather sensitive to 
the choice of mQcTil. 

In an earlier work8, the ratio of the exponents /3j'7 was determined more directly. 
Representing In < amax > versus In(m2 /mj) for events of the same type (say, same mo) 
one obtains a two-branch curve, the crossing point corresponding to the "critical point". 
The slope of the lower branch is 1 -f (3j^, The advantage of this method is that there 
is no need to fix vi0crit and no need for a linear relation between T or p and mo- The 
price one pays is that only the ratio of the exponents is measured. Using the data of 
Waddington and Freier^ on Au fragmentation in emulsion, it was concluded that this 
ratio is compatible with both percolation and liquid-gas predictions. 

The exponent r is in principle easier to determine, by using equation 7. right 
at the "critical point". The problem is again to define this "point". Here it is also 
possible to avoid this difficultyj by looking at the slope of log m;:/"ii versus logm2/mi . 
Unfortunately, most theories predict very similar values for r . In any case, one always 
gets T > 2 from experiments in nuclear fragmentation. 

In Table 1 we synthesize our present knowledge of critical exponents. We see 
that the two experimental determinations of /3/7 °- 1 8 are in good agreement with 
both liquid-gas and percolation predictions. When determined separately by the EOS 
collaboration ° /3 and 7 are in better agreement with the former prediction. 

Also shown in Table 1 is the value of P/-J calculated with the statistical equi-
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Figure 4: Fluctuations of the size of the largest fragment smQX versus reduced multiplicity 
m0/S. Experimental data on Au fragmentation, from EOS Collaboration ^0 (triangles) 
and from Waddington and Freier data ™' (circles). The percolation calculation is fro 
Ref.10 (histogram). 

m 

librium m o d e l a ft differs from the two independent experimental determinations by a 
factor of two. This discrepancy deserves further theoretical considerations. 

3 Fluctuations 

Fluctuations in the fragmentation of a classical system of finite size arise from the lack of 
control on the initial microscopic conditions 2. Even the macroscopic conditions cannot 
be fixed better than on the average (for instance the impact parameter in collisions). 
One could look directly at the S variances of n „ crpn] = < (ns- < n„ > ) 2 > , but this 
information is overdetailed and as in the case of the mean value, it is more convenient 
to compress the information performing horizontal averages. 

3.1 Fluctuations of s 
max 

is the simplest horizontal compression of the data. Its variance, 
! same as the variance of smax because mi = S — smax. In the 

The first moment mi is the simplest horizontal compression of the data. Its ' 
a? i, is obviously the same as the variance of smax because mi = S — smax 

2 We 
is meaningless. 

do not consider chaotic systems, for which a "precise" determination of the initial conditions 
inaless. 
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percolation model one finds that the fluctuations of 5 r a a i are maximum exactly in the 
critical region (determined by the maximum of 72). This property seems to be also true 
(see Fig-4) for the experimental results of Au fragmentation^' . In any case the shape 
of trLtj *s function of mo varies significantly according to the model of fragmentation . 
It can therefore he used as a discriminant observable to test the validity of theoretical 
models. 

3.2 Factorial Moments and Intermittency 

The pioneering work in this field was done by Plosaajcaak and Tucholski . Rather than 
studying first the general properties of ofn ,, they have directly looked at a very refined 
property : the possible existence of intermittency in the FSD. In light of the work of 
Bialas and Peschanski they have calculated the factorial moments 

Fk(S) g- < n j ( 5 ) >k (4) 

where S = 1,2, • •• is a window of fragment sizes and n,[S) the number of fragments in 
the ath bin of size Ô". They have found a power law dependence of the Ft on S in the 
experimental data of Waddington and Freier y and in the percolation model (near the 
threshold of percolation). This result was interpreted as the signal of an intermittency 
pattern linked to a phase transition. Let us first make a remark to simplify the coming 
discussion. 

The summation over 5 as done in Eq. 9 has no clear theoretical interpretation. 
Moreover it is useless and it hides the various contributions to the sum. If one considers 

< n 1 ( g ) ( m ( g ) - l ) - . - ( n 1 ( g ) - f t + l ) > 
FkAb) ~ < m(*) >* 

•which is closely related to the variance of n\ (for fc = 2), one practically recovers the 
same results as with the sum. The reason is clear : the frequencies of the light fragments 
are largely dominant in the sum in the critical region, where the FSD is "singular" at 
the origin. Indeed, Fjt as calculated in , gives information only on the fluctuation of 
the small sizes. More interestingly, the behaviour of the other Fky3 with 3 > 1 is totally 
different, because there is no more intermittency signal. 

The interpretation of the signal as indicating a true intermittency remains puz­
zling- Let us briefly explain w h y ^ . 

i) on the basis of numerical simulations (percolation model, trial model ^ ) 

- At fixed multiplicity there is no intermittency signal at all. 

- The signal vanishes when the size of the system grows (although one would 
expect an opposite trend for the signature of a phase transition). 



- The signal disappears for 3 > 1. Hence it is only produced by the very light 
elements. 

" The trial model » which apparently does not contain other correlations than 
those due to the mass conservation, can also give a very nice signal of intermittency. 

" ) on. theoretical grounds 

The intermittency characterizes a property of the distribution of the random 
variable p, (here the probability to find a cluster with a mass G [1,1 + S]), namely 
^E_> ^ $-fk ^ (fk > g). It is a property of P and not of n. And p and n do not obey 
the same probability law. Even if the average values are equal ( < n >— m0 < p > ) , 
the variance of n is larger than that of mop '- because of the finite multiplidty of the 
system, there is an additional and unavoidable noise (the "statistical fluctuations") which 
superimposes itself to the unknown width of p (the "dynamical fluctuations"). Notice 
that a variable multiplicity would also introduce an additional width. 

The factorial moments are only a tool to disentangle the dynamical fluctuations 
from the statistical ones. They permit to derive the moments of p from a combination of 
experimentally known moments of n. But this deconvolution, as done in Ref.2*, is only 
possible under two sharp conditions. (See the demonstration in the original p a p e r . ) 

a ) The independency of the mo realizations of p at each fragmentation. 

0) The control over the multiplicity rn0. 

If these two conditions are not fulfilled, we do not know how it is possible to infer 
the behaviour of < pk > I < p >fc from that of F*. Now, condition a) is necessarily 
violated because of the conservation of mass and condition b) was never been taken into 
account in the literature. 

For this reasons we Would be very careful before identifying the intermittency 
signal found in ref. with a proper intermittency. Our (provisional) guess would be 
the following : in fragmenting systems the only correlations produced by the mass 
conservation induce an intermittency signal when the mean size distribution is singular 
in s~r ( T ~ 2). This signal grows with the width of the multiplicity distribution (and 
cancels with m 0 fixed). Elements of our guess can be founded in 2 9 , 25- 2 6- 14- 2 8 . 

Therefore, the signal observed in Ref. would not necessarily indicate a phase 
transition. It does it indirectly because it is linked to the power law of the FSD, power 
law associated in certain models to a phase transition. To understand precisely the 
source of this intermittency-like signal remains a problem to solve. 

4 Concluding remarks 

This Contribution is a short review of the methods to study phase transitions in finite 
nuclei- The determination of a set of critical exponents associated to the mean fragment 
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size distribution appears to be the unique way to achieve a definite classification of 
the transition. This program seems in principle realizable with the new generation of 
4x charged particles detectors. However we will temperate this optimism with a few 
warnings concerning the analysis of experimental data. 

We assumed implicitly in the preceeding discussions that the size S of the frag­
menting system was invariant. This is not always the case in nuclear fragmentation. 
At high bombarding energies, intermediate mass fragments (the ones that determine 
mostly the critical behaviour) come from a "spectator" source, which size may change 
drastically with impact parameter. For example, in ALÀDIN experiments ** on 600 
MeV/nucleon Au projectiles bombarding Cv. targets, for the most violent collisions that 
have been detected (lowest Ztomd) the emitting "spectator" source has on average the 
size of a Fe nucleus - The influence of this variation of S on the critical exponents 
should be carefully studied. 

At lower bombarding energies (less then 100 MeV/nucleon) we have the problems 
of the number and the size of emitting sources. As a function of the impact parameter, 
the reaction mechanism varies from deep inelastic to quasi-fusion and (maybe) total 
fusion. Even with a complete identification of the fragment momenta it is not possible 
to determine, event by event, the source of each fragment. This raises various difficulties. 
"What is the multiplicity (or another control parameter) of each source ? What is the 
largest fragment 5 m a i of each source ? (we recall that the subtraction of the largest 
fragment, at least in the "liquid" or "percolating" phase, is essential to calculate correctly 
the critical exponents). All these questions deserve a close examination. 
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