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[. INTRODUCTION

Resonances are one of the most interesting phenomena in scattering processes. The problem of
defining and studying resonances in quantum mechanics is payed a lot of attention in physical
and mathematical literature, In recent years, the investigations of resonances in few-particle
systems attract a growing attention. The role of such resonances is well known in physics of
nuclear reactions and astrophysics.

Developing methods for studying resonances has a long history beginning from the paper
hy G.Gamow {1]. In this paper devoted to description of a-decay, it was discussed for the
first time a relation of resonance states to complex poles of the scattering matrix (it should
be noted however that complex frequencics were considered much carlier, e.g. by J.J.Thomson
in 1884). For spherically symmetrical potentials, the interpretation of resonances in two-body
problems as poles of an analytic continuation of the scattering matrix was rigorously based in
the known paper by R.Jost (2] (for further references in this direction see e.g. the books (3]
and [4]).

l/\]pproachcs to interpretation of solutions to the Schrédinger equation (so-called Gainow’s
vectors) corresponding to resonances arc discussed in Refs. [5]-[7] (sec also literature cited
therein),

l(l()en to interpret resonances as poles of analytical continuation of the resolvent kernel
for the Schrodinger operator (or matrix elements of the resolvent between suitable states) is
realized in [8]-[16] (sce also Refs. cited in these papers and in the books [17], {18]). Such
interpretation became a basis for the perturbation theory for two-body resonances which is
well developed now (see. {11], [12], [L7]).

In the case when support of interaction in a system of two particles is compact with
respect to relative coordinate, the approach [19] by P.Lax and R.Phillips may be applied (this
approach was created initially for acoustical problems). The Lax-Phillips approach allows to
deseribe resonances as a discrete spectrum of a dissipative operator representing generator of
contracting semigroup. At present, the Lax-Phillips scheme is realized only in those scattering
problems which generate the energy Riemann surface? with two sheets of the complex energy
plane (sce Refs. {20], [21]). In multichannel scattering problems, the approach above is partly
realized in [22].

Beginning from 1970-es, the complex scaling method {10], [14] is applied to investigation
of resonances (sce also Refs, {15) and [18]). This method gives ‘a possibility to rotate the
continuous spectrum of Hamillonians in such a way that certain sectors become accessible
for observation on unphysical sheets neighboring with physical one. Resonances situated in
these sectors turn into a part of the discrete spectrum of the Hamiltonian transformed. The
complex scaling method may be applicd in the cases when potentials are analytical functions
of coordinates. This method allows to compute location of resonances in concrete physical
problems (see, e.g. Refs. [15], [23]). As regards the structure of the scattering matrix and
resolvent continued on unplysical sheets, this method gives not too large capacities.

Many important conceptual and constructive results (see [24]-[29]) for the physical sheet
in three-body scattering problem are known to have been obtained on the base of the Faddeev
equations [24] and their modifications. In particular the structure of resolvent and scatter-
ing operator was studied in details, completeness of the wave operators was proved and the
coordinate asymptotics were studied in the case of quickly decreasing as well as Coulomb
interactions® [24], [28], [29], [32]. Analogous results were obtained also for singular interactions
described by the boundary conditions of various types [32], [33]. On the base of the Faddeev

?The latter is understood usually as the Riemann surface of the resolvent kernel considered as a function of
encrgy or as that of the resolvent bilinear form restricted on certain subsets of Ililbert space. Such operator-
valucd functions as the 7°- and scattering matrices have usually the same Riemann surface since these functions
are closely related to the resolvent.

¥The new approaches [30], [31) (see also literature cited in [31]) have been developed recently in abstract
scattering theory for N-body systems which allow to prove existence and asymptotical completeness of the
wave operators inn the case of pair interactions decreasing at the infinity as »—2, p > /3 ~ 1, i.e. substantially
slower than Coulomb potentials.



equations, the methods of investigation of concrete physical systems were developed {29], 132].
[34], [35).

As to the unphysical sheets, thesituation is rather different. Here, when solving a concrete
N -particle problem one usually restricts himself with developing some approximate nunerical
algorithm to search for resonances on unphysical sheels neighboring with physical one. A
survey of different physical approaches to study of three-body resonances in the problems of
nuclear physics can be found in Ref. {36]. A number of rigorous results (sec {18]) is obtained
in framework of the complex scaling method [10], [14], [15]. These results touch first of all
the proofs of the existence of analytical continuation of resolvent in the N-body problem with
potentials holoniorphic with respect to the scale transforms, In Rel. [37], a proof is given for
the existence of analytical continuation for the amplitudes of processes 2 — 2 in the N particle
svstern across the branches of continnous spectrum below the first breakup threshald of the
sysiern into three clusters.

A poal of the present work consists in analytical continuation and investigation of the
structure of three-body 7'-matrix, scattering matrices and resolvent on unphysical sheats of
the energy Riemann surface. The interaction potentials are supposed to be pairwise and
decreasing in coordinate space not slower than exponcntially. When constructing a theory of
resonances in the two-body problem with such intcractions one can use the coordinate as well
as momentum representations. However, it is clear a priori thal the analytical continuation
of the three-body scaltering theory equations [24], [29] on unphysical sheets becomes a very
difficult problem if the equations are written in configuration space. Thing is that there
cxist noncompact (cylindrical) domains where interactions do not decrease. Meanwhile, the
kermels of the integral equations continued increase expounentially. Their solutions have to
increase exponentially, too. This means that the integral terms become divergent ones and
the coordinate space equations lose a sense. In the momentuin space, the integral terms of
the scattering theory cquations, e.g. the Faddeev equations for components of 1 matrix, arc
actually the Cauchi type integrals analytical continuation of which (in a sense of distributions)
is a solvable problem, A continuation of such kind on unphysical sheets ncighboring with
physical one was already rcalized for the s-wave Faddeev equations in the paper [38] (sece
also Ref. [36]) for the casc of separable paiv potentials. ‘In the present paper, we construct a
continuation of the Faddeev equations in the case of sufliciently arbitrary pair potentials not
only on the neighboring unphysical sheets but also on all those remote sheets of the three body
Riemann surface where is possible to guide the spectral parameter (Lhe energy z) going around
two-body thresholds, '

Main result of the paper consists in a basing of existence of analytical continuation on
unphysical sheets of z for the Faddeev components Map(2), @, =1,2,3, of the operator 1'(z)
and a construction of representations for them in terms of the physical sheet [see formula (6.8)].
According to the representations, the continued matrix M(z) of the Faddeev components,
M - {Mag), is explicitly expressed on unphysical sheets in terms of this matrix itsclf taken
oun the physical one and some truncaticns of the scattering matrix. Kind of the truncation
is determined by the index (nunber) of the unphysical shect concerned. Note that structure
of the representations is quite analogous to that of the representations found in the author's
recent works [39] and [40] for analytical continuation of 7'-matrix in multichannel scatiering
problems with binary channels. Representations for analytical continuation of three- body
scattering matrices follow immediately from the representation above for M(z) [see Egs. (6.9)
aud (6.11)]. As follows from the explicit representations (6.8), (6.9) and (6.11) obtained by us,
the singularitics of T-matrix, scattering matrices and resolvent on unphysical sheets diflfering
from those on the physical one (poles at the discrete spectrum cigenvalues of the Hamiltonian),
arc actually singularitics of the operator-valued functions of z inverse with respect to suitable
truncations of the scattering matrix. Consequently, the resoniances (i.c. the poles of T--matrix,
scattering matrix and resolvent on unphysical sheets) are zeros of certain truncations of the
scattering matrix taken on the physical sheet. ‘ :

Results of the present paper were announced in the report [41].

The paper is organized as follows.



In See, 2. the main notations are deseribed. See. 3 contains an information on analytical
properties of the two body 7' and scattering matrices which is necessary in subseqnent see-
tionis, See, 4 s devoted to description of propertios of the Faddeev components of three body
T matrix and seattering matrices on the physical sheet of energy. In particular, the domains
on llwph\'.si( al sheet are established where the hall on-shell Faddeev components and diflerent
trnncations of the seattering matrices included in the representations (6. 8). (6.9) and (6. i)
may be considered as helomorphic functions, We justify these representations only on a certain
part of the three body Riemann surface which is deseribed in See. 5. Aualytical continnation
of the Faddeoy equations on unphysical sheets is desceribed in See, 6. Also. in this section,
thes representations (6.8), (6.9) are (6.11) formulated for analytical continuation of the matrix
M(2). seattering matrices and resolvent respectively.

2. NOTATIONS

We considor a system of three spinless non relativistic quantum particles. - Movement of the
mass conter s assumed to be separated. For description of the systenn we use standard sets of
the relative momenta k,. p. [29]. Yor example

‘ 1/2
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where 1, p, are masses and momenta of particles.  Fxpressions for k. p, with 0 = 2.3

may be obtaied from (2.1) by cvelie permutation of indices.  Usnally we combine relative
MOMENLa ke, po into six-veetors I = {ko. pa }. A choice of certain pair {ka.. p.} lixes cartesian
coordinate system in RE Transition from one pair of momenta to another one means rotation
in R &, = coihs + SaaPps P = —Sagka + Canpi. \V|||| coeflicients ¢, 4. s,.5 depending on the
particle masses only [29], such that —1 < 3 < 0. 8%, =1 — (f“,. Cin = Cog ittd 84, = =5, 4.
i # o,

I morentum representation. the Hamiltonian 21 of the three body system under con-
sideration is given by (NP = P2APY 4 S22 (v, f)(/’) PP = k24 2 [ € Ho = La(RY).
with o, the pair potentials which are ml(;.,ml operators in k, with kernols (k. &)

For the sake of definiteness all the potentials v, n = 1,2,3. are supposed to he local, This
means that the kernel of v, depends on the difference of variables &, and &, only. valk, M)
= vk, = K)). We consider two variants of the potentials . In the fllhl one. v, (A) ate
holomorphic funetions of the variable & € C* which satisfy the estimate

(‘unllmkl Yk € C-"

(2.2 o (R)] <

[
(L&)
withsome ¢ > 0, ap >0 and 0y € (3/2,2). In the second variant. the potentials o, (&) are
holomorphic functions with respeet to & in the strip Wy = {k: k€ C* k] < 20} only ad
obey for k' € Wy, the condition (2.2) with ug = 0:

(2.3) o, (K] < ke im k] < 2h,

—
(T kT

It is supposcd that in both variants v,(~k) = v, (k ) The latter condition gual.lnl('vs self

adjointness of the Hamiltonian /1 on the set DI = {[: [(1 + PPV dP < =} [21].
Note that the first variant. requirements of holomorphness of v, (&) in alt C* and no more

than exponential inereasing (2.2) in [l k] mean that these potentialshave a compaet sippuort



in the coordinate space. In the second varianl. the potentinls v, (k) rewritten in the coordinate
representation, decrease exponentially.

By hay (haf)(ka) = k% f(ka)+ (vaf)(ka), we denote the Hamiltonian of the pair subsystem
a. The operator h, acts in L2(R?). Due to conditions (2.2) and (2.3) its discrete spectrum
74(ha) is negative and finite [I8]. We enumerate the cigenvalues A, j € a4(ha), A, < 0,
7 =1,2,.., 1, n, < 00, taking into account their multiplicity: number of times to meat an
cigenvalue in the numeration equals to its multiplicity, Maximal of these numbers is denoted
by Muaxy Amax = max Ao, < 0. Notation 1, j(k,) is used for respective eigenfunctions.

By 04( H) and o(H) we denote respectively the discrete and continuous components of the

spectrum o (1) of the Hamiltonian /1. Note that oq(/1) = (Awin, +00) with Ayin = min A, .
]

Notation Hg is used for the operator of kinetic energy, (Hof)(P’) = P*[(P). Ry(z) and
R(z) stand for the resolvents of the operators /fo and 11 ¢ Ro(2) = (Mg = =1)™" and R(z) =
(H ~ 2I)~" where in this case, / js the identity operator in Hp.

Let Map(z) = apva — vali(2)vg, o, f = 1,2,3, be the Faddeev components 24], [29] of
the three-body T-matrix 7'(2) = V-V R(z)V with V = vy + v, +v3. Operators M,g4(2) satisly
the Faddeev equations [24], [29]

(2.4) Mos(z) = bapta(z) — tc,(z)lfo(z)z Mos(z), o =1,2,3.
v#a

Here, the operator t,(2) has the kernel
(2.5) ta( P, Pl7z)= lo(kavkrl,yz-]’:)é(pa "p:;)v

where to(k, K, 2) stands for the kernel of the pair T-matrix la(2) = va — vaTa(2)v, with
ra(z) = (ha - z)—l'

It is convenient to rewrite the system (2.4) in the matrix form
(2.6) M(z) = t(z) — t(z)Ro(2)TM(2),

with t(z) = diag{t:(2), ta(z), t3(2)} and Ro(z) = diag{ Ro(z), o(2), Ho(2)}. By T we denote a
number 3x3-matrix with the elements Tog = { —8,45. M(z) is the operator matrix constructed
of the components Mag(z), M = {Msg}, o, = 1,2,3. The matrices M, t, Ro and T

3
arc considered as operators in the Hilbert space Gy = (I)l Ly(RS). By Q¥)(2), Q®)(z) =
o=

(——t(z)Ro(z)T)kt(z), we denote iterations of the absolute term Q49)(z) = t(2) of (2.6).
The resolvent R(z) is expressed in terms of the matrix M(z) by formula [29]

(2.7) 1(z) = Ro(z) — Ro(2)2M(2)M Ro(2),

where Q, € : Go — Ha,stands for the matrix-row, §} = (1, 1, 1). At thesametime Q' =Q" =
(1, 1, Dt The symbol “4” means transposition.

T"hroughout the paper we understand by 2z~ A, z€C, A€R, the main branch of the
function (z — A)'/2. By ¢ we denotc usually the unit vector in the direction € RN, ¢ = q/|ql,
and by $V=! the unit sphere in RV, §€ SV-!. The inner product in RV is denoted by (-, ).
Notation (-, -) is used for inner products in Hilbert spaces.

Let H™ = Ly(R?) and H™ = 51 H*”. By ¥, we denote operator acting from M
1=

to Ho as (Yo S)(P) = it})u'j(ka)fj(pa), f= (f,,fz,...,f,.a)t. Notation W2 is used for the
J=1

operator adjoint, to ¥,. By W we denote the block-diagonal matrix operator ¥ = diag{¥,, ¥;,



3
Wy} which acts from Hy = B H) Lo Gy and by ¥*, the operator adjoint to W, Analogously

az=|
to Vs, ¥, W and W* we introduce the operators &, @5, ® and @, which are obtained from
the former by replacement of the ctgen[uncuons Ya.j(ka) with the form-factors bo,j(ha) =
(U,,lflaj)( ) a=1,23,7=12,.
The pair T-matrix { ol2) is known [24],[20] to be an analytical operator-valued function
of the variable z € C\[0, +00) having at the points z € o4(h,) simple poles. Its kernel admits
the representation

(28) olky 1,2) = Z Baslk % &) 4k, %2),

where I,(k,k'2) is a function lolomorphic in z € C\[0, +00). Therefore
(29) ta(z) = —®aga(2)®;, + ta(2),

where the operator to(2) has the kernel I, (ko &%, z2~p2)6(pa—p),) and ga(2), ga(z) dlag{Ja 1(2),
o Jams(2)}, is the block-diagonal matrix with elements g, ;(z), the operators in H(®9) with

smgular kernels ga,j(2)(PasPhs 2) = 6(po = p1) [ (Ve — 2+ P2) .
Below, we consider restrictions of different functions on the encrgy shell

(2.10) k=zk, ke S?

in the two-body problem and on the energy shells

(2.11) P=\zP, PeS",
and
(2-12) Pa = 2~ Al::,jﬁva.j) ﬁﬂ,j S 52, a=1,2,3, .7 = 1,2,...,7’10,

in the problem of three particles. In the last case the sets (2.11) and (2.12) are called respec-
tively thrcc-bocly and two-body cnergy shells.

Let O(CN) be the Fourier transform of the space C’°°(RN) (we deal with N =3 or N =6
only) Any f(q) € O(CN) 1s a holomorpluc function in variable ¢ = (q,, q;, 5 QN) € CN

‘‘‘‘‘

of the ball centered in th(, oru,m and conta.mmg the support of the Fourier pre-image of this

function in RY, |m| = m;+ ...+ my, and |Img| = \/EF, |Img;|2. As 0 one can take
arbitrary positive number. For fixed f and m = (m,,...,my), the coeflicient ¢, > 0 depends
only on 8.

Let j(z) be the operator restricting functions f(k), k € R?, on the energy shell (2.10) at
z= E+1i0, E > 0, and continuing them if possible, on the domain of complex values of the
energy z. On the set O(C?) the operator j(z)acts as

(213) i(2)J (k) = J(v/7k).
Its kernel is the holomorphic generalized function (distribution) [42] ik, K, z) = b(/zk ~ k').

By j!(z) we denote the operator “transposed” with respect to j(z). Acting on p € Ly(S?)
the operator ji(z) gives as a result the generalized functions (distributions) over O(C3),

(2.14) (i1(=)e)(k /dkak vk k) = L=V gy,



(215) (@)= [dbsvabied), feorc.
&2

Remember that in terms of the operators j(z) and j!(2), the pair scattering matrices s, (z).
8o(2) ¢ L2(5?) ~ L2(S?), look as (index of pair is omitted) [39]:

(216) s(2) = I + ag(2)j(2)(2)i'(2),

where ap(2) = —miy/z and I is the identity operator in L,(S?). Ana.lyt.icity domain of s(z),
2 € C, is determined in a gencral way by properties of the pair potential » (sce c.g., [3], [1].
and also {39], [40]).

Let Jo;(2), a=1,2,3, ] = 1,2,..., 1, be the operator of restriction an the cnergy
shell (2.12). Its action on O(C?) is defined as

. (Ja.j(z)f)(ﬁa)=f(\/z_’\n.j ]30)7 a=123, 7=12..1n,.
Operators Jo,;(2) have the kernels Jo ;(Pa, pl, 2) = 6(3/2 = A jPe = L)

By Jo(z) we denote opcrnior of restriction on the shell (2, ll) On O(C% this opera-
tor is defined as (Jo(2)f)(P) = f(VZP). lts kernel is Jo(P, P', 2) = (VZ)36(/z P - 1) =
8,/ - | P8P, ).

Notations J/, j(z) and Ji(2) are used for respective “transposed” operators. Their action
is defined similarly to (2.14),(2.15) as

(')L,j(z)‘P)(]’a) = /dﬁ;‘s(Pa R V22 ’\n';ﬁij)‘n’(ﬁ«"x)a w € :}_"t(a,j),
S?

OKeP) = [ aPaP - VAP, o€ Fa
, FA
where H() = L,($?) and Ho = L(S%). The generalized functions J i(z)p and J(2)p are
clements of the spaces O' (C") and O'(CP) of distributions over O(C?) and (’)(C“) respectively.
QOpcrators Jo,; and Jaj are then combined into the block-diagonal matrices J)(z) =
diag {Jo,1(2), ey Jama(2)} and JON(2) = diag )a' (2)y0ey L (2)}. Latter arc used to construct,
operators Ji(2) = diag{JV(z), JA(z), J®)(2)} and J}(2) = diag{JM(z), JD(z), l(")'( )}
The action of J©)(z2) and J;(z) on clements of thc spaces respectively, O} = X Oled),

o=l
‘ ) 3
oled) = O(C3) and O, = ><l O can be understood by the definition of the operators J.. ;(z).
a=
The operators J(®)(2) act from He) = E{')’l H(@i) 1o the space of analytical distributions Q)
J=
. 3 . ‘
over 0, In its turn the operator Ji(z) acts from Hy = @ H(@) to the space of analytical
: - a=1
distributions O} over Oy.

At last, we use the block- dlagonal opcerator 3x3-matrices Jo(z) = diag{Jo(z ) Jo(2),Jo(2)}
and J}(= ) = diag{J(2), J}(=2), J3(2)}, constructed of the opera.tors ]o(z) and J}(z), 1(,&.pe(.l,|vcly
as well as operators J(2) = diag{Jo(z),J1(2)} It(z) = diag{J}(z),JI(= z)}. Action of these
operators is clear due to definitions of th(' operators Jy, J;, Jf) and Jl{ In particular the
operalor ‘J!(z) acts from the space Go = G) Ho to the space X O'(C8).

The identity operators in the spaces ’Hg, Go, H; and ’Ho ({) 'H; are denoted by iu, io, il
and I respectively.



3. ANALYTICAL CONTINUATION OF THE 7- AND SCATTERING
MATRICES IN THE TWO-BODY PROBLEM

It this section we remember some analytical properties of the pair 7°-matrices which will be
necessary further when posing the three-body problem. Note that above properties are well
known (sce e.g., Refs [4], [3] and also {36]) for a wide class of the potentials v (). As a matter
of fact we want {o expose here only an explicit representation for the two-body 7~ matrix on
unphysical sheet which is a particular case of the explicit representations constructed in the
aunthor's work [39] (see Theorem 2 in [39) and comments toit) for a rather more general situation
ol analytical continnation of T--matrix on unphysical sheets in the multichannel problem with
binary channels,

Fhroughout the section we shall consider a fixed pair subsystem, Therefore its index will
be mmitted in notations. Statements will be given for the first variant of the potentials (2.2). If
it will be ueeessary, different assertions for the second variant (2,3) will be written in brackets.
Also. we use the notation

. i .
(3.0 Py = {:: Rez> —1)2+m(lm:)l .
Ab
Remember that the encrgy Riemann surface in the two- body problent coincides with that
of the funetion 22, On the physical sheet, 2172 = /Z, and on the unphysical one. 21/ = — /Z,

For these sheets we use the notations respectively. 1y and .
Representation for continnation of 1(z) on unphysical sheet which will be used further, is
describeed by the following statement which is one-channel variant of Theorem 2 of Ref. {39).

TiworeEM 1. The two -body I'-malrir I(2) allows analytical continuation in vaviable = on the
sheet 1y (on the domain P,y ) as a bounded operalor in Ly(R®). Result of the continuation

l(::)lIII ( I(:)Irl.ﬂlh) s eapressed by U and S -malvices on the physical sheet:

(3.2) =)y, = 1(z) = aol2) 7(=)

where 7(2) = (tits=450)(z).  The kernel  t(k, k',.:')lnl is a /m/nnzori;hfr Juuction of varviables
k' € C*and z € 1)\ (0 J ga(h)) (I.-,A./ € Wy and = € Py I\ (are Jou( 1)) ) Here,

Gus @5 @ sel of the points = € C\ a(h) (:: € ’P,,\;r_(—/_l-)-) where the operatar [s(2)]™" docs not
erisd,

Fimphasize that for the sccond variant of potentials (2.3). the exisience of the coutinuation
of 1(z) on unphysical sheet is guaranteed by Theorem | for the domain Py )11, bounded by
the parabola Imy/z = b, inside of which the function v (\/S(i— /:’)) is lolomorphic in 2
for arbitrary kA € S2 Note also that the operator (j13')(2). included in Eq. (2.16). is a
compact. operalor in C'(5%) [39]. Consequently on the domain of its analyticity 1y \ = (k)
(PuN o\ (7(/1)).()11 the physical sheet, one can apply to the equation

(3.3) _ s(z)A =0

the Fredholim alternative [18] (see Ref. {39]). This means that the set gy, beiug conntable, has
not. concentration points in C \ a(h) ('Pp, \;m) .

On the physical sheet Ny, the pair 7 matrix admits the representation (2.8). 11 follows
fromn the Lippmann Schwinger equation for ¢;, j = 1,2,....n,

(3.1 Gi(k) = —/((q v(k.q)

———'\—.(,9_,‘((/). ,\J‘ < (.
N
R

i)
[/ e



that form- factor ¢,(k) admits analytical continuation in k on C* (on Wa) and at the same
time, it satisfies the type (2.2) estimate where one has to replace Oy with a number 4,1 < 0 < 0,
which can be taken in any close vicinity of Og [24]. Hence the cigenfunction

- &, (L)
(3.5) (k) = LQJ
of h admits also an analytical continuation on C* (on Wy,) with the exception of the set
(ke C*: k2= A; ;} where ;(k) has singularities (turning for k = /zk, k € 5%, into a pole in
energy z at z = Aj). i

The regular summand ((k,k'z) of the kernel of {(z) is holomorphic function in vaviables

k,KeCYhzellg (kA €Wz ePy)1lo) and admits the estimate
[I(k, k"2)] < o1 + 1k = K'])7° ~expla(] Tk} + [ T £7]))],

with arbitrary 0 € (1,05).

As to continuation of ¢( z)| n,» it follows from ig. (3.2) that the points z € o4(h) give 1o
it generally speaking, poles of the first order. One can casily check however that if eigenvalue
A € o4(h) is simple then the respective singularities of the both summands of (3.2) compensate
cach other and the pole of t(z In does not appear at z = A, It follows from the Fredholm
analytical alternative [18] for Eq. (J 3) only that poles of (= |” at 2 € gy are of a finite
order and no more. [t is casily to show thai if A(k) is a nontrivial sclution of Eq. (3.3)
at z € 0ps, 2z € aa(h), then the Schrdinger equation (—A, + v#(x)) p#(r) = 2p#(x) has
at this z a nontrivial (resonance) solution ¥#(z) with exponentially increasing asymptotics

~ivalz]
. e
w#(z) = (A(—=Z)+ o(1))
T l.’l:‘
sponding to resonance at the energy z (sec e.g., Refs. [3], [6], [7]). The function A(k) makes a
sense to the breakup amplitude of resonance state?.

The formula for analytical continuation of the scattering matrix on unphysical sheet 11,
(on the set. Py} 11;) follows immediately from Eq. (3.2) (see Rel. [39]),

(3.6) S(Z)Im =E[s(z)]"‘£,

. The function %, (z) is so-called Gamow vector corre-

where € stands for the inversion in Lz(S?), (Ef)(k) = f(—k).
U tilizing (3.2) one can casily Lo get the explicit representation in terms of the physical
sheet as well for analytical continuation on I, ( on P, ;) of the resolvent 7(z) keruel®:

(3.7) |” =1+ ag(/ - rv)jts~! (1 — vr).
I"be continuation has to he understood in a sense of generalized functions (distributions) over

©O(C?): one has to continue the bilinear form ¢(z) = (r(2) f1, f2) = / fl( )fz( ) with fi,
f2 € O(C?).

4Analogous assertion takes place as well in the multichannel scattonng, prohlcm with rn binary channels:
solution 4 = (A1, Az, ..., An) to the equation s;(z)A = 0 at resonance energy z € am (in notations of Ref. [19])
re:presents amplitudes (l e. caeflicients at spherical waves in coordinatce asymptotics of the channel components
of solution to respective Schrédinger equation) A|(L1) Az(kz),..' m(km) of resonance on the shect 1; to
breskup into channels 1,2,...,m, respectively.

3Sirnilar representations lakv place as well in the case of the multichannel problem. In notations of Raf. {39]
read them as (2 )In =r+4 (I —-11}).1'/11,(,,"l J(I - vr).



4. MATRIX M(z) AND THREE-BODY SCATTERING
MATRICES ON THE PHYSICAL SHEET

At the beginning, remember shortly principal properties [24], [29] of the Faddeev equations (2.6)
for the matrix M(z) and propcrties of the kernels Mog(P, PP, z) at real arguments P, P! € RS,
To formulate these properties we cite here the following definition [24].

The operator-valued functmn Qap(z) of variable 2 € C, Qap(z): Ho — Ho, is the type

D, function, «,f =1,2,3, il it admits the representation
Qaop(2) = Fap(2) + ogo(2)Lap(2)+
(1) +Jop(2180(2) 25 + Paga(2)Kap(2)Bo(2)P).

The operator-valued lunctions Fog(z) : Ho — Ho, Zap(z) : Ho = HE), Jap(z) : HE) o

Hy and Kop(2): HY — H@ are called components of the function Qag(Z) I Qoo(2) isan
inlegral operator then its kernel is called  kernel of the type D, .

Let M(P,0) = Z (14 [pal)~?(1 + [pal)~°. A function Q(z) of the type D,g is called
a.f, o
the class Dop(0,t) function if its components Fop, Zog, Jop and K, are integral operators
and for the kernels Fog(P, P',z} at P, P', AP, AP’ € R®, the estimates

(4.2) |Fap( P, P', 2)| SN(on)O + s )—l’

].7-",,;(1’ + AP, P+ AP’, z+4 Az) — F(P, P’z)l <
(4.3) S NP0 +27) T (JAPI 4+ |AP + |Az]*)

with certain ¢ > 0 take place and at the same time, the kernels T, ;,0(pa, P/, 2), JToig (P, D, 2)
and Ky j; m(pn,pﬁ, z) satisfy inequalities which may be got from (4.2) and (4.3} if to take
respectively, ko = 0, kj = 0 or simultaneously, ks, = 0, k; = 0.

Let Q((z) be an iteration of the absolute term of Eq. (2.6). In a contrast to Q(©(z) == t(2)
kernels of the operators @™ (z) at n > 0 do not include §~functions. Moreoveér, it follows from
the representation (2.9) for t4(z) explicitly manifesting a contribution of the discrete spectrum

of pair subsystems, that matrix elements Q:ﬂ)(z) o, =1,2,3, of the operators Q(")(z) with

n > 1 arc actually functions of the D,p type. Their components (")(z), Ié’;,)(z), (f;,')( )

and )C‘(,"a) (2) at z € C \ [Apin, +00) are bounded operators depending on z analytically, In
the case of potentials (2.2) and (2.3), the Hélder index of smoothness u for their kernels
with respect to variables P, P',p, and pj at z € [Amin, +00) equals to 1. If n < 3 then as

Inz — 0, Rez € [Amin, +00) the kernels .’F(") I(") 5 J,,(,")k, and ICE,"}M have so—called
minor (three—particle) singularities (sec Refs. [24] and [29)) wcakcnmg with growing n. At
n = 4 such singularities do.not appear at all and these kernels become Hoélder functions in
all their variables including the limit values z = £ £i0, E € (Anin,+0o0). More precise
statement [24] is following: the operator-valued functions Qf,';,)(z) at'n > 4 belong to the type
Dag(lyi2), 0 < 0 < 0o, 0 < p < %, uniformly with respect to z changing on arbitrary
bounded set in the complex plane C with cut along the ray [Amin,+00). One can take as 6,
0 < 0p, any number as close as possible to §y. Thus, instead of M(z) it is convenient [24] to

come {o the new unknown W(z) = M(z)— 3, Q(")(z), satisfying the equation
(4.4) W(z) = WO(2) ~ t(2)Ra(2) TW(2)

analogous to Eq. (2.6) but with another absolute term W(z) = Q)(2).
Immersion of Eq. (4.4) in the Banach space B(f,1) (a description of the latter gee in
Refs. [24), or [29]) leads one to the following important



TuroreM 2 (L.D.Faddeev [24)). [Eq. (2.6) is unigucly solvable al z & a4(11). ls solution
M(z) admils the representalion

3
(4.5) M(z) =" QM(z) + W(z),

n=0

where the operator-valued function W(z2) is holomorphic in variable z al 2 ¢ a(/l) and ils
components Wap(z) belong Lo the classes Dop(0,pt), 3/2 <0 < 0y,0 <t < 3, uniformly
with respecl to z changing in arbilrary bounded set of the complez plane C wzl/: (uI along the
ray [Awin, +00) and removed ncighborhoods of the points of aq(H).

Remember now structure of the scatiering operator S {24], [29] for the system of three
particles. Tor this purpose we introduce the operator-valued function 7(z), T(3): Hoh'H,; —
Ho® My, of 2 € C \ a(H), ,

_ QM(z)Q! QM (z)TW
(46) T(:) = ( \p-mg()z)m \D'(Tv+(‘f)M( )TV ) ’

with v = diag{vi, vs,v3}. Note that Too(z) = QM (2)Q = T(2), Too(z) : Ho — Ho. 'The
test of the components To1(2) @ Hi — Hoy Tio(2) ¢ Ho — Hy and Ty(2) ¢ Hy — H, is -
cxpressed by the transition operators [29] (sce also [34]) Uo(z) = QM ()Y, U} = TM(z)0!
and U(z) = Tv4+ TM(2)T: Toy=Up¥, To= "I/} and T = W"UW. The oporalor T(=)
is a matrix integral operator with kernels Too( P, P, 2), Ta o(pa,l z), Top,i( P pp,2) and

T.i.8.i(Posppr 2)y, a =123, i=12,.,n, B =123, j=12..,n4 propertics of
which are deter mm(d lncludmg the llmlt pomts 2=+ 10 L > Am.,,, by l‘llcorcm 2.

By T(z) ’T(z) Ho® Hy — 'Ho @ H;, we denote analytical continuation in C* '(s('(‘
Theorems 3, 6 and 7) of the operators 7 (£ + i0) having the kernels

(T(E:Efﬂ)) (P l”)
(T iz()))w (P, pl)
( /Jd:z())) me)
( (Filo))a,ﬂl(pﬂvpﬁ)

Too(£VEP, :t\/“i)' E+i0), E>0;

Toup(EVEP, £/E = Xgip, E £10), E>0;

Toio(£/E — /\,,,,,pa, :i:ﬁl”, E £40), E >0

Taispi(ENT = Aaibar £/E = X505, 2 £ i),
E > max{/\n',-, /\p,j}.

We assumne by definition that the produc‘t, (IT31)(z) coincides with 7(z),

‘ - JoToodd)(2) (JoTad!)(2)

1.7 T(z) = (ITI =_( (JoToody ] )

( ) (z) ( )(2) (JJ'TioJI))(Z) (Jllrn-]})(Z)

Flemnents of the matrix (J’IJ')(z) are expressed in terms of amplitudes of different processes

taking place in the three-body system under consideration [29] (sec also Scc. 7 of [43]).

The scattering operator.S-is unitary one in the space Ho @ H, and as well as T, it has a
natural block structure. Its components Sgo, Su;,55 Sa,i:0s Sa,is; have the kernels, rcspcctivcly
8(P = P') = 2mi(P* ~ P?)Too( P, P', P 4 i0),

“27”6(172 - P'[s - ’\ﬂ J)%ﬁJ(P Pas Ao+ Pn +10),
271 6(Nes + P2 = ,):2)7- i o(p,,, P’ P’2 + 20),
aﬁ&u‘?(l’n - P/)) - ‘
—27i 6(Aayi + P2 - M. —_Pg)%.i:n,j(ﬁa; Py Mg + Vg +i0).

il

(18)  Sw(P,P)
(1.9)  Sowi(Pyph)
(410) Su,i;o(paa P’)
4.11) Sa,i;ﬁ.j(paa I”ﬁ) '

it
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Seattering matvices arise from 8 in the spectral decomposition for Il as operators acting in
tlie ~cross seetion” (at fixed energy) of the space Ho Hy in the Nenmann direet integral (28],
Fstraction of the scattering matrix from S is related as a matter of fact to the replacements
P2 = I Mo +p2 = oo =1,23,i=1,2..1., in expressions (4.8)~(4.11) and then to
the factorization of dependence of the kernels of S on the energices /2 and £,

(1.12) S(I. 1) = —mib(12 = E'V(E)S( + i0)d( 1),

where J(1) is a diagonal matrix -function constructed of the Heaviside functions 2( /) and
D =Nay) () =diag{d(£), D(E = ), 008 =), 0(E = Xap)s o (2= Ag ) V(JF =
Mot Yoo U(E = Mg} Atz € C weunderstand by S’(z) the operator-valued function §'(z) =
AN ()T + T(2). Here and all over further, A(z) = diag{Ao(z), A1(2)} with Ag(z) = —7is?
and A4y(2) = diag{ AW, AN AMY wherein its turn, AR(2) = diag{Aa1(2)...., Ao, (2)) with
/‘,.\,(.’J) = —Wi \/L' — ;\,,_‘,.

Continuing the factorization, §'(z) = §(z)A™Y(z) = A~'(2)5'(z), corresponding to sep-
arating in (1.12) the multiplier —wiA=(/2 4 i0) as a derivative of measure in the Neumann
imegral above {28 for Hy ® Hy. one comes to the scatiering matrices

(1.13) C8(z) =14 (ITITA)(z) and SY(z) =14 (AITIY)(2).

[n a contrast to Ref, [28] it is more convenient. for us to use namely this. nonsymmetric. form
of the scattering matrices. Matrices S(z) and St(z) are considered as operators in Ho & Hi.
Mz = I+ 0, I£ > 0, these operators are unitary, At z = £ +i0, I < 0. there are
certain truncations of S(z) and S'(z) determined by the number of open chauncls which are
unitary in Ho @ Ha, namely the matrices S‘(I’]) =1+ 19(/3)(5’(/3‘ +10) - i)l)( I7) and .S:f(l;') =
1+ 19(/5')(5"(['3 +10) — i)ﬁ(l*)). It follows from Eq. (4.13) that operator T may be considered
as a kind of “multichannel 7 -matrix” (ef. Ref. [39]) for the system of three particles,

Note that the matrix 7 (=) may be replaced in Eq. (1.13) with the matrix 71(2) obtained
from T(z) by the substitution Tv — vT (respectively, I/ — UV = v+ TMY) in the second
component, of the tower row of (4.6). To prove that (JTHI)(z) = (ITIT)(2). it is sulficient 1o
vhserve that for 2z = £ 4140, V> My, o= 1,23, j=1,2...,n,,

(L14) (LY Tvwdl)(z) = (L e v Tl )(2).

Indeed, according to Fas. (3.4) and (3.5),

L= bap Foil B (o 1)) S (K (s p0))

(1.15) (U= TVvW)yin,i(Pa-ply) = == - :

. Isal’ K e, )12 = A

- I—6 ) ~n\' i‘.gi) )y )l ; k(n) 1 - Pa
(1.16) (VIVTW)aiin,i(Par 1) = = li( % A "((]n) il 4’/1'.1( s Ul )
|sas B 0l p)I2 - At
where ) et
(1.17) g, q)) = 2L, 1,6=1,2,3,
. a6

0,q' € R® (we shall suppose later that ¢,q € C?). One can casily to understand that on the
energy shells [po| = VF = Aaiy 0l = VE = Agjr > Ay > Ay the denominators
of the fractions (4.15) and (1.16) coincide,
(RO = Xoi= ()2 = My =
’ ]

(1.18) = F—T:Fw i+ = Xgj = 2V E= M i VI = Xy ilpo- ply) = s2,4 ).
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Meanwhile the expression (4.18) can not hecome zero at 15> Ay i 10 > Mgy (see Lemma 2), It
follows now from Eqs. (4.15), (4.16) and (4.18) that the equality (4.14) is true,
Along with S(z) and §(z) we shall consider also the truncated scattering matrices

(4.19) Si(z) =1+ (FITILA)2) and S}z) =1+ (ALITI) (),
where the multi-index
(4.20) I = ([U, [l,lf sy ll.m [} 12.1 1400y IQJJ'H l.'l,!s ) I.’l,vu)

has the components lp = Oorlp = £l and [, =0o0rlo =1, a = 1,23, j=12..,n, By
[, and I, we denote the diagonal number matrices

(4.2]) L= diﬂ?,{lo, ll.h H-yll.n] ] 12.19 sery l?.nza I.’!.lv reey l.'}.n;;}
and .
(’1«22) L= dlﬂg{lloly [l,h reny [hflx [ 12111 vy l’l.nzy 13,17 veey l.’i,n_,},

corresponding to the multi-index [. The matrix L is evidently to be a projector in Hy ® H,
on the suhspace 7:{(,“ if lp = 0 or on the subspace Ho ® 7:1(,‘) it Iy # 0. Here in both casoes,
S0 . fas)
H) = {”i}}#u?{ .

As can he seen from formulas (4.13) and (4.6 the scatlering matrices S(z) and S(z)
include kernels Mag( P, PP, 2) taken on the energy shells: their arguinents £ € R® and ' € RY
are connected with the energy z = £ + 10 by Eqgs. (2.11) at £ > 0 or (2.12) at £ > A, ;.
We establish below [see formula (6.8)] that analytical continuation of the matrix M(z) on
unphysical sheets of energy z is expressed in terms of analytical continuation of the truncated
scattering matrices Sy(z) or S}(z) and the half-on-shell Faddeev components M,g(z) taken on
the physical sheet. More precisely, along with Si(z), the final formula (6.8) includes the inatrices
(LodoM)(z), (LiyW"TM)(z) and (M3} 10)(2), (MYWI ) (2). Here, Lis a certain multi
index (4.20) and I = diag{ Lo, L1} is the respective matrix (4.21) with Lo = lo.

In the rest of this section we shall formulate some statements (Theorems 3-7) concerning
1he existence of the analytical continuation of the above matrices and their domains of holmor-
phness. In view of shortage of space we shall not give here full proofs. Note only that proofs
are hased on analysis [24] of the Faddeev equations (2.6). For all this, one has additionally to
pay a special attention to studying the domains of holomorphness in 2z of the functions

-1 .
(1.23) [n?. + 7" = 2enn(s ) = $32]

with one or both arguments p, and pj, situating on the energy shells (2.11) or (2.12). Functions
(4.23) arise when iterating I9q. (2.6) because of the presence of the multiplier Ry in the operator
—tR,Y. Also, the functions (4.23) appear as a display of singularitics (3.5) of the cigenfunctions
hay, a=1,2,3, 7=1,2,..,n,.

In the case when the arguments p, and/or pj are taken on the shells (2.12), p, =
\/?_—_I,_Jﬁf, and pfy = \/z — Mg j P, the holomorphness domains of the functions (4.23) with
respect to the variable z are described by the following plain lemmas.

LEMMA 1. Forany p> 0, —1 <7 <1, the domain

Rezs 2 4 5 (Im z)?
(4.24) cz> Y mz)
contains no roots z of the equalion
(1.25) z=A+p+2Vz-AJfpn—s*z=0,
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with A < 0, 0 < [e] < | and $* = 1 = ¢ For any number z € C oulside the domain ({.24) one
can always find sweh volues of paramelers p 2 0 and 3y, —1 L 5 < 1, that the left-hand part of
Iy, (4.25) beeomes equal lo zero at the point z,

LEMMA 2. Let the parumelers of the equalion

(4.20) 2=M+z~d+2yz~-MVz=Ian—-522=0

be such; € [=1,1], M €A <0, 0<e<1ands®=1~c? Then the followmy usserlions
take ploce,

1) If \Az] > M| then for all 5 € [—1,1) Ey. (4.26) has a unigue rool z and this root is
real, Morcover z = 24 ifn 20, and 2 = z_ zf 1 <0 with

(U4 ¢ =20\ + M) £ 2/ Vo st = (AN — A )2c2(1 = 7))
(14 c?)? — 4c?n? ’

(4-27) 4 =
When 1 runs the interval [~1,1), the roots z4 fill the interval [zy, 2n) with the ends

1 T T
(1.28) zp = ;5[—|'\1| = A2 = 2cv/[M] - {Ae]]

and
1
('1.29) Zry = —[—|/\1| - |/\2l + 2¢+/ I/\] . ‘AQI y 2t < Al

2) If [\z] = 2| Ay| then Eq. (4.26) has lwo real roots:
u) the Tool z = Ay czisling Jor alln € [-1,1];
b) the rool z = z_ given by (4.27) which exisls for —1 <5 < 0 only.
For —1 <75 < 1 these rools together fill the interval [zu,/\ ] with = ~|A] (1 +2cY/s%).

3) If || < | Ay| then
[t —pJT—c2
a) for -1 < <7, " = L(] ~7) sl I'\ I Eq. (4.26) has lwo real roots z4

given by (4.27), which fill the interval [21, 2oy with the ends (4.28) and (4.29), z < Ay;
b) forn® < 1 <0 Eq. (4.26) has two complez roots 2+ described again by Eq. (4.27). When
G
AT AT

(along real azis) and b =

n moves, these rools fill the ellipse centered in the poinl z, = —|M\] |1 +
(¢ = p)(1 —cp)
(1T )51 + )
(along imaginary azis). The right verter of the

I‘/\ll + |Aq]
14 c?

Half-azes of the ellipse are given by a = |\] -
| - (c* = p)(1 - %p)
(1+07)57 1__/, \/(1_*_62)2 4cin2
cllipse is located in the point z( = Z+a=—
(e) _

siluated between Ay and A;. 1ts left

verlez is z,’ = 2. — a < zy. _
Let H(ﬁ") be the domam in the complex plane C with cut along the ray [Amin, +oo) where
the condltlons (4.24) with A = A j, ¢ =.cop and the inequalities

’

(4.30) Rez > Ag'j - sagb + W(Imz)

are valid simulta.neously for all @ = 1,2,3, a# B. In the case of the potentials (2.2) one has
to take b = +oo in (4.30).

By Raip., @ # B, we denote domain complementary in C \ [Amin, -+00) to the set filled
by. the roots of Eq. (4.26) in the case when A; = min{)a,, As,;}, /\2 max{Aa:, Agj}, c= |caﬂ|
and 7 = (pa, flg) runs the interval [-1,1]. -
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TuroweM 3. The malriz integral operalor I/,’]"n(z)l/{, z = &0, acting in 'Hy, allows

analytical conlinualion in z from vims of the ray If € (A, 400), A = m(;\) Ao on the
{
17’k #0
domain
+(hol k) =TT
(1.31) el < | ﬂ Raind (N () 1)\ a(T)
L A0 ,‘#0.
z" #0 17 LE O
where I = diag (I{,, Barees Bngs Lans e B0 1{,‘,,.,.,13,"3) A = diag (1{)’,1',",, oY 1o Ly
1y veo )  wilh o = 1§ = 0. The nontrivial kernels (L Tin(2) 1) (Rorfp2), L, #0,

. v - - ’ )I - -
5, # 0, turn into functions holomorphic conccrning = € Hf,,':,) and real analytic with vespoet

10 oy By € S*.

REMARK 1. The domains [1{E" and 18" coincide, 1" = 11N,

If =1 =1, weuse for 'l the notation 11"V,

(4.32) Ll = e,

THEOREM 4. Lel Lo = lo = 0. Then the matrices (MY W} 1) (2) and (InJ 9" Y M)(2), = =

12440, allow analylical conlinualion in z from rims of the ray I € (A, +00), A = p l;llﬂx 4 Ag»
WJ)iig,,

on the domain ﬂ(lml)\a(ll) us bounded for z & [Anin, +00) operalor—valued Junctions of variable

z, (MYWIIL)(2): Hy = Go and (LY M)(2): Go— Hi.

"Continuing the half-on-shell matrices (JoM)(2), (MJf,)(z), z=[74+1:0, I7>0,into

domain of complex = is considered in a sense of distributions over @(C®). For example of M3}
we consider continuation ol the bilincar form

(F, (MINE£i0) = / dp / dP' Fo( PYMag(P,£VE P', E 4 i0) f5( )
oBRe g8 :

where F = (Fy, Fy, ) with F, € O(C®) and f = (fi, f, f3) with Ja € Ho.

When constructing continuation of this form and that for (JoM)(F % i0) we base on two
simple statements concerning the domains of holomorphness of the function (4.2: i) in the case
when argument P' belongs to the three-body encrgy shell (2.11) and thercfore pj, = 2V
with v/ € [0, 1]. ,

LeMMA 3. Lel in the equation p+ zv/' + 2¢y/2/V'\/py — %z = 0, the parameters v' and 5 run
the intervals 0 L V' <1 and —1 <7 <1 respectively, and ¢ > 0, s> =1 — %, z € C be fized.
Then the rools p of the above equation fill the sel consisling of the line segment {0,z] on the
complez plane C and the circle cenlered in the origin, the radius of which being equal lo c?|z|.

LeEMMA 4. Let the paramneters of the equation
(4.33) z— A+ z2v 4+ 26/2Vz = My ~ s*z = 0,
salisfy the conditions v € [0,1}, n € [-1, 1], A<0,c€(0,1) and s =1 —c%. Then if v and

y run the above ranges, the rools z of E'q (4.93) fll the ray (—oo0, A/(1 +c')] and lhe circle
centered in the point z, = A[(1 — ¢*), radius of which cquals to sz\/(l —-ch.
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Let TI% ) 1il* ¢ €%, be the domains complementary in C* to the totality of circles

having radii 1 = e25[Aa31/(1 = chg) and centered in the points 2. = Aq;i/(1 = cly) where

0.3 =123 A#ao,and j =1,2,...,1, In the case of the potentials (2.3) the domains I.If,o)*
must s,\lml'\ extra (on(lillons

|80a]2b? (1 + [can])?

1,534 Rez > — -
(1:4) T enale T Aong 62

(Tmz)2.

foralln, 8 =1.2,3. 4 #o.

Utilizing Lemmas 3 and 4 one can prove the following
Turores 0. Kernels of the matrices (MJ’)(:) and (JgM)(2), z=E+i0, I >0, allow
analylical continnalion in z on lhe domains, respectively ll( " and II(O) p ﬂgu)a; CC* T
conlinwalion of kerncls of the malrices (Q(")J",) (2), and (JOO("))( 2), n <3, included in the

representalion (4.5) for M(z) has lo be understood in a sense of distributions over O(CY). At
the same time the kernels

('l 3,)) ¢.n[J(. )a\/E/)" 2), In,j;ﬂ(p(n\/zl)’v Z),
Jn;ﬂ.k( P, V“\/’_/-’l’;iez} and Kn.j;ﬂ.k(l)nv\/E\/’/_’mh:)‘
a,d = 1,20, 7 = 0,2, .10, k=1,2,....15,

of the maltrices (Q(")Jf,)(::), n>A, and (WIN(z) as well as the kerncls

(4.36) Foap(VZP, 1'.2), Tojis( Va7 o . 2).
Jn:li.k(\/‘:l)vp?h z) and kn.};li.k(\/’-:\/‘?l"n-l’:'h:)

of the malvices (J()Q("))(z), n 24, and (JoW)(2) can be continued on the domaing l.l},u):t
as usnal holomorphic funclions of variable z. Being lolder functions of variables " e s
or \/;77‘);,, 0 v <, pye S (Pes orVupao 0< v < 1. o €8%) with inder
i€ (0, 1/8), the kevnels (4.35) (kernels (4.86)) considered as funclions of P € RY, p, € R?
(1" € R®, pjy € R?), can be embedded in their tolality in B(0, 1) with 0 and p. the arbitrary
numbers such that 0 € (3/2, 0g) and p & (0, 1/8). Al [Imz| 26> 0 one cun take p =1

Let us comment. the assertion of the theorem for example of the matrices (MJ})(z). Note
in particular that continuation on 1% of the form (I", (Q(")J(‘,)(:)f) . ( o (t‘.Ju)( )
is described by the equalitics

nf2

(I',.,(t,,l(,( ) o) /dk /(/l. /(lp /(/w sin? !, (()slu, | X
(4.37)

,"(H \/_(,O'ﬁw" n’:('o" w ) ﬂ Aﬂv:t\/—s"]wnp ) jﬂ(u’n"n?ﬁn)

where wn,A",pa are’ the hyperspherical coordinates [29] of the point P e S5, wy € [0.7/2].

k., p. € 82 Note also that /7 = {coswl k!, sinw!p} and P = sin? W, cos® Wl dut JR! d!
a measure on §5.

llu dll&‘)'lCd] (mmnualmn on ll( ) of the form (I' (@I (k£ 10)_[) is given by

T (F,(Q“’Ja)(:)f)= > QR+ Q)

o, gyl
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where

QF.qlz) = {il"nﬂl /dk /dpa/dk,,‘/ djy /du\/— /(lu Vi'vT = v x

(4.39) xl olkas VEVTPa) + fal VT = P klyy 177, y
V+u'...2(:,,/;\/~\/17 Pav]’/) ——.aﬂ:}.zO

% Lo (ko B (200, VZVV i), 2(1 = 1)) X
x (kS (VEV T By JENTP0 ) AT = Thly, 2(1 = 1))

and

;:anﬂ( )== n ].sn/;,/dk /dﬂo/dk /dpﬁ/dp\p /du VT = vix
4 %

(’(.40) y A (A'mi?\ /’Pn) fﬂ Vi —”km \/_p/i)

Azt 2(‘,;;\/-\/_\/— (Pas Pp) —boﬁz

X lq k,,,k )(:t\/—pa,\/—\/;pﬂ )yz—p) %
X‘ﬁk()\/—\/—l’pai\/_l’a VaVT = vk, z(1 = o).

Here, by T} (I7) we understand a path of integration beginning at z and going clockwise
(counterclockwise) along the circumference Cj; having radius |z] and centered in the origin.
After the path crosses the real axis, it goes further along this one so that the rest of 't (I'7)
consists of the points p = A 410 (p= A +140), A € (|2, +o0).

Boundaries of the holomorphness domains fl( )% of the form (F', (Q(')Jg)(z)f) are found

as a matter of the fact, from those requirements that the poles of T~-matrices {,( -, +, 2(1 — v))
and L5(-, +,2(1 — ¢')) which arc present in the integral (4.39), have not to manifest itself
in above domains. Also, we require the same from the poles of T-matrices Lo(-, -, 2 — p)
which are present in the integral (4.40). If z € (~0c0, Amax] then the appearance conditions
Z(l —v) = Aoy 7 =1,2,.. 1, z(l - V') = Mgk, k= 1,2,...,n, for the poles of the 7*-
matrices L,(-, -, 2(1 = u)) and la( -+, z(1 ~v'")), are valid for no v, v' € [0, 1]. The appearance
conditions z — p= Ay, 7 =1,2,..,n,, of the poles of £,(-, -,z — p) may be realized if only
the contours I't include into Hsclf more than one fourth of the circumference Cp,. However
their contribution to Q.z ﬂ( z) arising when the points p = z — Aq; cross contours I'¥, may
he always taken into account, using the residue theorem. We shall not present here respective
formulae. Note only that taking of residues in the points p = z — ), ; transforms the minor
three-body pole singula.riti(:s of the integrand of Qf'nﬂ(z) into_those of the type (z — Aa; +

2V = 200p\/20/7 — Xa; V' —5252)7". Location of such singularities is described by Lemma 4.
The iteration Q)(z) kernels fap(l’ P 2), Tojip(Par Iy 2); Toipk(P,pp,2), and

Koink(Porvgs2) PP € RS pa,pj € R’, have more weak singularitics [24], [29] than

the @(z) components. When continuing the form (F,(Q(Z)Jf,)(z)f) we get for it the

representations which differ from (4.38)-(4.40) mainly in replacement of the distributions
{z(v + V' — 2ct,/;\/i7\/l7(13(,,13',,) —st;Fi0)}!, 0 <.v <1, 0< Y <1, with functions
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singular as

I N V(L = 13+ \[33,(L = v72) + [caytpa = cav'B|
\/537(1 ~ v+ \/‘931(1 = V%) = |Can Vo = CayV' By

The kernels Fou( P P, 2) I,,,J,/;(p,,, ",2)y Japk(Pyppy2), and Ko i k(Pas P, 2) of the iter-
ation QW(z) = (—=t(z)Ro(2)T)’ t(2) arc still singular. Though their singularitics are weak,
continuation of the kernels Q(S)Jf,) (2) on the domains flf,o)i we understand as before in

(-11)

2 |Cas¥Pa — Coy1'ilg)

a scuse of distriputions over O(CP). So, we realize it following the same scheme as for the
continuation of (Q(’)J(t,) (z) and (Q(Q)JI,) (2).

TueoniM 6. The matriz (J(,MJE,)(Z) (the operator (J[)TJ:))(Z)) admits the anolytical contin-

wation in z from the rims of the cul z = E 410, E > 0, on the domains ﬁgo)i eC*asa

bounded operator in Go (in Ho). For all this (JOMJJ,)(Z), z € n},"’*, admils the represenialion
3

[f. (1.5)] (JeMI})(2) = 3 (30Q™I})(2) + (JoWI)(2). The operators (3,QI})(z) and
n=0
(J0QMIL)(2) are bounded matriz operators in Go wilh singular kernels. Having weakly singular
kernels the malrices (JOQ(")JZ,)(Z), n = 2,3, are compacl operators in Go. To thal end kernels
of matrix (JOWJI,)(z) are Il6lder functions of their arguments with the indez p € (0, 1/8).
As a comment 1o this theorem we present explicit formniae for the kernels of the operators
(JoQ©®J!)(2) and (JoQMI})(2).
The first of them have the form (JOQ(")JS)M(P, Plz) = ap(JotaJé)(p, P2), a8 =
1,2,3, where

(JotadIW(P, P',2) = Lo(\/Z €05 Wa ke, \/Z €OS ' Koy 2 COS Wy ) X
X §(\/Zsinwgpe — VZsinwofl).

Here, W, koy Po and w ! k', p. arc coordinates of the points P = {ka,po} and P’ = {k,, 0.}
on hypersphere 57, We mean here that

(4.42)

o . g . 8(p,9')b(w — ')
4.4 wp — (,)’ Y = Imz- !
(4.43) §(vzsinwp — Vzsinw'p') = Sign Imz (V)P sinfwcos e’

where 8(p, ') is the kernel of the identity operator in L2(S5?). The denominator (1/z)?sin® w cosw
of the right-hand part of Eq. (4.43) represents analytical continuation of the Jacobian for re-
spective replacement of variables.

Therefore the operator (Jotad )(z) actsat Inz# 0 on f € Hp as

(otald)(2)f) (P) = 2EL22. [ g
( ) /

(4.44) X 1o(V/Z €05 Wa ke, V/Z COS wokly, 2 €O wg) f(COS W ke, SiN wapq).

The operators (JOQ(‘)J:‘,)(z), zZ € I.l(o):t, have the kernels

ety o p a1 1= 8up ta(kay K, 2(1 = ) ta(kE?, K, 2(1 - 1))
(J0QI) (P, Py2) =~ ~— 2 :
. . z  |sopl v+ v — 2cap/UVv (Pa,Pp) Sap Fi0
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vhere &, = zv/1 vk, Ky = 21 —u’:';,, B = 1:7,(,/’)(\/5\/177},,, Vavijl) and o =
e S S3/Tha). A the same time v = sin® w, and v = sin®w/,.
n Pas " <4 .. . [¢]

Main singularitic:s of the kernels (JOQU)JO)"{,(/’, P z)in PP, P" are described by Fas. (1.41).

Singularitics of the kernels (JoQ®3})_ (P, /7, z) are more weak.

T"HOREM 7. The o])crl{tors (JQM'T\IIJ})(z) : 'Hl —~ ‘.ju, (JNIJ‘TJ\/IJ(’,)(::) : éu) - 7:1;,
Tor(2) : Hy — Ho, and T1o(2) : Ho = Hy  admil the analylical conlinualion from rims of the ¢
cul z= [ +i0, E >0, onlo the domains l'lgo)* C C* including the points z € l.l,(,“)i N ll,‘,"’")

.1
salisfying the additional conditions

|841° (1 + leas)?
Rez > —F——Agj + ————(Inz)?
Tt lea 0 gl %)
Jor any B,y = 1,2,3, B # v, and j =1,2,...,n5 Forall z € l'Igo)i including the bowndary
poinls z = I3+ 30, £ > 0, these operators are compacl.

Later, we shall use the notation
(4.45) nE = m* My nésy,

\VhCl'(: Ii: = (l(';:, l],], '--’Il.unl'l.h'“’ lZ,nza’-’l,l, "'713,11;) "Vi“l Ig: = :!:17 la.j = l, o = ]12, 3, j =
172,'..,1'10,, and l(l) = (07 Il.la---vll.nn 12.11---1 12.nzr 13.),"-: 13.71.1) with the same lr,‘)‘ as It. Re-
meinber thal the sets Hf(h,‘;‘) = llf(hl‘;}z,) were defined by Eqs. (4.31).

As follows from Theorems 3, 6 and 7, the total three-body scattering matrix S(z), z =
o) +i0, £ >0, admits Lh? analylical continuation as a holomorphic operator-valued function,
S(2): Hy @ Hy — Ho® Fy, on the domain ™ € C*. For any z € 1Y (e operator S(z)
is bounded. In equal degree the same is true for St(z).

5. DESCRIPTION OF (PART OF) THE THREE-BODY
RIEMANN SURFACE

By the three-body encrgy Riemenn surface we mean the Riemann surface of the kernel (P, 17, z)
of the lHamiltonian /! resolvenl f(z) considered as a function of paramecter z, the energy of
three—body system. :

One has to expect this surface as well as that of the free Green function Ro(P I, 2)
to consist of infinite number of sheets already because the threshold 2z = 0 is a logarithmic
branching point. Actually the Riemann surface of £(/, P',z) is much more complicated than
that of Ro(P, P, z) because besides z = 0 it has a lot of additional branching points. For
example the pair thresholds 2= A5, = 1,2,3, j =1,2,...,n4, become square root branch-
ing points of this surface. Also, the resonances of the pair subsystems turn into such points.
Extra branching points arc generated by the boundarics of supports of the function (4.23)
singularitics which were described in Lemmmas 1, 2 and 4.

In the present paper we restrict ourselves Lo consideration of a “small” part of the total
three-body Riemann surface for- which we succeeded to find the explicit representations ex-
pressing analytical continuation of the Green function R(/, P, 2), the'kernels of the matrix
M(z), as well as the scaltering matrix §(2), in terms of the physical sheet [sce the formulac
respectively, (6.8), (6.9) and {6.11)]. Namely, in the Riemann surface of Bz, P, z) we con-
sider two neighboring “threc-body” unphysical sheets immediately joint with the physical one
along the three-body branch of contimuous spectrum (0, +oc). Besides, we examine all the
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“two body” unphysical sheets, i.c. the sheets where parameter z may be carried if the rounds
of two body thresholds 2= Aajj. 0 = 12,3, 7= 1,2, ...n,. are permitted but the crossing
of the ray ['()_ +00) is forbidden. Evidently, the part of the three-body surface described in-
cludes all the sheets neighboring with physical one. The above sheets are of most interest in
applications.

A concrete description of the part under consideration we give using the auxiliary vector-
Dinetion {(2) = (fo(2), f1(2), f2(2), f3(2)), where fo(z) = Inz and f4(2), a = 1,2,3. arc again
veetor funetions, fa(2) = ((2 = ) (z = Mo2) 2, (2~ Aaina)'1?).

The Riemany surface of £(2) consists of infinite nunmiber of the copies of the complex plane

C' cut along the ray [Amin 700). These sheels are sticked together in a suitable way along rims
ol the ent segments between neighboring points in the set of thresholds A, ;. 0 =1.2,3. j =
.2 on,, and )y = 0. The sheets Hyg, gy, of this surface are identified by the indices of
branches of the fnetjons fo(z) = Inz and 1, ;(z) = (2 = Aa,j)"’? in such a manner that ly is
integer and 1, o = 1,2,% are multi-indices, [, = (lop-lagr - loma ) Loy = 0,1. For the main
branch of the fupction foi(2)y o = 1,2,3, j = 1,2,...,n4, we take [, ; = 0, and otherwise
loj= 1. In the ease if there exist coinciding thresholds i.e. Ao = Ag j at o G andfor i # j
(this means that discrete spectra of the pair Hamiltonian coincide partly though for two pair
subsystems or though one of the pair subsystems has a multiple discrete spectrum) then on
the cach sheet 1, indices lo.i and Iy ; coincide. too. lai=lyj. As ly we choose the number
ol the function Inz branch. Inz = In |z + iy 4 i27wly with . the argument of z. = = |z|ef¥o,
wo € [0,27). Sheets Hygyhty ar¢ sticked together (along rims ()f_lho cut) in such a way that
il parameter = going from the sheet g e,, crosses segmelt of line between two neighboring
thresholds A, and Agj, Aei < Anj (or Amax and Ag) than it comes to the sheet e . with
indices [, corvesponding 40 Ak < Aoi (A € Anax) which change by 1. For all thisif [, = 0
then 1= 1 il = | then £, = 0. Indices L,k for Ay x> Ay and fy stay unchanged:
ok = by, I = 1. In the case il parameter z crosses the cut on the right from the three hody
threshold Xy (at /2 > M) then all the indices [, change as was deseribed above.  Besides.
the index [, changes by 1, too. Il at that, z crosses the cut from below up then fy = {y + 1.
Otherwise I = I, — . FPurther, by { we denote the multi-index § = (lg, 4. 1y, 03).

Thus, we have described the Riemann surface of the auxiliary vector-function 1(2).

As mentioned above we shall consider only a part of the three -body Ricmann surface which
will be denoted by R, We includein R all the sheets Hr of the Riemann sueface of the function
f(z) with fy = 0. Also, we include in ® the upper hall-plane, Imz > 0, of the sheet 1 with

ly = +1 and the lower half-plane, Im 2z < 0, of the sheet 1 ¢ lp = =1, For these parts we keep

the previons notations Iy, lo = %1, assuming additionally that cuts are made on them aloug the
a

rays belonging to the seb Zrey = U 7). Nere, 788 = {z:z2=2z5p. 1< p< 4o 5 € oty

o=}
is a totality of the rays beginniug at the resonance poinls =, € af.‘;) of the subsystem a and
going to infinity along the directions 2, = z,/|z,|. '

The sheet H; for which all the components of the multi index 1 are zevo, ly = 1, = 0.
a= 123 j=12 .0, is called the physical sheet, The unphysical sheets o witly
ly = 0 are called the two-body sheets since these ones may be reached rounding the two body
thresholds only and it is not necessary to round the three body threshold Ay, The sheets 11,
al lp = +1 are called the three-body. sheets, '

On the base of Sec. 4 results one can prove the following

LEMMA 5. For cach two-body unphysical sheet 1y of the surface R there crists suel a path from
the physical sheet 11y -to the domain ]lfhol.) of 11y going only on the two body unphysical shects

Hp that wnoving by this path, the parameter z stays always in vespective domains ll}.‘"") C Hpe.
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6. CONTINUATION OF THE FADDEEV EQUATIONS AND
REPRESENTATIONS FOR MATRIX M(z), SCATTERING MATRICES
AND RESOLVENT ON UNPHYSICAL SHEETS

n the present section we formulate main results of the paper. In view of space shortage their
proofs will be given in the following paper [43]. Here we outline only schemes of the proofs.

We begin with description of continuation on unphysical sheets of the Faddeev equa-
tions (2.4),

Let L) = diag{lan: lo,2: s luna} be the diagonal mmnber matrix constructed of the
components Iy, ly.z, . loma Of the multi-index ! identifying a certain sheet 11 € R, For all
this Ly (l) = diag{l,('), L3 L""’} and L({) = diag{ Lo, [} ¢ Lo = o

Let S.1(2z) be the operator defined in H, by

(6.1) so.1(2) = lo + Jo(2)ta(2)I4(2) A0(2) Lo, = € Tlo.

It follows from Eq. (6.1) that s = foat lo=0. If [, = £1 then according to Eqs. (1.42)-(1.44),
the operator s, (z) is defined for z € P, C* and acts on f € Hyp as

(6.2) (st,,l(z)f)(f)) = /di:'s,,(/l’,,,ic",,zcoszw)f(cosw‘,l::,’,,sinwnf),,),

$2
where [ = {cos wafcm sinwePa} and s, is the scattering matrix (2.16) for the pair subsystem
a. We take into account here the fact that lo- Sign Imz = | for lp = | as well as Iy = ~1.
Remember that for lp = 1 the sheet Il; is actually the upper half-plane C* and for [, = —1,

the lower one, C* (in accordance with our choice in Sec. § of the part R of the total three-
body Riemann surface). Thercfore one can sce now that on the hoth three body sheets 1,
lo = %1, the operators say are described by the same formula (6.2). As a matter of fact, the
operators s, ((z) represent the scattering matrix (2.16) for the pair subsystemn o rewritten in
the three-body momentum space.

It follows immediately from Eq. (6.2) that if z € P, C* \Z,(;) then there exists the
bounded inverse operator s;1(z),

(s;",(z)j)(f’) = /dl‘c’s;'(l}a,kf,,zcosgw,,)j(coswnl};,sirlw,,f)a) where s;‘(l‘:,fc',() stands for

5?
the kernel of the inverse pair scattering matrix s,(().
The opcrator s;',(z) hecomes unbounded onc at the boundary points z belonging to rims
of the cnts (“resonance” rays) included in 7,
THEOREM 8. The absolute terms to(P, P, z) and kernels (to o)( P, ', z) of the Faddeev equa-
tions (2.4) admit the analytical conlinualion in a sensc of distribulions over O(C®) both on
two-body and three-body unphysical sheets 1y of the surface R. The conlinuation on the sheet

] with | = (l(),ll,h---: ll,ﬂnl?.la"" 12.'12’13.1,-'-713.".1); lo= 0, lﬁ.j =0,1, or = +1, lﬂ-J’ =1
(in both cases B =1,2,3, Jj=1,2,...,np) read as

(6.3) t! (z) = t,,(z)lm = to — LoAotaJis; Vot — @ad @ L) ALY )7

(6.4) [to(2) (2], = ta(2)Fol2)

where Ri(z) = RO(Z)IH, = Ho(z) + LoAo(2)J}(2)Jo(2) is the continuation [39] on 11; of the
free Green function I(z). If lo = 0 (and consequently, I; is a two-body sheet) then the
conlinualion (6.3), (6.4) can be made on the hole shect Il;. For ly = £1 (i.e. in the case
if Wi is a three-body sheet) the form (6.3), (6.4) continuation is possible only on the domain
Po(\ 1. Al the kernels in rh. parts of Fgs. (6.3) arc laken on the physical sheet.
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Proof of the theorem is based on utilizing the properties of the Cauchi type integrals (sce
Lemma from Sec. 2 of Ref, [39]), which are the integral terms of Eqs. (2.4).

1sing Egs. (6.3) and (6.4) one can rewrite the Faddeev equations (2.6) continued on the
sheet Hyin the matrix form

(6.5) M'(2) = t/(2) - t'(z)Ri(2) TM'(2)
with

(6.6) t/(z) = t — LoAotdlsy Jot — dJ1 1y A1), @7,
(6.7) Ri(2) = Ro(z) + LoAo(2)3}(2)Io(2).

Here, si(z) = diag{si(z),524(2), s31(2)}. By M!(z) we denote 2 supposed analytical continu-
ation of the matrix M(z) on the sheet T1;. ,

THEOREM Q. The kernels of the ileralions QM(2) = ((~tRoT)"t)(z), n 2 1, allow, in a
sense of distributions over O(C”), the analytical continualion on the domain Hfhd) of each
unphysical sheet 1} ¢ R. The conlinuation is described by Q(")(z)lnl = ((—tIRéT)"t‘)(z),

REMARK 2. The products L1, 0=TQ(m), Q(’")T\IJJ}LI, LoToQ0m), Q(m).](f’flo’
L@ YQMTWI L, Lodo@™Iblo, Ly @ TQMINLo and LeJoQMTEIIL,, 0 <
m < m, arising at substitution of the relations (6.6) and (6.7) into Q(")(Z)In‘, have to be
understood in a sense of the definitions of Sec. 4.

REMARK 3. Theorem 9 means that one can pose the continued Faddeev equations (6.5) only
in domnains I{"" ¢ 11,.

Construction of the representations for M(z) consists actually in an explicit “solving” the
continued Faddeev equations (6.5) in the same way as in Refs. [39], [40] where the type (3.2)
explicil representations had been found for analytical continuation of T-matrix on unphysical
sheets of the energy Riemann surface in the multichannel scattering problem with binary
channels. Utilizing the expressions (6.6) for t/(2) and (6.7) for R(2), we begin with transfer
of all the summands including M'(2) without Jo and J, to the left~hand part of (6.5). Then
{for z € o(H)] we inverse the operators I+ t(z)Ro(2)T, using the relation (I + tReYT)™! =
I - MTRg (see Ref. [29]). Introducing the new unknowns

X = |Lols; ' Fo(I — tRo)TM,
X{ = ~Ly [18*Ro + Aglad,83100] T,

we obtain for them a closed system 10[ equations which was succeeded to solve explicitly.
Expressing then M!(z) by X and XE) one comes to the desired representations for M!(z).

THEOREM 10. The matriz M(z) admits in a sense of distributions over O(CS), the analyt-

ical continuation in z on the domains nfhol) of unphysical sheets I1; of the surface R. The
continuation is described by

l__ f 1_ t 1. _l" JOQM
(6,8) M =M - (MQ JO! ¢J1+ MT‘I’JI) LA Sl L( J]\I’-TM_*_ J]‘I" )

where Si(z) is the truncated scattering matriz (4.19), L = diag{lo,li,1, ..., lingy 121y ey I2,0g5

Ly ey l3n,} and L= diag{|lols L1,1y s lings L2,0y00y famgy 1305 oy lana}. Kernels of all the
operators in the right-hand part of Eq. (6.8) are taken on the physical sheet.
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Nole that LA S7'(z)], = L{S}(2)]7" AL. Thus, the relations (6.8) may be rewritten also

in terms of the scaticring matrices Sl'(z). It is clear that thesc relations may be rewritten in
terms of symmelrized (truncated) scattering matrices [28], too.
The representations for continnation of the (trimcated) scattering matrices Si(z). Si(z):

Ho® H — o ® H, and S,( 2), S,( ): Ho @ H; — Ho ® Hi, follow from the u-pwsvnl.nl ions
(6.8) for M!(z). Before writing final formulac we make some remarks,

First of all, we note that the function Ag(z) is univalent. W looks as Ay(z) = —miz* on
all the sheets Tl At the same time after continuing from Ilg on I, the function Ay (z) =

~7i \fz— Mg; keeps its form if only lg; = 0. 1f lg; = | this function turns into Ayilz) =
—Ag.j(z). Analogous inversion takes (or does not take) place for the argnments P, 17, p, and ji,
ol kernels of the operators .luQA//Q'](,, .lOQMT\UJ{, J,‘II'TMQ'JI) and .J"U'(Tv-*-Tz\'IT)‘IJ.l{.
too. Remember that on the physical sheet g, the action of Jgy(2) (.1(',(:)) transforms 7 € R%in
VZP? (P’ e R%in zZP"). Atthe sametime, p, € R? (ry € R®) turns under J, i(2) ()IU( )
into \/z=Xaifa  (y/Z = AgiPp). Therefore we introduce the operators E(1) = diag{&. &)

where & is the identity operator in Hp if lo =0, and &, the inversion (& [)(P) = [( Pyif
ly= %l. Analogously, E(N) = diag{&i1y.s Eringi E20y i1 Etimzs Enty ooy Eamy } where Ey  is the

identity operator in H(BA) if lg; =0, and &p;, the inversion (Ep;)ps) = f( pa)il g, = L.
By ei(l) we'denote the diagonal matrix ei(!) = diag{ei,n, .o Clnys €015 orr ©ong) €15 eenyCiny

with the elements eg; = 1if lg; =0 and ¢g; = =1 if lg,j = 1. Let e(l) = dmg{c(,,c‘} ‘whre
co= 1.

THEOREM 11, If there exists a puth on the surface R such that al moving by it from the
domain n}""" on Iy lo the domain H}""l) N 114! on [Iy, the paraneter z slays on inlermediale
sheets 1gn ahways in the domains ﬂ(h"l)ﬂﬂ}‘,‘,’,', then the lruncaled scallering malrices Si(z)

and S}(2) admil analytical continuation in z on the domain ™Y (V1B of the sheet 1. The
conlinualion is described by

(6.9) 51(2)|g, = &) [i + LTL Ac(ly = LTL ASTY /T L Ac(l’)] £(I),
(6.10) st (z)’” = &I [i+e(z')A LTL = (')A LTL' [S5)7' A 1/%1',] £l
Iy
“’I"”t [’I = {l(’)’ l,l.l"' l'I ap? ’2 Iy l"Z RIVE] ll’l,l""*llll,ug} ”’"‘d I’ = {ll |7 l; 1y lll g Y l’ ll) M2

[ L .
l\h we have established, the kernels of all the operators present in the right-hand part.

of expression (2.7) for the resolvent (z) admit, in a sense of distributions over O(CY), the

analytical continuation on the domains l'lfh"l) of unphysical sheets 1I; C R. Hence, the kernel

R(P2, P!, z) admils such representation, too.

TiEorEM 12, The analylical conlinualion, in a sense of dislributions ower O(C%), of the

resolvent R(z) on the domain ﬂ}lml) of unphysical sheet Iy C R is deseribed by the formula

()|, = R+

. o - Joll— VR \
(6:11) {7 = RV)IS, QUL — RoMTWJY) LAS; ‘L(J],,,.[‘i[_ TMR]{)]Q, )

Kernels of all the operalors present in the right~hand part of Eq. (6.11) arc teken on the
physical sheet.

Note that in their structure, the representations (6.11) are quite analogous to that for
analytical continuation of the two-hody resolvent (3.7). Prool of the expressions (() 1) are
hased on inunediate using the representations (6.8) for AfY(z). -
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Morosunos A.K. E5-95-45
Hpcncmsmﬂnﬂ h & Tpquac'ruuuou T-MaTpuLbl
Ha HedhH3MUCCKHUX JNUCTAX

MopMy M pYIOTCA SBHBIE NPCUCTABJCHUSA AJs AHANMTMUCCKONO MpOAOJ-
xenust komnoucHT Pangacesa TpexyacTHUHOM T-MaTpuLbi.Ha HE(HH3NUECKHE
AMCTBl PUMAHOBOI NOBEPXHOCTH dHEpruM. COrJaacHO 3TUM MpPEACTABICHUAM
T-MaTpuLa HA HehHBMYCCKUX JIMCTAX BBIPAXKAETCA B TEPMHHAX CC KOMITOHEHT,
OTHOCHUIMXCA  JHWb K (u3uueckoMmy Jiucty. Ha ocHoBe npeacraBicHui
ang T-mMaTpuLLsl POPMYIMPYIOTCA aHAJIOTMUYHBIE MPEACTABACHHAS ANS aHAJUTH-
UCCKOM MPOAO/KCHIS MATPHL, PACCCSHIS M PC30ALBEHTHI. [laHo omucanue
06.14CTCit IPUMCHUMOCTH MOAYUYCHHBIX npem:'raanennﬁ.

PatorasbinonucHa B Jlaboparopmu TeOpeTHUECKOI d)usmcu um. H.H.Boro-
mwobosa OUAU,

Ipenpur QfnmeaMHEeHHOrO MHCTUTYTA SACPHBIX Hccaenosanuit. Jlybua, 1995

. Motovilov A.K, ES5-95-45
Representations for Three-Body 7-matrix on Unphysical Sheets A

=xplicil represcntations arc formulated for the Faddecv components
of three-body 7T-matrix continued analytically on unphysical sheets
of thc cnergy Riemann surface. According to the representations, the 7-matrix
on unphysical sheets is obviously expressed in terms of its components taken
| on the physical sheet only. The representations for 7-matrix arc used then
to construct similar representations for analytical continuation of three-body
scattering matrices and resolvent. Domains on unphysical sheets are described
where the representations obtained can be applied. i

The investigalion has been performed at the Bogoliubov 'Labo‘raloryv
of Theoretical Physics, JINR.
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