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t. I N T R O D U C T I O N 

The paper is a continuation of the author's work [1] devoted to studying a structure of the 
V -matrix, scattering matrices and resolvent of three-body Ilamiltonian continued analytically 
on unphysical sheets of the energy Riemann surface. 

Л central result of the paper [l] consists in construction of the explicit representations for 
the continuation of three-body 7'-matrix on unphysical sheets in terms of this matrix itself 
taken on the physical one, as well as the scattering matrices. There were outlined only schemes 
to prove the representations above in Rcf. [1]. Main goal of the present work is to present a 
full proof, With the representations for T-matrix we base also analogous representations for 
analytical continuation of the scattering matrices and resolvent (sec Rcf. [1]). 

As in [1] we suppose that interaction potentials are pairwise ones which decrease in the 
coordinate space not slower than exponentially, All the analysis is carried out on the base of 
the momentum space Faddccv integral equations [2], [3] for components of the T-matrix. At 
that we find analytical continuation of the Faddecv equations as on neighboring unphysical 
sheets as on remote ones belonging to a certain part of the total three-body Riemann surface. 
Л full description of the part under consideration see in Rcf. [1]. The representations for the 
components of T-matrix on unphysical sheets arise as a result of explicit solving the Faddeev 
equations continued in terms of the physical sheet. 

Note that a continuation of the s-wavc Faddcev equations on unphysical sheets neighboring 
with physical one, was made previously in the work [4] (see also Ref. [5]) in the case of separable 
pair potentials. 

In the paper, we discuss also a practical meaning of the representations obtained. Ac­
cording to the representations [see Eqs. (4.34), (5.1) and (6.1)], the nontrivial singularities of 
the '/'-matrix as well as the scattering matrices and resolvent are determined, after the con­
tinuation of them on unphysical sheets by singularities of the operators inverse to truncated 
scattering matrices on the physical sheet. Thus, the three-body resonances (i.e. the poles 
of the resolvent as well the T- and scattering matrices) arc actually those values of energy 
for which the scattering matrices, truncated in accordance with the index (number) of the 
unpliysical sheet under consideration, have zero eigenvalue. These properties of three-body 
scattering matrices arc quite analogous to the familiar properties of the scattering matrices 
in problems of two particles and multichannel scattering problems with binary channels (see 
e.g., Rcfs. [6]--[8] or [5], [9], [10]). For computations of three-body resonances as zeros of the 
truncated scattering matrices above, one can apply in particular, the differential formulation 
of the scattering problem [3], [11] going on the complex plane of energy (physical sheet). 

The paper is organized as follows. 
In Sec. 2 we remember main notations of Ref. [1]. The analytical continuation of the 

Faddeev equations on unphysical sheets is carried out in Sec. 3. Sec. 4 is devoted to deriving 
the explicit representations for the Faddeev components of the three-body T-matrix continued 
on unphysical sheets. The analogous representations are constructed in Sec. 5 for the scattering 
matrices and in Sec. 6, for the resolvent. In Sec. 7 we formulate an algorithm to calculate the 
three-body resonances on the base of the Faddeev differential equations in configuration space. 

2 . NOTATIONS 

Throuhout the paper we follow strictly by the conventions and notations adopted in Ref. [1]. 
Therefore we restrict ourselves here only to presenting for them a brief summary. Note at once 
that at using formulae of the paper [1] (it will take place rather often) we supply their number 
in Ref. [1] with the reference "[1]". 

For the description of the system of three particles concerned in the momentum repre-
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sentnfion, wc use the .standard sets of reduced relative momenta ([I].2,1) k„, />„, n = 1,2.3. 
which are usually combined into six-vectors P = {k„,p0}. Transition from the pair {k„, p„) 
to nnotlicr one, {kp, pp), corresponds to the rotation transform in Rr>, k„ = с„цкц + ,няарц. 
p0 = —Sophp + cappp with coefficients cap, sap [3] depending on the particle masses only, 

The Hamiltonian / / of the system is given by (llf){P) = Р2/(П + E»=i ( w »/ ) ( / J ) . 
P 2 = kl + pi, f 6 "Ho = //2(R°), where va, a = 1,2,3, arc pair potentials assumed for the 
sake of definitcness, to be local, This means that the kernel of each vn depends only on the 
difference of variables ka and k'oi va(k„, k'a) = va{ka — k'a). 

Wc deal with two variants of the potentials va. In the first one, vu{k) are liolomorphic 
functions of variable к € С 3 satisfying the estimate ((lj.2.2). In the second variant, the 
potentials va(k) are holomorphic in к in the strip И^ь = {к : к € C : ), |ImAr| < 2/)} only 
and obey a t к € И^ь t a e estimate (jl].2.3). In the both variants va(—k) = v„{k), and this 
guarantees sclf-adjointness of the Hamiltonian / / . 

In the paper, the exposition is given for example of the second variant of potentials. 
Respective statements for the first one may be obtained from the statements of this work if to 
put in them, b = +oo. 

By ha we denote the Hamiltonians of the pair subsystems'a, a = 1,2,3. Eigenvalues 
AQ,j 6 0i{ho) of /i„, A„,j < 0, j = 1,2, . . . ,n0 , na < со, are enumerated taking into account 
their multiplicity; number of times to meet an eigenvalue in the numeration equals to its 
multiplicity. Maximal of these numbers is denoted by Amax, Amnx = max AQ; < 0. The notation 

ФоА^а) 's u s e c ' f°r respective eigenfunctions. 
We understand by crd(II) and <rc(//) respectively the discrete and continuous components 

of the spectrum <r{H) of the Hamiltonian / / . Note that CTJ(#) = (Am-in,+oo) with A,„jn = 
minAcr,;, 

The notation / / 0 is adopted for the kinetic energy operator, (IJ0f)(P) — P2f(P). Ну 
/£0(z) and Ji(z) we denote the resolvents of J/0 and / / , respectively: Ro{z) = (Jl0 — zl)~] and 
R(z) = (II — zl)~l with 7, the identity operator in W0. 

Let MQp{z) = Sapv„ —vaR{z)vp, or,/? = 1,2,3, be the components [2], [3] of the 7-matrix 
T(z) = V — VR(z)V where V = vx -f vt +v3. The Faddeev equations [2], [3] for operators Mnfi 

read in matrix form as 
(2.1) M[z) = t(z)-t{z]R0{zYtM{z) 

where Ro(~) = diag{/?0(z), Ло(г),У^о(г)} and by T we understand the ЗхЗ- inat r ix with 
elements Tap = 1 — 60p. Besides wc use the notations t(z) - diag{ti(2), t2(z) , t3(z)}. Mere, 
the operators tQ(z) , a = 1,2,3, have the kernels.tQ(/J,P',z) = la{ka,k0,z - pi)6{pn - ?>,',) 
where ta(k,k',z) stand for the respective pair T^-matrices ia(z). These M, t , R 0 and T are 

з 
considered as operators in the Ililbert space Go— Ф ^2(R-6)> 

o=l 
The resolvent Ii(z) of // is expressed by the matrix M(z) as [3] 

(2.2) R(z) = R0(z) - Ло(г)ПМ(2)П ,Л0( г) 

where fi, П : Q0 -* Tio, denotes operator defined as the matrix-row 1} = (1, 1, 1). At the 
same time fit = fi* = (1, 1, l)t . 

Everywhere by y/z — A, z £ C , A € R , we understand the main branch of the function 
( г - Л)1 '2. Usually, by q we denote the unit vector in the direction q € R ^ , q = q/\q\, and 
by 5 ^ " ' the unit sphere in "RN, q € SN~l. The inner product in KN is denoted by ( • , • ) • 
Notation ( •, •) is used for inner products in Hilbert spaces. 

Let ft^"'" = L2(R3) and ft0" = ф 7^a,l). Notation Ф„ is used for operator acting from 
J = 1 
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fi{n) lo "Ho as {Vaf)(P) ~ £"=|0nj(A e) / j (pe) . By * wc understand tlics matrix-diagonal 

operator combined of 4'„ as Ф = cliag{*i, Ф2, Ф3}, and acting from Hi = © W(a) to g0. 
Tho operators Ф„ and Ф are obtained of Ф„ and Ф by the replacement of functions J/>(»,J(A:Q) 

tfit.li form-factors <t>a,j(k0) = (v0ipa,j)(ka), a = 1,2,3, j = 1,2, . . . ,n„. 
Ну 0(CS) we denote the Fourier transform of the space C0

X'(KN). 
The operator Jn,j(^), о = 1,2,3, j = 1,2, . . . ,n e , realizes the restriction of functions 

/(p<>)' Po £ R3i o n ^1 С encrgy s ' l e " ô,y + |Pa|2 = E at 2 = /J ± iO, /? > A0,j, and then if 
possible, continues them analytically into a domain of complex values of energy z. On C?(C3), 
this operator acts as (Ja,;(z)/)(pa) = / ( \ A — A0)Jp0). Notation Jo , j ( z ) l s u s e d for the operator 
"transposed" with respect to Jaj(z) (see. Ref. [1]). 

The operator ,}0(z) is defined on C(C°) analogously to Ja,j(z) by (J0(z)J)(P) = J(\/zP). 
'\'ho notation .IJ(^) is used for respective "transposed" operator [1]. 

The operators ,]a,j and iaj are combined in the diagonal matrices №(z) = diag{JQi)(z), 
•"•> Jo,n„(«)} and J<°'t(z) = diag{J^j(z),..., J£(Ttn(ar)}. In their turn, we construct of the lat­
ter, the operators J,(z) = d i a g f j ^ z ) , j(2>(z), j(3)(z)} and j{(«) = 6\а&{ЗЩЯ), .l^(z), 
, | ' 3 "(г)} . Besides the listed ones, we use in the work, the block-diagonal operator 3x3-matrices 
Jo (г) = diag{J0(z),Jo(z), Jo(z)} a n ^ ^o(z) — diag{J0(z), J0(z), J0(z)} as well as operators 
J ( * ) = diag{J0(2),Ji(*)} and J»(*) =diag{J0(z) , j}(z)}. 

Along with 7Yo, Go a " d Wj described above, we consider the Hilbert spaces 7тС0 = L^S5), 

до = в Ho and Hx = © W(o) where•#<«•> = © W<OJ'>, W<°J> = L2{S2). The identity 
» = 1 Q = l j=\ 

operators in Ho» &a, "H\ and Wo Ф "Й-\ are denoted by /o, Io, I\ and I, respectively. 
The operator-valued function T(z), T{z) : 7iQ ®7i\ -> W0 Ф Wi, of the variable г е 

С \<r(/У) is defined by 

, , / QM(z)rt ПМ(г)ТФ \ 
1 •*5' Л ' ~ ^ Ф*ТМ(г)П* Ф*(Ту + ТМ(г)Т)Ф у 

with v = diagfuj, и2, u3}. The truncated three-body scattering matrices are expressed by T{z) 
as 
(2.4) S,(z) = I + (LfLA){z) and S/(z) = 1 + {ALTL)(z) 

where T(z) = (JTJ*)(«), f(z): Wo 8 Ui -> Но © Hi . The multi-index 

(2 .5 ) / = (lo, h,!,---, k.nuh.l, ••-, k,n2, k,l, ••; h,n3) 

has the components /0
 = 0 o r 'o = ±1 and laj = 0 or la,j = 1, a = 1,2,3, j = 1,2, . . . ,n a . 

Notations L and L are used for the diagonal matrices corresponding to the multi-index /: L = 
diag{L0, /-a}, Z = d i a g { | £ 0 | , M i £o = fo and Lx = diag{/i i b . . . , / i , „ , , / 2 , i , - , h.ni,h,u-, 
'з.пЛ- I3y A(z) we understand the diagonal matrix-function A(z) = dia.g{Ao{z), Aaij(z), 
a = 1, 2,3, j ~ 1,2, ...,na] with the elements Ao(z) = —iriz2 and Aaj(z) = —iti^Jz — AQij. 

The notation П}}?1 is used for the domain in variable г G С where (LTL')(z) is a holo-
morphic operator-valued function. The matrices Si(z) and St(z) as well as the products 
{L0hM){z), (LiJi*-TiW)(z) and (AfjjL0)(z), (МТФЛ{/,1)(г) are holomorphic functions 
of г on domains Il,(hoI) = n}jo1. A description of the domains П})?1 and П|Ьо1) see in Ref. [1], 
Sec 4. 

We consider only a part of the total three-body Riemann surface. This part is denoted 
by и. Sheets П; С 3ft are generated by branching in the two-body, z = Xaj, a = 1,2,3, j — 
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1,2, ...,11c, imcl three-body, г =• 0, thresholds. When enumerating the sheets, the inulti • index 
/ given by (2.5) is used. At /0 = 0 its components / „ j , a = 1,2,3, j = 1,2, ...,nu, am 
gel arbitrary value among two numbers 0 and I. In this case, II/ represents a copy of the 
complex plane С cut along the ray [Am|n, -foo). If fo = ±1 then the rest of components l„tJ. 
o = 1,2, 3, j = l ,2 , . . . ,n 0 , oil arc assumed be equal to 1. There is accepted that at. /() = +1 
the sheet II/ coincides with the upper half-plane C + = {z € С : Imz > 0} and at IQ = - 1 , 
with the lower one, C~ = {z G С : Irnz < 0}. We suppose additionally that the sheets 

:t , . 
II/ with Z0 = ±1 are cut along the rays constituting together the set ZVKIi = (J Zr"J. Here. 

Zia? - {z : z — zrp, 1 < p < +oo, zr 6 a}"»} is a totality of the rays beginning in (he 
resonance points ai") of subsystem a and going to infinity along the directions z, - s , / | s r | , 
z, € ffrc!?. Л more detailed description of the surface 3? and in particular, (lie way of sticking 
the sheets И/ see in Sec. 5 of Ref. [1]. 

If all the components of the multi-index / arc zero, /o = la,j = 0, « = 1,2,3, j = 
1,2, ...,na, the sheet П/ is called the physical one, Г10. The unphysical sheets П/ with /« = 0 arc-
called the two-body ones since these sheets may be reached from П0 rounding the two-body 
thresholds z = Xaj only, with no rounding the breakup threshold z = 0. The sheets II/ at 
/o = ±1 are called the three-body ones. 

3. ANALYTICAL CONTINUATION OF FADDEEV EQUATIONS FOR 
COMPONENTS OF T-MATRIX O N UNPHYSICAL SHEETS 

Goal of the present section consists in continuation on unphysical sheets of the surface 5K, 
of the absolute terms and kernels of the Faddecv equations (2.1) and their iterations. The 
continuation is realized in a sense of generalized functions (distributions) over C(C r ' ) . Results 
of the continuation are represented in terms related with the physical sheet only. 

By l№, H") = //'"*(/), we denote the diagonal matrices formed of the components 
l»,n 'n,2,...> l0,na of the multi-index / of the sheet П/ С SR: fJa)) = diag{/0,,, /0,2,..., /0.nn}-
At that L,(f) = cliag{L(1), LW, №} and L(l) = diag{L0, Lx) с LQ = /„. Analogously, 
/t<°>(z) =diag{/l„, ,(^) t Л».» , - , А*.«аП) ™* Mz) = d\&g{A^(z), A&(z), М3Цг)}. Thus 
/K«)=diBg{/\0(a),/ l i(*)}-

Fly s0,i(2) we understand the operator defined in Wo as 

(3-1) s„,/(2) = /o + Jo(z)te(2)J0(zMo(z)L0, * 6 По. 

It follows from Eq. (3.1) that Sa,, = /0 at /0 = 0. If /0 = ±1 then according to F,qs. ([lj.-l.42) 
[1].4.44), the operator s0,/(z) is defined for z € ^ П с ± > ^ = iz : R e a > ~l>2 + (Unz)2/(ЛЬ2)}, 
and acts on / € 7т(о as 

(3.2) (s0l\(z)f)(P) = / dk'sa(ka,k'a,zcos2w)j(cosuak'otsinшпра) 
s* • 

where aja,kQ,pa stand for coordinates [3] of the point P on the hypcrsphere 5 s , wQ € [0,тг/2], 
с̂*,А> € S2. For all this, P = {cosw0fcQ, sinwap„}. By sQ we denote the scattering matrix 

([l].2.16) for the pair subsystem a. As a matter of fact, s„,/ represents the scattering matrix 
sQ rewritten in the three-body momentum space. 

It follows immediately from Eq. (3.2) that if z € 7>ь П ^ '± \ %m then there exists the 
bounded inverse operator s~'(z), 
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К.'(-")/)(h = / ^\ч;1(к-п/к'п,:с.о^шп)/(со^^,,к'п^шша1)п) with . ^ ' ( М Л О , the kernel of 
.v* 

the inverse- pair scattering matrix .•£'(()• 
The operator s~)(z) becomes unbounded one at the boundary points z situated on rims 

of I lie cuts (1.1K? "resonance" rays) included in '/,)"}, 

TllKOIlKM 1. The absolute terms t,,{l\ lv,z) anil kr.rnr.ln (tnli0){lJ, P\z) ofthe Faddeeo equa­
tions (~.l) "<liuil the analytical continuation in a sense of distributions over 0(Ca) both on 
Iwa body and three-body sheets II; of the Hicm an n surfaced. The continuation on the shed 
II/. / = (/<i,f|.i IVTMAI W : u < - A n i ) . 'o = 0, lnij = 0 .1 . or /„ = ± 1 . t3iJ = 1 (in 
both rases i1 = l. 2.•'*- j = l,2,,..,ntt), is written as 

(«.3) t | ,U) = t„(-)|Ml = t„ - /.0/lut0.)(
,
)s-'Jot„ - ФП^'>>'/>1ЛИ.]-">Ф;, 

M [t„(r)/f„(c)]|,Ii = 1^(л)/?^(с) 

when: li'0(z) В /fo(-)|„ = /?о(г)+ А с И о ^ Р ^ - Ш ^ ) ю /ЛК continuation [9} on II, of the fixe 
Green function /?()(г). / / / 0 = 0 (and hence II/ i.s я two-body unphysic.nl sheet), the continuation 
in the form (3.3), (3.\) is possible on the whole sheet II,. /\l /0 = ±1 (i.e. in the case whin 
II, is n three, body sheet) the form (3.3), (H-4) continuation is possible on the domain Vt, П " / -
Ml the kernels in the right hand parts of Kqs. (3.H) are taken on the physical sheet. 

PliOOK of th(! theorem wc give for example of the most intricate continuation on three-body 
imphysical sheets II, with /o = ±1 . For the sake of dolinitcness we consider the case /0 = +1. 
For /o -= - 1 , the proof is quite analogous. 

Let us consider at z € Ho, Im г < 0 the bilinear form 

(3.5) (Д t„/f0(r)/') = jdk j dk' J dp U^^~_''P ДА'. *•'/») 
П.Л R.I R3 

with f{k,k'p) = f(k,p)f'(k',p), f,f e C(C , !), к = /•„, к' = k'n, p = pn. Making replacements 
of variables \k'\ —» p = |fc'|2, |p| —> A = z - \p\2 we find that the integral (3.f>) turns into 

Г OO 

(3.B) J У <№ /rf*' / dp f dXv/Г^л у* ̂  W v ^ - A ) д ^ ̂  ^ n ^ . 
R3 .S-2 лч г-оо U 

FiXisloncc of the analytical continuation of the kernel (t„/nj)(~) on the sheet II,, /0 =•• ± 1 . 
follows from a possibility to deform continuously the contour of integration over variable p lо 
arbitrary sector of the analyticity domain Vbf]al"J of the integrand in variable A in the way 
demonstrated in Fig. I. Besides, this is connected with a possibility at moving of с from II,, 
to II,, /о = -(-1, to make a. necessary deformation of the integration path in variable A in such 
a way that this path is separated from the integration contour in variable p. 

To obtain the representation (3.4) at a concrete point z = z0, wc choose a special final 
location of the integration contours in variables A and p after consistent deforming them (see 
Fig. 2). Singularity of inner integral (over variable p) remains integrable after such deformation 
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% o , j 

(A) 

Figure 1: Deformation of the integration contour over variable p. The integration contours 
over /? and A arc denoted by letters in brackets. The cross " x " denotes the eigenvalues \nj of 
/i„ on the negative half-axis of the physical sheet and the pair resonances belonging to the set 
(Trfs on the sheet П/, IQ = -+I. Also, there are denoted the cuts on Ilj, l0 — +1 , beginning at 
the points of a°2 • 

© © 0 0 
Ki 

Figure 2: The final location of the integration contours over variables p {T\ (J Г2) and A 
(G'i [}G2]' The contour Г1 represents a loop going clockwise around the countour Gx, the line 
segment [0, z}\ Г2 = [0, -f-co); G2 = (2 - 00, i Imz] \J[i Im z, 0). 
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duo lo presence of the factor yfp. As a whole the integral (3.6) turns into 

i fdkfd'k'fdpx 
R» S* SJ 

(3.7) 

jd\>/7^\ J dpy/p ^(fc' ̂ ' ' Л ) f(k, у/рУ, V7=Ip)+ 

+ jd\Vm J dpjp Цк> ^ ' Л ) /(fe, ̂ , V7=\p)+ 
G > г,игг 

+ \2itiy/z-\aj / dpy/p r1 f(k,y/pk,y/z-\0ijp) 
frf V P - Aa,j 

where t'a denotes the pair 7'-matrix ta{z) continued on the second sheet (as regards tQ(X), the 
contour G\ Э A belongs to its second sheet). The last term arises as a result of taking residues 
in the points Xaj 6 Od{ha). 

Evidently, the domain of variable z € П/, /0 = +1 , where one can continue analytically 
the function (3.5) in the form (3.7) to, is determined by the conditions T\ С Ть and Ti f] ZT?» = 
0. These conditions may be satisfied at z G "Рь only. 

Note that value of the inner integrals over ГЛ at A £ G\ are determined by residues at the 
points p = A. At the same time JG dX... JJ, ... = 0 since at A G G2 the functions under the 
integration sign are holomorphic in /)'€ IntTi. Therefore 

(/.*»Яо(*)Я|.6П1,ь_+, = \jdkjdU Jdp 
ю s* s2 

x { J d\y/z~^J(-2iri)yAt'a(k, уДк', X)f(k, уДк\ \/7^Хр)+ 

ta(k, y/pk', A) + niy/X та(к, y/p"k', A) 
(3.8) + / l A ^ / ^ ' - " ^ - A ) • f ; ^ A ^ ^ ' A ' / a - , ^ - , V ^ A p ) + 

+ J dXy/z^xj dpsfp ta(k^>X) f(k, y/pk\ VF^Xp) + 
G2 Г* 

+oo — 

+ f > i , / r = r \ - / dp^ +•№**№ /(jb> jpk',y/n^jp) 

In the second summand of Eq. (3.8) we have used the representation ([1].3.2) of for the pair 
T'-matrix continued on the second sheet. Look at the expression for та(к,к',() in Ref. [1], 
Sec. 3. Remember that t'a(Q = ta(() + тг{уД та((). 

Joining the summands including ta on the physical sheet, in the alone integral / G i iG ••• 
and using then the holomorphness of the function under the integration sign in variable A, 
we straighten the contour G\ IJG2 turning it into the ray (z — 00, z}.. As a result we get the 
bilinear form corresponding to the product (taRo)(z) taken on the physical sheet. 

The last term of the expression (3.8) corresponds to the kernel of -$aJ<o>t£<0r> Л ^ Л ^ Ф * До-
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Backing in the rest of summands including l.'a and та to the initial variables k\ // and 
utilizing then the definition (3,1), we find that these summands correspond to the expression 

L0Ao l t 0 — Lo^oJoSo,;Joto Jo^O — ^O^ot 0 J ( ) S~ ,Jot 0 /?o-

Gathering the results obtained we reveal that the analytical continuation of tnlln on the sheet 
П/, /o = + 1 , lool<sas 

[taRo(z)]\nt = (t„ - L0A0to4s;)uo - Ф0 .] (0 )^ (0М(°'.1(0 'Ф;)Х 
(3.9) x (Д , + LoAoiUa) + Ь0А0Фо J<e)t/>> д (•) j(»),fr; j t j 0 . 

To be convinced in the factorization (3.4), is sufficient to note that the last sumniaiid of (3.9) 
equals to zero. Indeed, one can check easily that at Im z ф 0 or 1m z = 0 and z > max \n,j the 
following equalities take place 

(3.10) (J ( e , *; jJ ) (*) = 0, (Jo*0J ( o ) ,)(2) = 0. 

Thereby the last term of (3.9) disappears and hence, Eq. (3.4) is true. This completes the 
proof. 

R.EMARK 1 . As a matter of fact, the kernel [tQ./?o](z)|n corresponds to the two-body problem 
and thereby it has to be translationally invariant with respect to variable pa. This fact may be 
understood if one introduces the generalized function (distribution) 0г(р) over 0(C : t) acting 

as (0Z, / ) = - / d£y/( I dpf(\/£p) where j , is the line segment connecting the points £ = 0 

т. s» • 
and f = z. It follows from the representation (3.8) that the kernel of [t0/?o](z)L may be 
rewritten as 

•\-ixiLo r^h'^-p2) ^ _ ип.§Ы*- k'l~ l/'Dl O,{P)J7^ % + ?-* ~ о*(к')^7=1?1 t'a(k, к', к") W + 

+ L 2«г W * - A - J кг_Ха. - j ^ 
к = ka, к' =k'a, p = pa, p' = p'a, 

where due to the presence of the factor 6(p — p'), the translation invariance is emphasized 
explicitly. Analogously 

£ ( Л Я » = {<»(*,к', z-p7) + m L0e,(pWz r p2 ra{k, k'z - p2)+ • 

Using Eqs. (3.3) and (3.4) one can present the Faddeev equations (2.1) continued on the 
sheet П| in the matrix form 

(3.11) M\z) = t ' (s) - t ' ( : )H i ( : )TW' ( : ) 
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W I C I 0 

(:*.I2) t'(z) = t - Ло/lutJjsr1 Jot - Ф.1! А, Л,.ЬФ-, 

(:u:i) R[,(s) = R0(i) + /<o/lo(«)j£(*)Jo(s). 

Here, s/(s) = cli<i(f{S|,|(c),s2,i(2),S:),/(2)}, By Л7'(г) we understand the supposed analytical 
coiilinualion on the sheet II/ of the matrix M(z). 

LKMMA 1. I'or eucli, I wo body unphysical shed II/ of the surface -R there exists such a path 
from /In physical sheet II0 to the domain l l{1 0 ' in II/ yning only on two-body unphysical sheets 
ll/i lhal moving by this path, tin parameter z stays always in respective domains Щ "' С II/'. 

P n o o t \ Let us use the principle of mathematical induction. To make this, at the beginning 
we arrange the branching points A(lj, n = 1/2.3. j = 1.2 пл. in nondecreasing order 
redenoliiig them a,s A|. A2,.... Аш, m < 2 j w 0 , A| < A2 < ... < A,„, and putting A„l+| = 0. 

<> 
Let. Ilie unilti index / = {1\Лч,-..,1т) correspond temporarily namely to this enumeration. As 
previously, /j = 0 if the sheet II/ is related to the main branch of the function {z - A;)1 '2 else 
I j = I. The index ?o is omitted in these temporary notations. 

It. is clear that, the transition of z from the physical sheet Hu across the segment (Лi. Ла) 
on the neighboring unphysical theet 1I,(„ (into the domain II}',';1,), /<" = (/{''./-У' /!,!') with 
/ { " = 1 and / j n = 0 at j ф 1, is possible by definition of the domain II''V1, (see Ref. [1]. Sec I). 
According to Lemmas [l].l and [1].2, if z belongs to Ujd" , it may be lead to the real axis in 
the interval (A(1 ',+oo) with certain A'1' < A|. Remaining in Iljn" the point z may even go 
around the threshold Ai crossing the real axis in the segment (A' ' \ Ai). Thus, the parameter ; 
may be lead from the sheet Il/m on the each neighboring unphysical sheet and in particular, 
on the sheet II/ related to l\ — 0, h = I, lj = 0, j > 3. Transition of ; from 1'10 across the 
segment (А^, A.i) on the sheet. II/ with /| = /2 = 1, lj = 0, j > 3. is always possible. 

We suppose further that, the parameter z may be carried in this manner from 110 on all 
the two body unphysical sheets Идм defined by the conditions ly = 0. j > k. It assumed 
also that during the carrying, z always remains in the domains Пд", of these sheets and does 
not visit different sheets. It follows from Lemmas [l].l and [l].2 that if z stays in the domain 
Ilj(", of each sheet of the type described then wittingly, it can be lead to the real axis in the 
segment (A'*',+oo) with certain A(fc' < A*. Hence the parameter r from each of the sheets ll(1n 
may be carried across the interval (Afc,A*+i) on the neighboring unphysical sheet 11,,/,+n with 
/(.*+•> = 1 _ /J''), j < к, /[*++° = • a ' " l lf'+,) = 0, J > A-+ 1. This means actually that .- may he 
carried from 1I0 on all the two-body unphysical sheets II,(i+n with / j * + , ) = 0, j > A- + I. For 
all this the parameter z remains in the holomorphness domains II,("+', and does not visit the 
sheets ll,(,) with s > k+ \. I3y the principle of mathematical induction we conclude that the 
parameter z may be carried really on all the two body unphysical sheets. 

Proof is completed. 
Using results of Sec. A of the paper [1] and Lemma 1, one can prove the following important 

statement. 

TllBOKKM 2. The. iterations Q^(г) = ( ( - t R o T ) n t ) ( 2 ) , »/ > I, of absolute к mis of Hit 1-iid-
fler.v equations (S.J) admit in a sense, of distributions over (9(C') , the analytical continuation 
on the domain I I , " ' of each, unphysical sheet 11 r С Ш. This continuation is described In/ the 
rauulilir* C l , , )(=)|„, = ((-t 'R(,T)"t ')(--). 
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REMARK 2. The products Z,,J,4>*TQ(m>. Q<m>T>P.l|A|, /,oJoQ(" ,), Q(",).I(
,,A». 

/ . I J I ^ - T Q ^ ' Y ^ J } / - , , />0JoQ (m)jjAu, A,,Ji*'TC2<m'j£Ao and A0Jo(2,",»T4»j!/.1. 0 < 
m < n, arising at substitution of the relations (3.12) and (3.13) into Q ( n ' (-) |n > '"IV<' , 0 °<i 
understood in a sense of definitions from Sec. 4 of the paper [1]. 

REMAflK 3. Theorem 2 means that one can pose the continued Faddecv equations (I}. 11) only 
in the domains П{Ы ) С II/. 

4. R E P R E S E N T A T I O N S F O R T H E FADDEEV C O M P O N E N T S 
O F T H R E E - B O D Y T - M A T R I X 

In the present section, using the Faddeev equations (3.11) continued, we shall obtain thes rep­
resentations for the matrix M'(z) in the domains П}1 0 ' of unphysical sheets II; С ffi. The 
representations will be given in terms of the matrix M(z) components taken on the physical 
sheet, or more precisely, in terms of the half-on-shell matrix M{z) as well as the operators 
inverse to the truncated scattering matrices Si(z) and St(z). As a matter of fact, the con­
struction of the representations for Af'(z) consists in explicit "solving" the continued Faddeev 
equations (3.11) in the same way as in [9], [10] where the type ([1].3.2) representations had 
been found for analytical continuation of the Г-rnatrix in the multichannel scattering problem 
with binary channels. We consider derivation of the representations for M'(z) as a constructive 

proof of the existence (in a sense of distributions over X 0(C6)) of the analytical continuation 
of the matrix M[z) on unphysical sheets П, of the surface 3i. 

So, let us consider the Faddeev equations (3.11) on the sheet П, with /o = 0 or /0 = ±1 
and Ipj = 0 or Ipj = 1, 0 = 1,2,3, j = 1,2, ...,na. Using the expressions (3.12) for t '(z) 
and (3.13) for R0(z), we transfer all the summands including M'(z) but not J 0 and ,l|, to 
the left-hand part of Eqs. (3.11). Making then a simple transformation based on the identity 
sj\z) = I 0 - sf1 (z)J0(z)t(z)Jl(z)A0{z)L0 we rewrite (3.11) in the form 

(4.1) (I + tRoT)Af' = t [i - / l ^ j J s r ' J o t - / l^JoXo0] - Ф-М'НЛ.Ф* + Х ( / ) ) 

where AQ (Z) = L0A0(z), A^{z) = lnAi(z). Besides we denote 

X j j ' ^ 17,01s,-1 J o f l - t R o ) ™ ' , 
(-1.2) xi° = - / , , [Л,Ф-ИО+ и{,°л,Ф-J0Jo] т м ' . 

It follows from Eq. ([I].3.5) that 
(4.3) . ] ,Ф 'ао= - J i * " . 
Together with (4.3) the equalities 

(4.4) ( J t** j£ ) (z) = 0, (ЛоФЛ{) (г) = 0, 

take place being true in accordance with (3.10) for all z G С \ (— oo, Amax]. 
Using Eq. (4.3) and first of Eqs. (4.4) one can rewrite X, in the form 

(4.5) Х*/1 = Z , , J i * ' T M ' , 

too. Note that the condition z & ( - co , Amax) necessary for Eq. (4.4) to be valid, does not touch 
the two-body unphysical sheets II/, /0 = 0, since in this case Л0'(.г) = 0 and consequently, 
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the terms including the products JQJO, are plainly absent, in (4,1). Meanwhile the points 
£ ё (—oo, Anms] were excluded from the three-body sheets П/, /0 = ± 1 , by definition. 

Notice further that the operator I-f-tRoY admits the explicit inversion in terms of M(z), 

(4.0) (I + t l W ^ I - M T R o , 

for all г 6 11ц which do not belong to the discrete spectrum Oi{H) of the llamiltonian / / , and 

(-1.7) (I - A/TR0) t = M. 

The equality (4.6) is a simple consequence of the Faddccv equations (2.1) and the identity 
R„T = TRo. The relation (4.7) represents an alternative variant of these equations. Now, wc 
can rewrite Eqs. (4.1) in the equivalent form 

л/<=м ( i - ^jjs,-1 Jot - m w ) -
- ( I - Л/ТНсОФ^Л^ГЛФ* + X{°). 

hlq, (4.8) means that the matrix M'(z) is expressed in terms of the quantities X 0 ' ( z ) and 
X, (г). Main goal of the section consists really in presenting these quantities in terms of the 
matrix M(z) considered on the physical sheet. 

To obtain for X 0 and X, a closed system of equations we use the definitions (4.2) 
and (4.5) and act on the both parts of Eq. (4.8) by the operators sf 1Jo(I - tRo)T and J j * " . 
At this moment we use also the identities 

(4.9) [I - tR„]TM = Mo ~ t, [I - tRo]T[I - MTRo] = [I - M 0R 0 ]T 

where MQ = fitfiM = ( I + T)M. The relations (4.9) are another easily checked consequence 
of the Faddeev equations (2.1). Along with Eq. (4.9) we apply second of the equalities (4.4). 
As a result we come to the following system of equations for X0'* and X;'*: 

X0° = ' \LoKl Jo [(M0 - t ) ( I - Л&°Jjsf1 Jot - A&3W -

(4.10) -|/,o|sГ1JoiWoTФJ{л(/)(J1Ф* + x | ' , ) , 
Х|° = U J , Ф*ТМ(1 - Ao'lJoS,-1 J 0 t - A0"j0X<'>) -

(4.П) - / ^ Ф - ^ Ф + МТФРМ^ОЬФ' + Х^). 

It is convenient to write this system in the matrix form B^X^ = D{1), X ^ = ( X ^ . X ^ ) * 
with fi№ = {Щ}, ij =0,1, the matrix consisting of operators standing at unknown X0'* 
and XJ0. By £>('>, D{!) = ( £ $ ' , D^)^), we understand a column constructed of the absolute 
terms of Eqs. (4.10) and (4.11). Since s, = Io+ A 0 " j o t J o we find B$ = sj-'fjo + A ^ J O M O J Q ) , 

At the same time B$ = ^О^ЗОМОМ^АР, Щ]
0 = Li3xTt МЗ\А^ and В\Ч = / , + 

Li3i9'U9i\Aip because Т(Ф + ЛГГФ) = Т У Ф + ТМТФ = (Tv + ТЛГГ)Ф = t/Ф (see [1], 
Sec. 4). 

The absolute terms look as 

W = | I o | 8 r , [ J o ( M o - t ) ( I - 4 ' , j j B r , J o t ) - | / i o | J o M o T * j { A (
1

l ) J ^ ' ] t 

л | ° = i i J 1 $ " T A / ( I - A 0 ' ) 4 s f 1 J 0 t ) - X 1 J i * - t / * J , ^ ' ) J ^ * . 

The operator si(z), fo = ± 1 , has inverse one for all г € С . If г £ Zna then sjx{z) 
is a bounded operator in Go- That is why, acting on the both parts of the first equation 
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#oW + ^oW = 0̂° of U l c нУя1(!Ш ^ ( / ) х ( 0 = f>U) by Ihc operator я,, mid not. diimftii.g 
ilH second equation, wo come to the equivalent syHtem 

(4.12) 

with the (operator) matrix 

/ j ( ( ) X ( ' ) = />«> 

(4.13) nit) - I io + \ЦЗоМ03^ |/,0|JoAfoT»PJi Л*,'1 ^ 

Я'"(г) : 0 о ф Wi -» 0o Ф Ни ft,1(i t h e absolute term l)W having the components /;((,') = s,/>,','> 
and 0 « = »j" . 

LKMMA 2. 77»e operator (Z3'')(z)) ezis/s /or «W г G С such thai there. exists lliv. op­
erator Sfl(z) inverse to the truncated three-body scattering matrix Si(z) tjivc.n by Jirsl of 
the equalities (2.^) with L = diag{Ao, L\), L = diag{|/,0|, L\}, and such thai Hurt exist, 
Ihc operalors [S>/(z)]fJo and [Si{z)]^{ inverse to [S't(z\ 
l\ + ^|Л|Ф"УФЛ}/1|//|, respectively. The components 

= /о+.Ло'/М0ЛоАо and [S,(z)]n = 
(Д(')(г))-1] , i,j = 0,1, of the opv.v-

>ч 
alor (7?W(.z))~ admit the representation 

(4.14) [(^" ,(^))" ']o o = 1О-П^Г ' ]ОО{ | / .ОМО7О-[5 / ]О 1 [5 , ]Г 1
, Ь 1 Л 1 Ф-ТЛ' /}4Л{/ ) , 

(4.15) 

(4.16) 

(4.17) 

^W(*))"]01 = tf[sr%u 
(B^(z)Y 

10 
= -[Sr^uLuh^rMJlA^ {io - П'№/|ЛоМо7оЛ„Л0'>} , 

= 1ST*] oo 

with T0 = QM. 

Note that since \Lo\ and Л0 arc numbers turning into zero at /0 = 0 simultaneously, tin-
factors |/y0| in (4,14) and (4.16) may be omitted. 

PROOF. Let us find at the beginning, the components |(/J('>(2))_11 and |(/?<'>(г)) 
which will be denoted temporarily (for the sake of contracting the writing) by K0o and Yx 
Using Eq. (4.13) we write the equation system for these components, 

-J" 
10-

(4.18) 
(4-19) 

\B%oYoo + [B%t Yw = Io 
[В%0У00 + [В%^{0 = О 

Eliminating the unknown Y\Q from the first equation (4.18) with a help of (4.19) we come to 
the following equation including the element Yoo only, 

(•1.20) {io + ftf [|/,о|Ло7У0Л0" - [5,]Ш[5(]Г1
,/МЛ1Ф*ТМЛ0Л0')] } Yw = I0. 

At, intermediate transforms we used the equality Mo = П*УЬ-
The operator matrix in the left-hand part of Eq. (4.20) complementary to i0, has three 

the same rows. Thus one can apply to Eq. (4.20) the inversion formula 

(4.21) [l„ + SlHCu Ci, Сз)]"1 = Io - П» [/о + С, + Сг + C3]~' (C„ C2| C3), 
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which is true for a wide class of the operators (C'j, (.'•} and С-л), Л single essential requirement 
(» C'\, Ci and C;S evidently, is the existence of (/"„ + C\ + C2 + б*;,)-1. 

In the case concerned 

C„(z) s {|Ao|Jo7b/iJi- [^]о|[.^]Г|1Л|Л|Ф"Т[Л/1<1.11} Л'" 

where [Л7]д is t-1 i*s tf-th coliiiiiu of the matrix Л/, [М\ц = \.М\а, My), М м ) • Thus 

/0 + Cx + C-z + <7a = /o + Jo'/Mi/lJ,'» - [^loilftlr,1 Л . Ф ' ^ И ^ г [5,]00 - [ Я / М Э Д ^ Ь о -

Note that. elements [#/"'],••< i,j = 0,1, of.?/"' may be present by t he? components [&],-, as 

('1.22) 

(123) 

(124) 

(12ft) 

[Sf'loo = ( N O O - N O . N H N U . ) 

[•V]„ = ( N . | - N . o № N 0 , ) " ' 
[•S-'],o - -Ми 'ИшК 1 ] , , 

It, follows from (122) that / 0 + C, + 6'2 + C;i = ([Sf Чи, )" ' ' Therefore in the conditions of 
hcinina. tlie operator (fo + (-[ + СЛ + C;\)"1 invertible. Now, a use of Kq. (4.21) in (1.20) leads 
ns iminediately to the representation (4.14) for (/Jm) 

When calculating >'10 = (/i ( , ))~ we eliminate from the second equation (4.19) vice 
versa, the quantity Voo using Kq. (4.18). 1'Ъг all this, we need to calculate the operator inverse 
to i 0 •+ 30МоЗ}}Ап . Here, wo apply again the relation (4.21) and obtain that 

(io +1 U\30M0JUIP) "' = (i, + nfi AoiJo'/bJi/ti")"' = 
(4.26) = i o - n , № l / - o | . J o 7 b J l

, , / l } ) " . 

With a. help of (2.4) we can write the resulting equation for V'm as 

(127) rt ЛИ) = - j , г т л / J X i« + JOJWOJX' t ,iO 

According to (4.23) the expression in braces in the left hand part of Kq. (4.27) coincides with 
[£ , - ' ] " ' . Then from (4.27) wc get immediately (4.1ft). 

System of the equations 

(4.28) [««"loo Voi + [« ( %1 V„ = 0 

(4.29) [ « " W o , + [# ("]n V,, = /, 

for the. components Y0\ = [(/^' ') - ,]oi and Yu = [(/i*'')-1]n *s solved analogously. Search for 
V'u is at all a simple, problem because the use of the inversion formula (4.26) for Kq. (4.28) 
immediately gives Yl)t = iV [5/1,7,' (^'loi V'"ii- Substituting this Ym in (4.2!)) we lind 

{N„-[A/],o[A/]»[.9/]„.} >'" = '•• 
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Jim.-, one can sec in I IK? loft-band part, as in (4.27), the operator [«S-1]j", • Inverting it, we 
come to Eq. ('1.17). 

When calculating the* unknown VJ», wo begin with expressing by it the unknown \\\. 
Using Eq. (4.29) wc get 

(4.30) V„ = [5,]-' (/ , - /„.VJ/T/WJo/t'/'Vo.) . 

Substituting (4,30) into Eq. (4.28) we obtain an equation witli operator standing at You which 
may be inverted with a help of Eq. (4.21). Then we use also the chain of equalities 

= ПЧЛоМоПМТЧиМ0 = fit [,S',]0I, 
simplifying the absolute term as well as the swmrrtand in the left-hand part, engendered then; 
due to (4.30) by the clement [W''*]01- Completing the transforms we find 

vm = -n4[s,u-№]«,, № * Nio}"1 №lo, N7/• 
In view of (4,25), the expression «landing after fi' in the right-hand part, of the last equation, 
coincides exactly with that for [5,~']0) . Therefore finally, we obtain Eq. (4.15). Thus, all the 
components of the inverse operator (0*'') have already been calculated. 

It follows from the representations (4.14) - (4.17) that (/j"'(z))~ exists for such z € С 
that there exist the operators inverse to Si(z), [Si(z)]Q0 and [£/(z)]n . 

The lemma has been proved. 
Let us back to Eq. (4.12) and inverse in it, using the relations (4.14) - (4.17), the operator 

f}W(z). Thereby we find the unknowns X0
; ' and X{'' which express M'(z) [sec Eq, (4.8)]. 

When carrying a concrete calculation of X{,° = [( / i ' " )" 1 ] 1$ + f (« ( ' ) ) " ' ] /JJ0 we 

use the relation |/,0 | (# ' ' ' ) JoM 0 = П*|//0| [^Г']0 0 Jo'/'o that can be checked with a help 
of (2.4) and (2.3). A ong with the identity 

(4.31) Jot (io - / l ^ j J s r ' J o t ) = a,"1 Jot , 

this relation simplifies essentially the transform of the product (# ' ' ' ) fA'. Besides when 
L J oo 

calculating X„ , we use the equalities (4.4). As a result we find 

(4.32) X<'> = П* {|/.„| [Srl]mWh + [Sfl]0l Li ( J , r T M + J ^ * ) } - }/.0Js/-,J0t. 

Now, to find X(/> = [( / i ( / ))" ' ] D^ + [ (« ( ' ) ) " ' ] D\'\ w e observe additionally that 

the equality { l 0 - П* [Sf1]'^ .WoJo/lo '} J 0 M 0 = П* [Sf1]'* Jo'lo simplifying the product 

(/i('))~ DQ , is valid. The final expression for X, read as 

(4.33) X[l) = /„ {[Srl]l0 |/io|Jo7'0+ [.?,-']„ / , , J , 4 H T M - (/, - [.?,-],,) £ , J , * " } . 

To obtain now a representation for M'(z), one needs at the moment only to substitute the 
found expressions (4.32) for X 0 ' and (4.33) for X , ' in Eq. (4.8). Carrying out series of simple 
but rather cumbersome transformations of Eq. (4.8) we come as a result to the statement 
analogous to Theorem I of Ref. [1] concerning analytical continuation of the two-body T-
matrix. The statement is following. 
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Til КОН KM 3. The matrix M(z) admits in а sense of distributions over 0 (C") , the. analyt­
ical continuation in z on the domains II}1 0 ' of unphysical sheets П/ of the surface Ш. The 
continuation is described by 

H.:M) M' * м - (A/ntJ», «M| + MT*J{) LA Sf4 ( J I V P 4 M + Л,Ф- ) 

where. Si(z) is a truncated scattering matrix (2. J), L = <liag{/0, /j,i,..., /],„,, /2,1,..., li,n,, /3,11 •••, 
A-(.,l3} and I = diag{|/0 |, /1,1,..., /i,,„, h,u—, h,,,,, h,\,—, k.m}- Kernels of all the operators in 
the right-hand part of Eq. (4>34) arc taken on the physical sheet. 

Note that LA Sfl[z)l = L[S}(z)]~l Ah. This means that the relations (4.34) may be 
rewritten also in terms of the scattering matrices SJ(z). 

5. ANALYTICAL CONTINUATION OF T H E SCATTERING MATRICES 

Let / = {/0, l\,\,...Ji,nn /2,11—Л.па, /з,ь...,'з,па} with certain /0, /0 = 0 or /0 = ± 1 and 
lnj, lnj = 0 or l„,j = +1 , a •— 1,2,3, j = 1,2, . . . ,n0 . The truncated scattering matrices 
Si(z) : HQ (D Hi -» Ha 8 H\ and SJ(z) : H0®Hi -* H0 © Hx, given by formulae (2.4), are 
operator-valued functions of variable z being hilon.jrphic in xuc domain П} lo of the physical 
sVeet П.1. At/0 — 1 a n d / 0 j = 1, <*=1,2,3 , 7 = 1,2, ...,ra„, these matrices coincide with the 
respective total three-body scattering matrices: Si(z) = S(z), S](z) = S^(z). 

We describe now the analytical continuation of SII(Z) and Sv{z) with a certain multi-index 
/' on unphysical sheets П/ € 5R. We shall base here on the representations (4.34) for M(z) 

As mentioned above, our goal is to find the explicit representations (or &(2) |n a I ,d &}{г) 
again in terms of the physical sheet. 

First of all, we remark that the function AQ(Z) is univalent. It looks as AQ(Z) = — iriz2 

011 all the sheets П/. At the same time after continuing from По on П/, the function Aptj(z) •= 
-iriyjz — Xpj keeps its form if only lptj = 0. If lptj = 1 this function turns into AJj •(*) = 
-Afltj(z). Analogous inversion takes (or does not take) place for arguments P, P\ pa and p'p of 
kernels of the operators Л„1ШП*4, 30ПМГУЗ\, J ,$*TMn*J 0 and J ,**(Tv + ТЛ/Т)ФЛ|, 
too. Remember that on the physical sheet П0, the action of Jo(z) (J0(2)) transforms P 6 R6 in 
y/zP ( / " € R6 in y/zP'). At the same time, pa £ R 3 {p'p £ R3) turns under Ja,i(z) (30ij{z)) 
into yjz — AQi,- pa (y/z — bpjp'p). That is why we introduce the operators £ (I) = diag{£n, £1} 
where So is the identity operator in 7io if /0 = 0, and £0, the inversion, (£of)(P) = f(~P) if 
/0 = ±1 . Analogously £i(l) = diag{£i,i,...,£],„,; £2,1,—,3г,п,; £3,\,...,£з1п3} where £Pij is the 
identity operator in HSP'^ if lp,j = 0, and £ptj, the inversion (£pjf)(pp) = f(—pp) if lp,j = 1. 
By ei(/) we denote the diagonal matrix C)(/) = diag{ei,i,...,ei,ni; e2,i, ...,e2,„2; e3ii,...,e3in;)} 
with elements cpj = 1 if Ipj = 0 and epj = - 1 if lptj = 1. Let e(/) = diag{eo,ei} where 
e o = + l - . 

THEOREM 4. If there exists a path on the surface 3f such that at moving by it from the domain 
П[!ю1) on По to the domain n|,hol) fl U^°]) on Uh the parameter z stays on intermediate sheets 
П/» always in the domains П},-°' f] П,\,,° , then the truncated scattering matrices Si>(z) and 
SJ,(z) admit the analytical continuation in z on the domain Щ, ° f\ П,,,0 ' of the sheet II;. The 
continuation is described by 

(5.1) S,.{z)\Ut = £{l) [i + L'tL' Ae(l) - L'TL A Sfl LTL' Ле(/)] £(l), 

n»* 

n,, 
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(Г>,2) SJ,(z) = £{l) ft + о(/)Л L"fl' - c(l)A Iff I | S / ] - ' A lA'lA £(/), 

«/.с™ z/ = {/0, /'M,...,/'liB,f /j,, / u . /3 А » Л «*'' i' = {I'M, /',,, ''..„„ /i.p...,/i,,,-
':i,i> ••ч'з.пя}' 

PROOF. WC give the proof for example of S;<(z). Using the definition (2.3) of the operator 
T(z) we rewrite 5//(г) in the form 

SV{.)-UL'[{$T)M(№0, ТФЛ) + (°0 Jl4r°vWt)" /,'л. 

Note that when continuing on the sheet. П/», the openitors .Jo(z), JJ(z), J i ( r ) and ,)\(z) 
turn into £0(Z")J0(*), J i (* ) f t (Hi ^i( '")Ji(2) a n d J{(*)^i('")i respectively. At the: same 
time the matrix-function A(z) turns into Л(г)е(/"). Then using Theorem 3, for the domains 
n{,hol) П njlj"0 of intermediate sheets П/« we have 

(5.3) 

й,(*)|П | Я = i+€(l")l'fL'£(l")Ae(l")~ 

-C(l")L' ( л ; ] ° ? т ) (л*П* j j , [v + A*T]'V.l{) /,"/1 .9,7,' 

xZ" ( J ^ I V T T M ] ) (ntJ*' ТФЛ0 ЩПА4П 

where the summand following immediately by I, is engendered by the term M(z) of the right-
hand part of (4.34). The last summand of (5.3) is originated from the second summand 
of (4.34). 

In view of (4.4) we have Ji**vfttjJ = J ^ ' j j f i t = 0. Analogously, J 0 n v * j { с quals to 
zero, too. Thus, taking into account (2.3) we find 

(5.4) S,,{z)\y]tii = I + £(/") L'tU £{l")Ae(l") - £{l") L'TL" A 5,7* l"flJ £([") Ae[l"). 

By the supposition, the parameter z moves along such a path that on the sheet II//. it is 
situated in the domain n{,hol)f| П}*"0. In this domain, the operators (Z'77/)(z), (7/77/')(z) 
and (L"TL')(z) are defined and depending on z analytically. Consequently, the same may be 
said also about the function 5/«(г)|п . In equal degree, this statement is related to the sheet 
П/. Replacing the values of multi-index I" in the representations (5.3) and (5.4) with /, wc 
come to the assertion of theorem for 5|'(г)| . Truth of the representations (5.2) for 5,,(г) 

is established in the same way. 
The proof is completed. 

Up 

REMARK 4. If /0 = 0 then the representation (5.1) for the analytical continuation of S'/(z) on 
the (its "own") sheet П/ acquires the simple form [cf. ([1].3.6)], 

s,(z)\lh = £{i) [i + e(/) - s r^W)] £{i) = £(/)sr1 (*)£(<)• 

just, so S}(z) = £ ( / ) [#(*)]->£(/) . 
"1 
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6. R E P R E S E N T A T I O N S FOR ANALYTICAL C O N T I N U A T I O N 
О Г R E S O L V E N T 

The 'resolvent R(z) of the Hamiltonian // for three-body system concerned is expressed by 
M(z) according lo liq. (2.2). As we established, kernels of all the operators included in the 
right hand part of (2.2) admit in a sense of distributions over 0 (C") , the analytical contin­
uation on the domains I l j ' " ' of unpliysieal sheets И/ С 3?. So. such continuation is admitted 
as well for the kernel R(l3,R',z) of R{z). Moreover, there exists an explicit representation for 
this continuation analogous to the representation (|1].3.7) for two-body resolvent. 

TllKOHKM 5. Tin: analytical continuation, in a sense of distributions over C?(C"). of tin 
rc.nalvc.nl li{z) on l/ir. domain 11,"' of unphysical sheet II/ С 3? is described by 

((i.l) + ( [ / _ / f i / ] j J , П[1-КоЛ/Т]Ф. |{)Л/1Л7 ' /^ J i 4 , . J
[° I

l!.TA/R0]nt ) • 

Kernels of all the operators present in the. riylil hand part of Ki\. ((J.I) arc taken on the physical 
sheet. 

PHOOI'. For analytical continuation R'(z) of the kernel R{l\ I".;) of li(z) on the sheet II/ we 
have according to (2.2), 

(fi.2) Iff (г) = Hbiz) - ^0(=)ПЛ-/'(г)П»/?!,(-)• 

For Ml(z) we have found already the representation (4.34). Since R'0 = Ru + Л0Л0.1о«Ь we can 
rewrite Kq. (6.2) in the form 

li1 = Ho ~ liottMWllo + A0L0.]l (/„ - ЛоПЛ/'П^^ЛоЛо) J0 -

(0.3) -AoUyllWM'iVllo - HoilM'ilUU 

Consider separately the contributions of each summand of ((j.3). Doing this we shall use the 
notations 

В = («A/n t j t , ПМТФ.1! + ПФЛ!) and B« = ( ^ / Ж . Ф ' Л * ) 

It follows from (-1.34) that SlM'lV = ПЛ/П1 - BLA Sfl LB*. Hence two first summand.s 
of (6.3) give together 

//,, - Н0ПМ&/fc + HoBL ASf1 /.В*/?„ = R+ R0BL ,45,-' /-B»R0. 

Transfonning the third term of (6.3) we use again the representation (1.31). We find 

JoftA/WjjAo/lo = %0LoA0 - (f0(J, 70 I) LASf1 I ( ?°° \ L0A0 = 

= uaTL Au'0 - w0TL A 5,"' /,77, Au'Q = ш„Тl A (l - Sfl Ifl. л\ / ,<, 

where w0 stands for the projector acting from "Но ф H\ to 'Ha as a.',, ( y° ) = /„ . / 0 £ 'Й0. 

/ i € 7nfi - By WQ w e understand as usually the operator adjonf I о u.'u. So far as 5, = 1 + if 1. A 
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we have J - Sf'LTI. Л = A',"1 ( i + If L A - LT L / l) = A',-1. Taking in account that / . = /.• /. 
wo find 

LoAoUo - .1оПЛ7'П,.]<А0Ло) = и;аЛЦ1- LTLASfl)Lj^ = uoLASfl 1м„. 

This means that the third term of (6..'J) may be present as .V0u)0L ASf1 LUJ^. 
When studying the fourth surnmand of (6.3) wo begin with transforming the* product 

AoAoJofl/V/'fl' to more convenient form. It follows from (4.34) that 

ЛоЫоПЛ/ 'П' = ЛоЬоЛоПМП* - AaLa (f00, 7[„) LA Sf] ABf. 

In view of Л0/,0.1оПЛ/П* = LJQALB1 and A0Lo [%о,%\) l< - <4)ALTf. wo. have 

Л о / ^ о П М ' l l ' = w0 ( л Z, - A LTL ASf' /,) B* = w0/, /ISf1 АвП 

Analogously, in the fifth term of (6.3), ПМ'ПМ£л0/10 = В/,[5'/]~'л1м"0 = BLASf* L ; 0 . 
Thus two last sunimands of (6.3) give together —.]QU0IJ Л5,"1 Z/B1/?!)- /foBA Л.?/"1/,w„J0. 
Substituting the expressions obtained into Eq. (6.3) we find 

R' = n+ (jow0 - Д 0 в ) /, ASf11 {uj'0.)0 - В*Яо) • 

Taking into account the definitions of В and B* as well as the fact that Il0SlMiV = НУ, 
Wmjlo = VR (see [2], [3]) and Ro№Ji = -ПФЛ,, .ЬФ 'П^о = -.],Ф"П*, we come finally 
lo E(\. (G.l) and this completes the proof. 

7. ON USE O F T H E D I F F E R E N T I A L F A D D E E V E Q U A T I O N S 
FOR C O M P U T A T I O N O F T H R E E - B O D Y R E S O N A N C E S 

As follows from the representations (4.34), (5.1) and (6.1), the matrices vV/(2)| , SV(z)| 
and the Green function Л(г)| may have poles at points belonging to the discrete spectrum 
ir^ill) of the Hamiltoriiari //. Nontrivial singularities of /V/(^)|n , Sj/(.s)|r and /?(2)L 

correspond to those points г £ П0 Р| Г1, ° ' where the inverse truncated scattering matrix 
[•*>/(«)]-l (or [Si(z))~l and it is the same) does not exist or where it represents an unbounded 
operator. The points z where [S/(z)]~' docs not exist, engender poles for A/(z)L , 5;'(г)|г 

and /i(z)Jn . Such points arc called (three-body) resonances. 
The necessary and sufficient condition [12] of irreversibility of the operator Si(z) for given 

z consists in existence of non-trivial solution .Д(гга> g Й 0 ф W, to the equation 

(7.1) S,(z)A{rcs) = 0. 

Investigation of this equation may he carried out on the base of the results of Sec. 4 of the 
paper [1] concerning properties of kernels of the operator T(z) . In view of the space shortage 
we postpone this investigation for another paper. 

The equation (7.1) may be applied for a practical computations of resonances situated in 
the domains II; lol) С П/. The resonances have to be considered as those values of z € П0 f] l l j " ' ' 
for which the operators S'i{z) and SJ(z) have eigenvalue zero. 
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Kleninitsof the scattering matrices S)(z) ami Sj(z) are expressed in terms of the ampli­
tudes (continued in the energy z on Die physical sheet.) for different processes taking place in the 
three body system under consideration. Respective formulae [3] written for the components 
of T. rt-ad as 

t U h , /", г) = С™(=) A,>;o(/V, P', s) 
%«A l\ #/• -') = Q(,'"(--) Л-.вА'\ Pf,v - ) . 
tooil\ /"", г) = (f]H Л ю ( l \ l \ *) 

(>ir(,v-:))/'t 
with Г,(,л '(-) = - , ,v ,,,-,—/v-xiw»—,v .,w, where for the function -('N'-:')/< o n c takes the main 
branch. 'Пи: fund ions A„j:j.k represent amplitudes of elastic (rr = 0; j = k) or inelastic 
(o = J; j Ф k) scattering and rearrangement (о ф ii) for the (2 —• '2.3) process, in the initial 
state of which the pair subsystem is in the Ar-t.li bound state and the complementary particle is 
asymptotically free. The function Aoji.k represents for this process, a breakup amplitude of t lie 
system into three particles, The amplitudes Aa,j-,o and Aoo correspond to processes respectivly. 
(3 -» 2) and (15 —• 3) in the state where initially, all three particles are asymptotically free. 
Ueuicmbcr that contributions to Aoo from the single and double reseat tering represent singular 
distributions (см. [I]). 

Describing in Sec. 'I of the paper [1] the analytical properties in variable z and the smooth­
ness properties in angular variables P or p„ and I" or p'g, of the matrix T kernels we have 
described thereby as well the properties of the amplitudes A{z). 

To search for the amplitudes A(z) continued on the physical sheet, onecan use e.g., the 
formulation ['!], [II] of three-body scattering problem based on the Faddcev differential equa­
tions for components of the scattering wave functions considered in the coordinate space. It is 
necessary only to come in this formulation, to complex values of energy ; . The square roots 
с1-7'- and (z - A0iJ)''/'-, « = 1,2,3, j = 1,2, ...,/•„, presenting in the formulae of [3]. [II] 
determining asymptotical boundary conditions at the infinity, have to he considered as the 
main branches of \/z and ^/z — A„j. Solving the Faddcev differential equations with such con­
ditions one finds really the analytical continuation on the physical sheet for the wave functions 
and consequently, for the amplitudes A(z). Knowing the amplitudes A(z), onc can construct 
a necessary truncated scattering matrix Si(z) and then find those values of •; for which there 
exits a nontrivial solution .Д'1™' to Fq. (7.1). As mentioned above these values of ; represent 
the three-body resonances on respective sheet II/. 

Concluding the paper we make the following remark. 
It, is well known [3] that a generalization of the Faddeev equations [2] on the case of 

systems with arbitrary number of particle is represented by the Yakubovsky equations [13]. 
The latter have the same structure as the Faddeev equations. Thus the scheme used in the 
present paper, may be applied as well to construction of the type (4.34), (5.1) and ((i.l) explicit 
representations for analytical continuation of the T and scattering matrices and resolvent on 
unphysical part of the energy Riemann surface in the /v body problems with arbitrary ,V. 
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Мотовилов А.К. Е5-95-46 
Представления для трехчастичной ^-матрицы 
на нефизических листах: доказательства 

Дастся доказательство явных представлений, сформулированных 
в предыдущей работе автора для аналитического продолжения компонент 
сЬаддеева трехчастичной Т-матрицы на нефизические листы римановой 
поверхности энергии. Проводится обоснование аналогичных представ­
лений для аналитического продолжения трехчастичных матриц рассеяния 
и резольвенты. Обсуждается алгоритм, нахождения резонансов в системе 
трех квантовых частиц на основании дифференциальных уравнений Фад-
деева. 

Работа выполнена в Лаборатории теоретической физики им. Н.Н.Бого­
любова ОИЯИ. 

Препринт Объединенного института ядерных исследований. Дубна, 1995 

Motovilov A.K. Е5-95-46 
Representations for Three-Body T-matrix 
on Unphysical Sheets: Proofs 

A proof is given for the explicit represcntations'which have been formulated 
in the author's previous work for the Faddeev components of three-body 
T-matrix continued analytically on unphysical sheets of the energy Riemann 
surface. Also, the analogous representations for analytical continuation 
of the three-body scattering matrices and resolvent are proved. An algorithm 
to search for the three-body resonances on the base of the Faddeev differential 
equations is discussed. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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