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. INTRODUCTION

The paper is a continuation of the author's work [l] devoted to studying a structure of the
1" -matrix, scaltering matrices and resolvent of threc-body Hamiltonian continued analytically
on unphysical sheets of the energy Riemann surface.

A central result of the paper [1] consists in construction of the explicit representations for
the continmation of three~=body 7'-matrix on unphysical sheets in terms of this matrix itself
taken on the physical one, as well as the scattering matrices. There were outlined only schemes
to prove the representations above in Ref, [1]. Main goal of the present, work is to present a
full proof. With the representations for 7-matrix we base also analogous representations for
analytical continuation of the scattering matrices and resolvent (see Ref. {1]).

As in [1] we suppose that interaction potentials are pairwise ones which decrease in the
coordinate space not slower than exponentially. All the analysis is carried out on the base of
the momentum space Faddeev integral equations [2], [3] for components of the T'-matrix. At
that we find analytical continuation of the Faddecv equations as on neighboring unphysical
sheels as on remote ones belonging to a certain part of the total three-body Riemann surface.
A full description of the part under consideration see in Rel. [1]. The representations for the
components of T-matrix on unphysical sheets arise as a result of explicit solving the Faddeev
equations continued in terms of the physical sheet.

Notcthat a continuation of the s-wave Faddeev equations on unphysical sheets neighboring
with physical one, was made previously in the work (4] (sce also Ref. [5]) in the case of separable
pair potentials.

In the paper, we discuss also a practical meaning of the representations obtained. Ac-
cording to the representations [sece Eqgs. (4.34), (5.1) and (6.1)], the nontrivial singularities of
the T-matrix as well as the scattering matrices and resolvent are determined, after the con-
tinuation of thern on unphysical sheets by singularitics of the operators inverse to truncated
scattering matrices on the physical sheet. Thus, the three-body resonances (i.e. the poles
of the resolvent as well the T'- and scattering matrices) arc actually those values of energy
for which the scaltering matrices, truncated in accordance with the index (number) of the
unphysical sheet under consideration, have zero eigenvalue. These properties of three-body
scatlering matrices arc quite analogous to the familiar properties of the scattering matrices
in problems of two particles and multichannel scattering problems with binary channels (sec
¢.g., Refs. [6]-(8] or [5], [9], [10]). For computations of three-body resonances as zeros of the
truncated scattering matrices above, one can apply in particular, the differential formulation
of the scattering problem [3], {11] going on the complex plane of energy (physical sheet).

The paper is organized as follows. ‘

In Sec. 2 we remember main notations of Ref. {1]. The analytical continuation of the
IF'addeev cquations on unphysical sheets is carried out in Sec. 3. Sec. 4 is devoted to deriving
the explicit representations for the Faddeev components of the three~-body T-matrix continued
on unphysical sheets. The analogous representations are constructed in Sec. 5 for the scattering
malrices and in Sec. 6, for the resolvent. In Sec. 7 we formulate an algorithm to calculate the
three~body resonances on the base of the Faddeev differential equations in configuration space.

2. NOTATIONS

Throuhout the paper we follow strictly by the conventions and notations ‘adopted in Relf. [1].
T herefore we restrict ourselves here only to presenting for them a brief summary. Note at once
that at using formulae of the paper (1] (it will take place rather often) we supply their number
in Ref. [1] with the reference “[1]". '

For the description of the systemn of three particles concerned in the momentum repre-



sentalion, we nse the standard sets of reduced relative momenta ([11.2.1) ku, po, o= 1,2.3,
which are usually combined into six-vectors P = {ka,ps}. Transition from the pair {k,, p,}
to another one, {kg, pp}, corresponds to the rotation transform in R% ko = capky + Sanps.
Ve = —8opkpg + Cappp  With coeflicients cog, Sag (3] depending on the parhclt masses only,

The Hamiltonian H of the system is given by (/I f)(P’) = P*f(P) + Z(ml(v,, (1),
P?= kX4 i, [ € Hy= L;(R"), where va, a = 1,2,3, are pair potentials assuined for the
sake of definileness, to be local. This means that the kernel of cach v, depends only on the
diflerence of variables ky and k., va(ka, £.) = va (ko — k).

We deal with two variants of the potentials v,. In the first one, v,(k) are holomorphic
[unclions of variable k& € C? satisfying the estimate ({1].2.2). In the sccond variant, the
polentials v,(k) are holomorphic in k in the strip Wz, = {k : k£ € C*, |Imk| < 2b} only
and obey at k € Wy, the estimate ([1).2.3). In the both variants v,(—k) = v,(k), and this
guarantees sclf-adjointness of the Hamiltonian .

In the paper, the exposition is given for example of the second variant of potentials.
Respective statements for the first one may be obtained from the statements of this work if to
putin them, b= +oo.

By ha we denote the Hamiltonians of the pair subsystems-a, o = 1,2,3. Figenvalues
Aaj € dulho) of hay Aaj <0, 7 =1,2,..,nq, Ny < 00, are enumeraled taking into account
their multiplicity; number of times to meet an eigenvalue in the numecration cquals to itls
multiplicity. Maximal of these numbers is denoted by Ayaxy Anax = utl’;}x Aa,j < 0. 'The notation

1o,i(ka) is used for respective eigenfunctions.
We understand by oq(/l) and o(H) respectively the discrete and continuous commponents
of the spectrum o(H) of the Hamiltonian H. Note that aq(H) = (Mmin,+00) with Ay, =

minda i
oy

The notation FHy is adopted for the kinetic energy operator, (Hof)(P) = P?f(I’). By
Ry(z) and R(z) we denote the resolvents of Hy and H, respectively: Ro(z) = (Ily — 21)~" and
R(z) = (I —zI)"" wilh I, the identity operator in Ho.

Let Mo4(2) = bapte — vaf(2)vg, o, B = 1,2,3, be the components [2], [3] of Lhe T-matrix
T(2)=V—VR(2)V where V =v +v +v;5. The Faddeev equations [2], [3] for operators M,,,
read in matrix form as

(2.1) M(2) = t(z) — t(z)Ro(2)T M (2)

where Ro(z) = diag{fo(2), Ro(z), o(2)} and by T we understand the 3 x 3-matrix with
elements Tog = 1 — 8og. Besides we use the notations t(2) = diag{t(z),t2(z),ta(2)}. Here,
the operators to(z), a =1,2,3, have the kernels.to (P, P’,2) = lo(koy klyz — p2)6(pa — 1,)
where t,(k, ¥, z) stand for the respective pair T——matrices ta(2). These M, t, Rp and T arc
considered as operators in the Hilbert space Gy = GB Ly(RS).

T'he resolvent I2(z) of H is expressed by the mat rix M(z) as 3]
(2.2) R(z) = Ro(2) — Ro(2)AM (2) Ro(2)
where Q, Q : Gy — Ho, denotes operator defined as the matrix-row §2 = (1, 1, 1). At the

same time Y = Q' = (1, 1, DL

Everywhere by vz — A, z€C, A €R, we understand the main branch ol the function
(z = A)Y%. Usually, by § we denote the unit vector in the direction ¢ € RV, § = ¢/|q], and
by V-1 the unit sphere in RY, §€ S¥-'. The inner product in RV is denoted by (-, ).
Notation { -, ) is used for inner products in Hilbert spaces.

. a Na a
Let 7‘[(0".) = L,(R?) and H = 7'{( ) Notation ¥, is used for operator a(‘tmg from
J-]



H™ o Hy as (Vaf)(P) = it baj(ke) fi(pa). By W we understand (ho matrix-diagonal
operator combined of W, as ¥ = diag{¥,, ¥,, ¥3}, and acting from H, = €B H) (6 Gy.

The operators ®, and @ are obtained of W, and W by {he replacement of functlons Ya.j(ka)
with lorm-factors @a,j(ks) = (Vata,j)(ka), a=1,2,8,7 = 1,2,...,04.

By O(CN) we denole the Fourier transform of the space Cg°(RN).

The operator J, j(z), a =1,2,3, j=1,2,..,n4, realizes the restriction of functions
J(pa). pe € R, on the energy shell Aaj + |paf®* = E ab z = £ £i0, £ > A, ;, and then if
possible, continses them ana]yticnlly into a domain of complex values of energy z. On O(C?),
this operator acts as (Joj(2)f) () = f( Xaifa)- Notation J}, ;;(2) is used for the operator
“ransposed” with rcspcct toJ ;(2) (sce. Rcf 15)2

The opcrntor Jo(2) is defined on O(C®) analogously to Ja ;(z) by (Jo(2)/)(P) = f(v/ZP).
The notation J(z) is used for respective “transposed” operator [1].

The operators Ja,; and JL.J- are combined in the diagonal matrices J)(2) = diag{Ja i(2),
vy Jana (2)} and J@1(2) = diag{J!, a(2), . 1, (2)}. In their turn, we construct of the lat-
ter, the operators Ji(z) = dla.g{.](’)(z) J(Z)(z) J@)(2)} and Jf(z) = diag{J1(2), J@M(2),
1(3”( )}. Besides the listed ones, we use in the work, the block~d1agonal operator 3x3-matrices
Jo(z) = diag{Jo(2),Jo(2), Jo(2)} and J}(z) = dmg{J (2),d8(2),J8(2)} as well as operators
J(z) = ding{Jo(2),1(2)} and Jt(2) = diag{Ji(2),I1(2)}.

Along with H,, Goand H, dcscnbed above, we consider the Hilbert spaces Hp = Lo(S%),

Gy = 633 Ho and H; = 63517:((") where H@) = & Fled) Flod) = L2(S?). The identity
a=] a=

j=1
opcrators in ’ﬂg, Qo, 7:11 and Ho @ H, are denoted by ]o, Io, 11 and I, respectively.
The operator-valued function 7(2), 7(2): Ho @ Hi — Ho @ H,, of the variable z €
C \ o(H)is dcfined by

' B aM(z)at QM (2)TW
(2.3) 7(z) = ( \p-m(u)z)m U(Tv + ;3\4(2 T)‘I’ )

with v = diag{v, vs, v3}. The truncated three-body scattering matrices are cxpressed by T(2)
as

(2.4) Si(z) =1+ (LTLA)(z) and §}(z) =1+ (ALTL)(2)
where 7 (2) = (ITIN)(2), ’T(z) : Ho ® Hy — Ho @ Hy. The multi-index
(2~5) l = (IOa ll.l) X3} ll,nl I 12.17 cory l?.’nzy lS.la seey 13,113)

has the components lo = 0or lp= xl and l,;=0o0rlj=1,a="1,2,3, j=12,...,n
Notations L and j, are used for the diagonal matrices corresponding to the multi-index &: L =
diag{LOa Ll}a L= dlag{lLOI’ Ll}a LO = lO a-nd Ll = diag{ll.l’ “eey ll,mal2,la eeey I2,n2a 13,17 seey
I3y} By A(z) we understand the diagonal matrix-function A(z) = diag{Ao(z), Aa,;(2),
a=1,23 j=12,.,n,} with the clements Ag(z) = —7iz? and A, ;(2) = —7i\/z — Ao ;.

The notation T} is used for the domain in variable z € C where (L’I"L’)(z) is a holo-
morphic operator-valued function. The matrices Si(z) and S,f(z) as well as the products
(LodoM)(2), (L 13 ¥ TM)(2) and (MJI,LO) (2), (MT\IIJ{Ll)(z) are holomorphic functions
of zon domains ™" = TIlel. A description of the domains I} and " see in Ref. (1],
Sec.

We consider only a part of the total three-body Riemann surface. This part is denoted
by ®. Sheets [I; C R are generated by branching in the two-body, z = A\ j, @ = 1,2,3, j=
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1,2, ..., e, and threc-body, z = 0, thresholds. When enumerating the sheets, the multi- index
[ given by (2.5) is used. At lh = 0 its components I, ;, a = 1,2,3, j = 1,2,..,n,, can
get arbitrary value among two numbers 0 and I, In this case, 11} represents a copy of the
complex plane C cut along the ray [Amin, +00). If {y = &1 then the rest of components [, ,.
o= 12,3, 7=1,2,..,n,, of [ arc assumed be cqual to 1. There is accepted that at Iy = +1
the sheet 11 c0incidcs w1th the upper half-plane Ct = {z € C: Imz > 0} and at I = -1,
with the lower one, C~ = {z € C : Imz < 0}. We supposc additionally Lhat the sheets

Il; with Iy = +1 are cut along the rays constituting together the set Z., = U 28 Nlere.

o=l

',r(;) ={z: 2= zp,1 £ p< +o0,2 € arc)} is a totality of the rays beginning in the

rcsonance points o8 of subsystem o and going to infinity along the directions 3, = z /1l

2z € a2, A more detailed description of the surface R and in particular, the way of sticking
the sheets II; sce in Scc. 5 of Ref. [1).

If all the components of the multi-index [ are zero, lo = lo; = 0, « = 1,2,3, j =
1,2, ..y, thesheet [T; is called the physical one, Ilg. The unphysical sheets 11, with Iy = 0 are
mlled the two-body ones since these sheets may be reached from [1g rounding the two-body
thresholds z = A, ; only, with no rounding the breakup threshold z = 0. The sheets 1l; at
[ = 41 are called the three-body ones.

3. ANALYTICAL CONTINUATION OF FADDEEV EQUATIONS FOR
COMPONENTS OF T-MATRIX ON UNPHYSICAL SHEETS

Goal of the present section consists in continnation on unphysical sheets of the surface R,
of the absolute terms and kernels of the Faddeev equations (2.1) and Lheir iterations. The
continmation js realized in a sense of generalized functions (distribntions) over O(C%). Results
of the continuation are represented in terms related with the physical sheet only.

By 1), L) = [{@)(]), we denote the diagonal matrices formed of tho components
o1y o2y 0009 Io na Of the multi-index ! of the sheet T, ¢ R: L)) = diag{la1, lo2s s lama }-
At that L,(0) = dlag{L(” L®, LAY} and L(I) = diag{Le, L\} ¢ Lo = . Analogously,
AeNz) = diag{Aau(z), Az, Aa,na(z)} and A(z) = diag{AM)(z2), AQ?)(z), A®)(2)}. Thus
A(z) = diag{Ao(z),A1(2)}. .

By S0,( 2) we understand the operator defined in Ho as

(3.1) Sa1(2) = Jo -+ Jo(2)ta(2)d}(2)Ao(2z) Lo, = € Tl

it follows [rom Eq. (3.1) that Say = g at Iy = 0. If lp = £1 then according to Egs. ([1).4.42)-
(1].144),the operator s, (z)is defined for z € P,(VCE, Py = {z: Rez > —b% + (Im2)?/ (40%)},
and actson [ € 7:{0 as

(3.2) (sou(z )f) /dksa (ko k., 2 cos? w) f(cos we kL, , sin wapa)

where wa,kmp,_-, stand for coordinates [3] of the point P on the hypersphere $%, w, € [0,7/2),
L,,,pl, € 52. lor all this, P = {coswak,,, sinwypa}. By sa we denote the scattering matrix
([1].2.16) for the pair subsystem a. As a matter of fact, sq; represents the scattering matrix
Sa rcwritten in the three~body momentum space.

It. follows immediately from Eq. (3.2) that if z € Po(1CE \ Z& then there exists the
bounded inverse operator s;",(z),
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(s l(:)f)(f‘) = /4//. sy ( I."...(oq wn)f((t()sw,,ic:,,sillw,.f),,) with s (k k' , 0, the kernel of
82
the inverse pair se 1llm|n;, matrix s5'(¢).
The operator s;, }(z) becomes unbmmdod onc at the boundary points z sitnated on rims

of the cuts (Lhe *resonance” rays) included in A

TuroreM 1. The absolute terms (P, Py 2) and kernels (L, Ro)(P, 1, 2) of the Faddeey cqua-
lions (2.1) admit the analylical conlinualion in a sense of disiribulions over O(C®) both on
twer body and threc-body sheels Wy of the Riemann surfuce R. The continuation on the shect
”[. l= ([0,“"...,, []_,“,I'z"..u, I'I.Hz'lii,lv-“vlﬂ.na)' I() = 0, 1{]']‘ = 0. 1. or I() = .'.tl. 1,7']‘ =1 (ill
both cnses i1 =128, f=1,2,..,ng), is wrillen as

(3.3) tf,(z) = t"(:)hl, = tn — I;o/‘[)t‘,.]osa ‘Jot - (b J(n)l (d)A(u) ](u)q)

(3"') [tn "0( )”“ _tl )R:)(:)

where 125(z) = ”"(:)Ill, = Ro(2)+ LoAo(2)IN(2)Jo(2) is the continuation [9] on 11 of the free
Green function Ry(z). If lo =0 (and henee 1l is a two-body unphysical sheel). the continuation
i the form (3.3), (3.4) is possible on the whole shect Wy, Al ly = £1 (i.c. in the casc when
{l; is a three body shect) the form (8.3), (3.4) continuation is possible on the domain Py (N 1.
All the kernels in the vight-hand parts of Fqs. (3.9) are taken on the physical sheel,

ProOF of the theorem we give for example of the most intricate continuation on three- body
unphysical sheets [l; with ly = &1, For the sake of definiteness we consider the case Iy = +1.
For ly == =1, the proof is quite analogous.

Lot us consider at z € Hy, Iinz < 0 the bilincar form

(3.5) (f+talo(z)f /(II. /dk'/d folk, K. ) F(k. k'p)

/’2 + .
R* R e

with f(k, kD)= [k, p) [ (K, p), [, [ € O(CO), k= k,, k' = k', p = po. Making replacements

of variables K] — p = [K'|%, [p| = A = z = |p|? we find that the integral (3.5) turns into

(3.6) /dk/dk'/dp / dA\/"“‘/d Jp otk /AR 3 ‘/—" Flbk /R VTR,

=00

Existence of the analylical continuation of the kernel (t,fo)(z) on the sheet Uy, 1y == £1.,
follows from a possibility to deform continuonsly the contour of integration over variable p 1o
arbitrary sector of the analyticity domain 'P;,ﬂvm of the integrand in variable A in the way
demonstrated in 1%g. 1. Besides, this is connected with a possibility at movmg of = from Iy
to Iy, {y = +1, to make a nccessary deformation of the mlvgmhon path in variable X in such
a way thal this path is separated from the integration contour in variable p

To obtain the representation (3.4) al a concrete point = = zg, we (:hoosv a special final
location of the integration contours in variables A and p after consistent. deforming them (see
Iig. 2). Singularity of inner integral {(over variable p) remains integrable after such deformation
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’\o,j 0 ( /7)
——— —9
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Figure 1: Deformation of the integration contour over variahle p. The integration contours
over pand A arc denoted by letters in brackets, The cross “x” denotes the cigenvalues A, ; of
h, on the negative half-axis of the physical shect and the pair resonances belonging to the set
0535) on thesheet 1Ty, o= +I. Also, there are denoted the cutls on 11, & = +1, beginning at

the points of ofs.

Figure 2: The final location of the integration contours ovér variables p (I |JI'2) and A
(@) UG4). The contour I'y represents a loop going clockwise around the countour G, the line
segment [0, z]); Ty = [0, +00); G2 =(2 — o0, ilmz]J[iIm 2, 0).



due to presence of the factor \/p. As a whole the integral (3.6) turns into

/dk/dk'/dpx

RE 2
/ A . R
x /d,\\/_—z—/\ / d,{\/;ﬂ"-’/;{”—f’—)f(k,\/zk',\/_z_?\ﬁ)+
(3.7) “ filn by
+ / d\Wz =X / dpﬁﬂi(-k—;\f-ﬁ—f\“;—) J(k, VoK, Vz = Ap)+

Gy I‘, U I‘z

i / in o Bl o e Mp)}

=1

where ¢/ denotes the pair T-matrix {4(2z) continued on the second sheet (as regards t5()), the
contour Gy 3 A belongs to its second sheet). The last term arises as a result of taking residues
in the points Aa j € 04(ha).

Evidently, the domain of variable z € Il;, [y = +1, where one can  continue analytically
the function (3.5) in the form (3.7) to, is determined by the conditions ')y € Py and Ty () 25 =
f. Thesc conditions may be satisfied at z € P, only.

Note that value of the inner integrals over I'y at A € G, are determined by residues at, the
points p = A. At the same time f dX... . ... = 0 since at A € G, the functions under the
integration sign are holomorphic in p ‘€ Int ﬂ Thereforc

1 . .
€M lo=+1 Z/dk/dk'/dp X

R3 52 s§2

X { / dA\Vz = N=2xi) VXt (k, VA, N f(k, VIF ,Vz = Xp)+
G

(fstaRo(2)f')

38+ [ 0rTR [ apyp el PN AT i e ) 4
G F2 .

+ / WY / dp\/p t-“‘p—‘{—’_’f—i) Flk, /oK, VTR +

$a,i(F ( ¢ K ’
DN /d N Y (N VNS
i=1

In the second summand of Eq. (3.8) we have used the representation ([1].3.2) of for thevpa.ir
T—matrix continued on the second sheet. Look at the expression for 7,(k, &',() in Ref. [1],
Sec. 3. Remember that t! (¢) = ta(¢) + miv/{ Ta(()-

Joining the summands including ¢, on the physical sheet, in the alone integral fG UG
and using then the holomorphness of the function under the integration sign in variable J,
we straighten the contour Gy |J G, turning it into the ray (z — 00,z}.. As a result we get the
bilinear form corresponding to the product (taRo)(z) taken on the physical sheet.

The last term of the expression (3.8) corresponds to the kernel of —®,J(Mt (@) Al@)j(@)p* Ry,



Backing in the rest of summands including ¢, and 7, to the initial variables &/, p' and
utilizing then the definition (3.1), we find that these summands correspond to the expression

Lo/ [t — LoAodisz ota ]JOJO— LoAotad|s; ot Ro-

Gathering the results obtained we reveal that the analytical continuation of t, /%y on the sheet
14, lo = +1, looks as

[taRo(2)]|, = (ta — LoAotadds; Jota = @l LN A7)
(3.9) , x(Ro+ LoAodbJo) + LoAo®, )N L™ Ale)j(@) g2 gt g,
To be convinced in the factorization (3.4), is sufficient to note that the last summand of (3.9)
equals to zero. Indeed, one can check easily that at Imz # 0 or Imz = 0 and z > max A, ; the
- . 2

following equalities take place
(3.10) (o2 31(2) =0, (Jobad@M)(z) = o

Thereby the last term of (3.9) disappears and hence, Eq. (3. 4) is true. This completes the
proof.

REMARK 1. As amatter of fact, the kernel [t,Rg)(z) In corresponds to the two-body problem

and thereby it has to be translationally invariant with rcapect to variable p,. This fact may be
understood if one introduces the generalized function (distribution) 0,(p) over O(C*) acting

as (0., f) = -/df\/_/dpf(\/—p) where 7, is the line segment connecting the points £ = 0

and £ = z. It fol]ows from the representation (3.8) that the kernel of [t Ro)(z) [“‘ may be
rewritten as

(tal{o)l(P, f,l’ 6(}7 {ta(l\- k Z— )_ll-

k2 4+p? -2 :

o (k k', 2 — p? VZ=§? —
+ilo [o,(p)\/?iﬁ e 1£I§+ EP) o (WWE =R (kK kT W "")]
0i(k)do ; (K} 6 NS
+E27f1 la,]\/—_:; ® .22 )¢ J( ) . (IP' lpl;' a)}

j=1 '

k:k,,,,k':km P=Dpa P =15,

where due to the presence of the factor 6(p — p'), the translation invariance is emphasized
explicitly. Analogously

(PP = {talhk 2 =)+ 7i Lobulp)/7 = 7 malk, Kz — )+

+ Zu27”la.;vz"' aJ ¢a.} k)d’a;(kl (Ipl I ‘2 ‘”)} -P’)- .

Using Egs. (3.3) and (3.4) one can present the Faddeev cquatlons (2.1) continued on the
sheet II; in the matrix form

(3.11) ' M'(2) = t'(z) — t'(2)Ri(z) T M'(z)
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(:5.12) t'(z) = t = LoAotI}sy ' Jot — &I LA b7,
(3.1) Rl(z) = Ry(z) + LoAo(2)d4(2)d0(2).

Here, si(z) = diag{s,(2),52.(2):834(2)}. By M'(z) we understand the supposed analytical
continuation on the sheet 11 of the matrix A (z).

Lumsa 1. For cuch two body unphysical sheel 11 of the surfuce R lhere exists such o palh
[rom the physical sheet g to the domain Ilf""l’ in ll; gring only on two-body unphysicul sheels
Wy that moving by this path, the parameter z stays always in respeclive domains ]l( N e 11

Proovr. Let us use the principle of mathematical induction. To make this, at the beginning
we arrange the branching points A, o = 1,23, j = 1.2.....n,. in nondecreasing order

redenoting them as Ao Agy o Ay 10 S an M < Az < < Ay and putting Ay = 0.

Let the multi-index { = ({1, Iy, ..., ln) correspond temporarily namely to this enmumeration. As
previously, §; = 0 if the sheet 11; is related to the main branch of the function (2 — A;)1/2 else
I, = 1. The index Iy is omitted in these temporary notations.

It is clear that the transition of z from the physical sheet Hp across the segment (A, \,)
on the neighboring unphysical theet gy (into the domain 1111, 1) = (I‘,".I.‘z”. w1y with

W ls m
l(]') = land Igr') =0 at j # 1, is possible by definition of the domain ll}‘(‘,", (see Ref. [1]. Sec 1),
According to Lemmas [1].1 and {1].2, if = belongs to ll((,‘,’”, it. may be lead 1o the real axis in

the interval (A1), 400) with certain AV < A, Remaining in 1Y the point = may even go

around the threshold Ay crossing the real axis in the segment (A, X)), Thus. the parameter =
may be lead rom the sheet I on the cach ncighl)oring unphysical sheet and in particular,
on the sheet Hy related to &y = 0, L = 1, ; = 0, j 2 3. Transition of = from Iy across the
scgment (Az, Az) on the sheet 11 with [} = lg =1,1;=0,723.is always possible,

We suppose further that the parameter z may be carried in this manuer from Ily on all
t.he two-body unphysical sheets 1y deflined by the conditions ng) = 0.7 > k. It assumed

also that during the carrying, z always remains in the domains ll}(h,:;l) of these sheets and does

not visit different sheets. It follows from Lemmas [1].] and [1].2 that if 2 stays in the dotain
llf('f;l) of cach sheel of the type deseribed then wittingly, it can be lead to the real axis in the

segment (A®, 4-00) with certain A% < Ax. Hence the parameter = from cach of the sheets Ty
may be carvicd across the interval (Mg, Agg1) on the neighboring unphysical sheet Hyen with
P = W5 <k 1) = Land B4 = 0, § > k4 1. This means actually that 2 may be
carried from g on all the two-body unphyslca] sheets ey with I( N =0, > k41, For

all this the parameter 2 remains in the holomorphuess domains ll((H,, and does not visit the
sheots ey with s > &4 1. By the principle of mathematical mdmhon we conclude that the
parammeler z may be carried really on all the two body uuphysical sheets.

Proof is completed.

Using results of Sce. 4 of the paper {1} and Lenuna 1, one can prove the following important
staternent.,

THEOREM 2. The ilerations Q™ (2) = ((=tRoT)"t)(2), u =1, of absolute terms of the Fad-
decy rquutwns (2. I) adnul in a sense of distribulions over O(C“) the analytical coutinuation

on the domain ll( of cach unphysical shect 1y C R. This continuation is described by the
cqualitics  QU(z | = ((—-t'R{ T)"t')( ).



REMARK 2, The products L;J, WY Q0" QmITWIlL,, LoJ,Qm,  QUma}], o

L), TQ(""T\I!J’L,, LodoQMIt Ly, L)W TQ("‘)J'L(, and I,(,Jug,("')’f‘\lll Ly, 0 <
m < n, arising at substitution of e relations (3.12) and (3.13) into Q7)(x liwe 1o be
understood in a sensc of definitions from Sec. 4 of the paper [1].

(=)

REMARK 3. Theorem 2 means that one can pose the continued Faddeev equations (3.11) only
in the domains ﬂ}hnl) c 1.

4. REPRESENTATIONS FOR THE FADDEEV COMPONENTS
OF THREE-BODY T-MATRIX

In the present section, using the Faddeev equations (3.11) continued, we shall obtain the rep-
resentations for the matrix M!(2) in the domains ﬂ?“’” of unphysical sheets [l; ¢ R, The
representations will be given in terms of the matrix M(z) comiponents taken on the physical
sheet, or more precisely, in terms of the half-on--shell matrix M(z) as well as the operators
inverse to the truncated scattering matrices Si(z) and 5!(z). As a matter of fact, the con-
struction of the representations for M!(z) consists in explicit “solving” the continued Faddeev
equations (3.11) in the same way as in [9], [10] wherc the type ([1].3.2) representations had
been found for analytical continualion of the T-matrix in the rnultichannel scattering pmbkm
with binary channels. We consider derivation of the r(.prescnmtlons for M!(z) as a constructive
proof of the existence (in a sense of distributions over >< (’)(CS)) of the analytical continuation

of the matrix M(z) on unphysical sheets I1; of the surfacc R

So, let us consider the Faddeev equations (3.11) on the sheet I1; with lo = 0 or Iy = =+
and {g;=00rlg; =1, B=1,23, j=12..,n5 Using the expressions (3.12) for t'(z)
and (3.13) for Ri(z), we transfer all the summands including M‘(2) but not Jy and Iy, to
the left—hand part of Egs. (3. 11) Making then a simple transformation based on the identity,
sil(z) = - s;!(z )Jo(z)t(z).] (2)Ao(z) 1 we rewrite (3.11) in the form

(1) I+ tReT)M! =t [I — AD3bs-130t — AS,"JOXS,‘)] — o) A0, 07+ X)

where A((,')(z) = LoAo(2), Asl)(z) = Ly A(z). Besides we denote

= {Lo|s; ' To(I - tRe)Y M,

(1.2) x“’ S [.1,<1>-R0+ A{,”J,¢-JZ,JO] ™!
It follows from Eq. ({1].3.5) that

(4.3) 110 Ro= — 0",

Together with (4.3) the equalities

(4.4) (J&'J{,) (z) =0, (Jm:) (2) =0,

take place heing true in accordance with (3.10) for all z € C\ (~00, Amax)-
Using Eq. (4.3) and first of Eqs. (4.4) onc can rewrite xﬁ’) in the form

(1.5) x = L e M,

too. Note that the conditioni z & (—00, Amax) necessary for Eq. (4.4) to be valid, does not touch
the two--body unphysical sheets 1I;, [y = 0, since in this case Ag')(z) = ( and consequently,
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the terms including the products J(f,Jo, are plainly absent in (4.1). Meanwhile the points
= € (=09, Amax] were excluded from the three-body sheets I}, I = %1, by definition,
Notice further that the operator I+ tRoY admils the explicil inversion in terms of M(2),

(4.6) (I+tReT)™' = I- MTRy,
for all z € 11y which do not belong to the discrete spectrum o4(#) of the Hamiltonian H, and
(4.7 (I-MTR)t=M

The equality (4.6) is a simple consequence of the Faddeev cquations (2.1) and the identity
RyT = TRy. The relation (4.7) represents an alternative variant of these equations. Now, we
can rewrite Eqgs. (4.1) in the equivalent form

MU= M (1— ADIL 3ot — ADIIXE) -

(4.8)
~(I— MYR) @) AP, 0 + XDy,

I2q. (4.8) means that the matrix M'(2) is expressed in terms of the quantities X{(z) and
Xg’)(z). Main goal of the section consists really in presenting these quantities in terms of the
matrix M(z) considered on the physical sheet.

To obtain for XU) and XU) a closed system of equations we use the definitions (4.2)
and (4.5) and act on t,he both parts of Eq. (4.8) by the operators s Jo(X — tRo)T and J 0=,
At this moment we use also the identities

(4.9) [[-tRo)TM = Mo ~t, [I—tRo]T[I—MTRo] = [I—-MoRo)T

where Mo = QIQM = (I + T)M. The relations (4.9) are another easily checked consequence
of the Faddeev cquations (2.1). Along with Eq. (4.9) we apply second of the equalities (4.4).
As a resull we come to the following system of equations for Xf)‘) and XE‘):

X = |Lols7'3o (Mo~ £)(T — ALI}s7 Iot — APIXY)] -

(4.10) ~[Lolsi ' JoMoTR I AP (107 + X (),
X = LLUTMIE - AP 3 - APIIXE) -
(1.11) L3 Y@ + MYVt AL (07 + XD

It is convenicnt to write this system in the matrix form BOXW = PO x = (x§; (l))"
with B = {Bw}, i,j = 0,1, the matrix consisting of operators st,a.ndmg at unknown X
and X{". By DO, DO = (D(') D('))T), we understand a column constructed of the abrolute
terms of Eqgs. (4.10) and (4.11). Since s, = 1+ A )JotJ‘f, we find B((,g = s,"(io + A((,’)JOMOJ",),
At the same time B 0, ILols,”lJoMoT\I’J'A“) Bﬁ,) = LlJl\IJ‘TMJSA((,” and ]_.?fl,) = I+
L3 0 U 9 AY because T(@ + MTT) = TvE + TMTE = (Tv + TMT)U = UV (sce [1),
Sec. 4).
T)he absolute terms look as

DY = |LolsitTo(Mo —t) (1~ ADIEsT Iot) — |Lo|IeMoYRIL AL, 7],
DY = LIwTME - AP ot) - Lid U9, A0 5,0,

The operator s/(z), lo = =1, has inverse one for all z € C. If z € Z., then s7(2)
is a bounded operator in Go. That-is why, acting on the both parts of the first equation

11



,(:,)X(” + IJU)X“) I)“) of the system BOXO = HI by the aperatar s;, and not changing
its second cquntlon we come to the equivalent system

(1.12) px® = pv
with the (operator) matrix

i t Al |
(4.13) B = To+ |Lo|JoMo-;lo/(1l§,) _|/fo|JuMoT‘llJ=/1‘(| )(l)
IO YMIgAy L+ LWV U A

B(z) GodH) — Go® 7;(1, and the absolute term DY having the components I)((,” = § I.)‘(,”
and I)U) l)“)

LEMMA 2. The operator (BU( z:))-l ezisls for all z € C such thal there cxzists the op-

erator S;'(2) inverse to the trunculed three- body scattering matriz Si(z) given by first of

the equalities (2.4) with L = diag{Lo, L}, L = diag{ |Lo| Ih}, and such thal there crist

the operalors [S)(2)]5d and [S';(z)]“ inverse lo [Si(2)joo = lo + Jo'l I Aolo and (S{z))y =

I+ Lydywe U\I'J,A;b,, respeclively, The components { BU( (2))” ’ y 1,3 =0,1, of the oper-
i

alor (B(“(z))—] admit the represcnlation

4.14) [B“)(z) ']

(BT = To= QST oo {1 oldoTo = [Silar (S5 Lay W™ T M} JEASD,
Lis) [(B0E)7] = @S,
4.16) [(13“’ ))’ = =[S/l TMJ'A“’{IO-nf[S,] u,o|10'/DJfAf,"},
( )|

1.17) [B(" z) = (5700

(
(
(
(

with To = OM.,
Note that since |Lo| and Ag" arc numbers turning into zero at o = 0 simultancously, the
factors |Lg| in (4.14) and (4.16) may be omitted. '
Proot. Let us find at the beginning, the components [(]3")(2:))_]]0 and [ (BY(=2))” ] .
10

which will be denoted temporarily (for the sake of contracting the wrltmg) by Yoo and Y.
Using Eq. (4.13) we write the equation system for these components,

(4.18) [B(’)]oo Yoo + [B(l)]ox Yio
(4.19) (B0 Yoo + [BY) Yio

I llmmatmg the unknown Yjp from the first equation (4. 18) with a hclp of (4 19) we come to
“the following equation mcludmg the element Yy, only,

I
0

(1.20) {10 +at [|L0|J07;,J°Ag” — (SulSI /,.J,\v-'rMJgAg”] } Yoo = .
At intermediate transforms we used the equa.llt,y Mo = QtT,. ‘ .
The operator matrix in the left-hand part of Eq. (4.20) complementary to Iy, has three

the same rows. Thus one can apply to Eq. (4.20) the inversion formula

- -1 - - -1
2)  [l+91(C, G, )| =lo-0t [+ Ci+C+Gl (G, Gy i)

12



which s true for a wide class of the operators (¢, Cq and ). A single essential requirement
to ('y, 'y and Cy evidently, is the existence of (fy+ C) + Co + Cy)~!

In the case concerned
'0(2) = { Lol oadl = (Sior (17 l«nJ.‘V'T[M]aJI,} Ay
t
where [M] s the G-th columm of the matrix M, [M]; = (Mm, Mg,y,M;,,;) . Thus

Jo+C1 +Ca 4 Cy = o+ JTIEAY = [Sar[S]7H 310U AS = [Stloo = [Soa (ST [Si]o-

Note that clemoents [S’—I]U' i, = 0,1, of 87" may be present by the components (S, as

(1.22 570 = (151]oo = 110y 1S3 (S ]w)—‘
(1.23) [51 l},, = ([ [Siig [‘51]00 [S;](,,)
(1.21) [‘ql_l] 1w = - [Sl]|_|| [St)io [q-l]

(1.25) ' [Sfl]o, = ~[Sil5 (S [ql l]u

It follows from (4.22) that Jo+ Cy + Cy + Cy = ([sr l]00) Therefore in the conditions of
Lemma, the operator (Iu+ Ci4Ca 4 Cy )" invertible. Now, a use of Eq. (4.21) in (11.20) leads

. . -1
us immediately to the representation (4,14) for [(li(')) "

When caleunlating Yy = [(IJ(”)—'] we climinale from the second equation (4.19) viee
versa, the quantity Yoo using Eq. (4.18). For all this, we need to caleulate the operator inverse
to Iy + JOMUJ(,A((,). Here, we apply again the relation (4.21) and obtain that

- -1 . -1
(o + 1 olToMuddal) ™ = (lo + Q' LoldTo3§ Ay =
1, — QNS Lol doTod§ AL

(1.26)
With a help of (2.4) we can write the resulting equation for Yy as

{151)y) = (5110 1Si)oo Sy} Yio =
(1.27) = ~J T MILAY [Iu+JuMoJ()/1() )

A((or(hng 10 (1.23) the expression in braces in the left hand part of Eq. (4. 21) comcides with

[5’"']ll Then from (41.27) we get immediately (4.15).
System of the equations

(4.28) : ' (1300 You 4 [BY)gy Y11 =0

(1.29) (BMyg Yor + [BOy Via = 1,

for the components Yo, = [(BW) oy and Yy = [(BW)']y is solved analogously. Scarch for
Yy is at all a simple problem because the use of the inversion formula (4.26) for Fq. (4.238) -
inunediately gives Yy = Qf [S'l](,"(,l (Stl; Yii- Substituting this Yy in (4.29) we find

{{':q/]n - [‘ql]m [5'1150' [Sl]m} Y = il.

13



Here, one can see in the left-hand part as in (4.27), the operator [Sf']:‘l, Inverting it, we
come to Eq. (4.17).

When calculating the unknown Yoy, we begin with expressing by it the unknown ¥y,
Using Eq. (4.29) we get

(4.90) Vi = (805 (Ji = a0 M3 A0 Ve ) .
Substituting (4.30) into 13q. (4.28) we obtain an equation with operator standing at Yy, which
may beinverted with a help of Eq. (4.21). Then we use also the chain of equalitios
[ LolToMo YW AV = | LojJo' QM YW It AL =
= | Lo|JoIMTWI AN = Q1 [S)),,

simplifying the absolute term as well as the summand in the left-hand part. engendered there
due to (4.30) by the element {B1] . Completing the transforms we find

Yor = =1 “51]00 - [Sllm [51]1_1, [Sl]m}-, [Sllm [S‘];l,’

In view of (4.25), the cxpression «tanding after Q! in the right~hand part of the last equation,
coincides exactly with that for ;'] . Therefore finaliy, we obtain Eq. (4.15). Thus, all the

o
. -
components of the inverse operator (B(‘)) ‘have already buen calenlated.,

It follows from the representations (4.14) - (4.17) that (B“)(z))-] exists for such z € C
that there exist the operators inverse to Si(z), [Si(z)]y, and [Si(2)],,-

The lemma has been proved.

Let us back to Eq. (4.12) and inverse in it, using the relations (4.14) - (4.17), the operator

BU(z). Thereby we find the unknowns X{" and X" which cxpress M!(z) [see Eq. (4.8)].
When carrying a concrete calculation of X = [(B“))—l]0 D + [(B“))—l] D we
0 o1

use the relation |Lo| [(B“))"]m Jo Mo = Q| Lo} [S7],,, JoTo that can be checked with a help
of (2.4) and (2.3). Along with the identity

(4.31) Jot (io - Ag"Jgs,—'Jut) = 57 Jot,

this relation simplifies essentially the transform of the product [(B“))_l] I)((,l). Besides when
00

caleulating X, we use the cqualities (4.4). As a result we find

(4.32) X =0 {|Lal [S7"] o JoTo + [ST'),, Lt (3" TM +4,97)} = [Lolsy ! Jot,

Now, to find X{) = [(B(’))"]w i 4 [(/3('))"]“ D® we observe additionally that
the equality {io -t [.S',"];ul Ju'lef,AE,”}J(,MO =t [S," ;01 JoTo simplifying the product
[(B“))—'] DS is valid. The final expression for X\ read as

1

(133) X = Ly {[S7'],g [Lollo o+ [S7], bado WM = (1 = [57],,) T}

"T'o obtain now a representation for M'(z), one needs at the moment only to substitute the
found expressions (4.32) for Xf,” and (4.33) for X(l') in Eq. (4.8). Carrying out series of simple
but rather cumbersome transformations of Eq. (4.8) we come as a result to the statement
analogous to Theorem 1 of Ref. [1] concerning analytical continuation of the two-body 7'-
matrix. The statement is following.
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TuroneM 3. The matric M(z) admils in o sense of distributions over O(CY), the analyl-

icul continnation in z on the domains l’If'"’l) of unphysical shecla 11y of the surface . The

continnation is deseribed by

4.1 I f t t ) t -17 -IQQM
(1.34) M =M (MQ Jo ®Jy+ MT‘I’J’) LaSTL ( LHU*TM + 1,@° >
where S1(2) is a truncaled scallering malriz (2.4), L =diag{lo,li1ye0ey limyy Loty ooy lagnay Loty oo,y

lymg } aneel o = diag{Jlol, Nty ey Qimgs 12,0y oves f2imgs {3,103 oo laima }o Kernels of all the operalors in
the right-hand pert of Eq. (4. 34) are taken on the physical sheet,

Note that LA §7Y(2)L = L{S}(2)]™ AL. This means that the relations (4 34) may be
rewritien also in terms of the scattering matrices S} (2).

5. ANALYTICAL CONTINUATION OF THE SCATTERING MATRICES

Let L= {loy ligyeonnltingy 2,0y 0000 lomay 3,040,030, } with certain b, Ip = 0orly = +1 and
lojy b =00rlp; =41, =123, j=12,..n, The truncated scattering matrices
S1(=) : Ho® Hy — Ho ® H, and Sf(z) cHo@Hy - Ho® 7:11, given by formulae (2.4), are
operator-valued functions of variable z being hnlon.urphic in vue domain Hfh"l) of the physical
steetI's. At lgy=1and l,; =1, a=1,2,3, {=1,2,..,nq, these matrices coincide with the
respective total three-body scattering matrices: Sj(z) = S(z), S,’(z) = St(2).

We describe now the analytical continuation of Sp(z) and S,,(z) with a certain multi-index

' on unphysical sheets Il; € ?R We shall base here on the representations (4.34) for M(z |n

As mentioned above, our goal is to find the explicit representations for Si(2) |nu and S| (,,)‘n
' {

again in terms of the physical shect.
First of all, we remark that the function Ap(z) is univalent. It looks as Ap(2) = —wiz?
on all the sheets I1;. At the same time after continuing from Il on II;, the function Ag ;(2) =

m keeps its form if only lg; = 0. If Ig; = 1 this function turns into ApJ(z) =
—Aﬁ'_’( ) Analogous inversion takes (or does not take) place for arguments P, P!, pgand p fig of
kernels of the operators JoQMQJ}, JOMTRY, J, U TMONY and J, 9 (Tv + TMT)PJL,
too. Remember that on the physical sheet Ilg, the action of Jo(z) (lf( 2)) transforms P E RE in
VzP (P'e Réin \/zP'). Atthe same time, p, € R? (Ps € R®) turns under J,(z) (J i(2))
into /z — Ay i Pu (\/;—A;—Jpﬁ) That is why we introduce the operators £(I) = dmg{&), &}
where & is the identity operator in Ho if lo = 0, and &, the inversion, (Eaf)(P) = f(~ —P) i
lp = £1. Analogously &(!) = diag{&€1,1,...,&1,ny; E2,15 01 E2im3 E3y1,y - 6'3 s} Where & ; is the
identity operator in F84) if Ig; =0, a.nd &p,;, the inversion (Ep'jf)(ﬁp) = f(—pg) il lg,; = 1.
By e;(l) we denote the diagonal matrix e,(I) = diag{ei1,.-s€1,n5 €2,1y+++,C2n35 €3,1 .1 €305}
wiLh clements eg; = 1 if lg; = 0 and eg; = —1 if I3; = 1. Let e(l) = diag{eo,e;} where
THEOREM 4. If there exists a path on the surface R such that at moving by it from the domain
1Y on Ty to the domain NIV IIN) on I, the parameter z stays on intermediate sheets
[ always in the domains H(h°])ﬂﬂf,',‘ﬁl), then the lruncated scattering matrices Sp(z) and

S,f,(z) admit the analytical continuation in z on the domain Hf,hc’l) ﬂl’If,';"l) of the sheet ;. The

continuation is described by

(5.1) Su@y, = € [i + T L Ae(l) - L'FL AST L Ae(z)] £(),
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(5.2) Sh(z) L= 0 [i+c(z)A LTI ey LTI (S} A /ii/] E(D),
i
where L = {Ihy U gy ooy Ungs Bty oo tomgs Usgyeees laing b amd 1= {{I01 1 By gy By

1 '
[.’l.l’ ""lﬂ.ns}'

Proor. We give the proof for example of Sp(2). Using the definition (2.3) of the operator
T(z) we rewrite Sp(z) in the form

At Jof £t t 0 0 '
Su(z) =1+ 1L [( J‘\L,.T)M(Q i, Tw.11)+ 0 survwat )| KA

Note that when continuing on the sheet I, the operators Jg(z), Ji(2), Ji(z) and Ji(z)

turn into E(IMJo(z), IN2)&(I"), E(I")di(z) and J{(z)b‘;(l"), respectively. At the same
time the matrix-function A(z) turns into A(z)e(!"”). Then using Theorem 3, for the domains

DN of intermediate sheets I we have

Si(2)l,, = T+ WV L'T L'EQ") Ae(l")~
(5.3) OV ( J;]\?;?r ) (matsf, v+ /w*r]m.]:) I"A S x

B (e ) (08, 7901) ey

where the summand following immediately by iis engendered by the term M(z) of the right.-
hand part of (4.34). The last summand of (5.3) is originated from the second summand
of (4.34).

In view of (4.4) we have J,¥*vQlJ} = J,8°JiQ! = 0. Analogously, JovWJ! cquals to
zero, too. Thus, taking into account (2.3) we find

(5-4) Se(2)|y, = t+ ey T L () A"y - E(I") LT L" AS;Y L'T L £(1") Ac(l”).

By the supposilion, the parameter z moves along such a path that on the sheet I it is
situated in the domain I1J*" N ﬂ},’}ﬁ]). In this domain, the operators (L'T L')(z), (LT 1")(z)
and (L7 1)(z) are defined and depending on z analytically. Conscquently, the same may be
said also about the function Sp(z)ln'". In cqual degree, this statement is related Lo the sheet

Il;. Replacing the values of multi-index !” in the representations (5.3) and (5.4) with {, we
come to the assertion of theorem for Sp(z)|n[. Truth of the representations (5.2) for S’,t,(::)ll
is established in the same way.

The proof is completed.

REMARK 4. [f lp = 0 then the representation (5.1) for the analytical continuation of Si(z) on
the (its “own”) sheet I1; acquires the simple form [cf. ([1].3.6)],

Si2)]y, = EO) [T+ () = 57 (2)e(h)] £0) = £ 57 (2) €.

Just so S,’(z)'m = E()[SH2)]"1 £Q1).
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6. REPRESENTATIONS FOR ANALYTICAL CONTINUATION
OF RESOLVENT

The resolvent 12(z) of the Hamiltonian /I for three-body system concerned is expressed by
M (z2) according 1o Eq. (2.2). As we established, kernels of all the operators included in the
right - hand part of (2.2) admit in a sense of distributions over O(C%), the analytical contin-

nation on the domains ”5‘"'” of unphysical sheets 11; € R. So. such continnation is admitted
as well for the kernel R(P, P, 2) of R(2). Morcaver. there exists an explicit representation for
this continuation analogous 1o the representation ([1].3.7) for two-body resolvent.,

TueoreM 5. The anelylical continuation, in u sense of distvibutions over O(C®). of the
resolvent 1Rz} on the domain H}""l) of unphysical sheel 11y C R is deseribed by

/I'(.':)‘”‘ = i+

_ —1i Jol/ = VR
(6.1) +([/ = v, Q= ReMYWI)LAST'L ( qu;-[(i[_ TMP{O]Q’ ) .

Keenels of all the operalors present in the right- hand part of Ey. (6.1) are laken on the physical
sheel.

PrOOF. For analytical continuation R'(z) of the kernel R(P, 1. z) of R(z) on the sheet 1] we
have according 1o (2.2),

(6.2) R'(z) = Ri(z) = RY()QM' () RY(2).

For M'(z) we have found already the representation (4.34). Since RBY = Ry + LyAgd)dp we can
rewrite Eq. (6.2) in the form

R = Ry~ RoOM'Q 1 + Aglio} (io—.losz,\1'0*‘){,’/,0.4(,) Jo—
(6.3) —AoLod oM 1y — RQM' VI J0 10 A0,
Consider separately the contributions of cach summand of (6.3). Doing this we shall nse the

notations

—_ tqt t ty . i _ -]()Q}\‘IQ'
B = (amahl, amMTvl+a0)}) and B! = ( L

It follows from (1.34) that QM'Qt = QMO = BLA S7' LB!. Hence two first summands
of (6.3) give together

Ro~ RoQOMQ Ry + ReBL AST LB 1y = R+ ReBL AS;' LB R,
Transforming the third term of (6.3) we use again the representation (4.31). We find
intt =T — {7 7 —] § 'jf)o _

JoM QNG LoAg = Too Lo Ao Too, To) LAST L T lLoAo =
10

= wT L Aw)—wT L AST LT L Awl = woT 1L A (i - ST ,1) fu

where wy stands for the projector acting from Ho '):ll to 'F{(, as w.,( j/.-" ) = fo. o€ Ho.
D

fi € Hy. By wy we understand as usually the operator adjont to wy. So lar as S =1+1LT1A
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we have - syt LTLA= Syt (l +ILTLA-ILTL /l) = S Taking inacconnt that L = L./
wer find

LoAo(lo — JoQM'QN LoAg) = woeAL( ~ LT LAST ) lwy = wol A 57" L.

This means that the third term of (6.3) may be present as Iuwol AS! qu
When studying the fourth sumnmand of (6.3) we begin with transforming the product,
Ao Ll oSIM! QU to more convenient form. 1t follows from (4.34) that

AolodoQIM'QY = AgLoJoQMQ! ~ Aol (7’*00, 'fm) LA ST LB
In view of AoLoJoQ@M Q! = uoALBY and Aol (Tao, Ton) L = woALT 1, we have
AgLoJo QM = wy (AL —ALTLAS i,) B' = woL AS' LB

Analogously, in the fifth term of (6.3), QM'QIS LA, = BL[S,’]_'/\IM(‘, = BLAS " Lw;.
Thus two last summands of (6.3) give together —-.]f,wUI,AS," LB Ry— RyBIL AST! Lwglo.
Substituting the expressions obtained into Eq. (6.3) we find

B = R+ (Jhwo = HoB) LAST' L (w5do ~ B o).

Taking into account the definitions of B and B! as well as the fact that RQMQY = RV,
NYMQRy = VR (sce [2], [3]) and RoQ®J; = —QWJ,, J,0"Q12 = —J,¥"Q!, we come finally
1o Iq. (6.1) and this completes the proof.

7. ON USE OF THE DIFFERENTIAL FADDEEV EQUATIONS
FOR COMPUTATION OF THREE-BODY RESONANCES

As follows from the representations (4.34), (5.1) and (6.1), the matrices Iu . Se(z |”‘

and the Green function z)[” may have poles at points belonging to tho dlb(.['( e spectrum
o4(1} of the Hamiltonian /f. Nontrlvml singularities of M(z |” s Se(2) |” and lZ(z)In

correspond to those points z € ﬂoﬂll(h" where the inverse truncated scattering matrix
[Si(2)] ! (or [.9',1(2)]"l and it is the same) does not exist. or where it represents an unbounded

operator. The points z where [S(2)]™" does not exist, engender poles for M(Z)Ilh’ Sp(z)lm

and F(z ) . Such points are called (three-bady) resonances.
The ncccssary and sufficient condition [12] of irreversibility of the operator Si(z) for given
z consists in existence of non-trivial solution A ¢ 'Ho @ 'H; to the equation

r?.]) . S[(Z)A(ms) = (.

Investigation of this equation may be carried outl on the base of the results of Sec. 4 of the
paper [1] concerning properties of kernels of the operator 7(z). In view of Lhe space shortage
we postpone this investigation for another paper. ' '

The equation (7.1) may be applied for a practical computations of resonances situated in

the domains 1" C TI;. The resonances have to be considered as those values of z € Iy () 11"

for which the operators Si(2) and .S',’(::) have cigenvalue zero.
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Flements of the seattering matrices Si(2) and 5’,( ) are expressed in terms of the ampli-
tneles (continued in the energy = on the physical sheet) for different processes taking placein the
three hody system under consideration. Respective formulae [3] written for the components
of T.read as
Togiti(Bas e 2) = CEN2) Anjin il Pl 2),

7:'-] O(Pm l”, z ('(J)( 2) Aaj: 0(7’07 l ) <

Tourk( P iy 2) CEN=) Avoa( P Blyr 2),
72)0(1: P = v(")( 2) -Aoo(P pl 2)
dr(N=3)/4

with ( ‘\)( Y= ——< . (, Y —
9(NSN/2 g(N+10)/2 L(N=1)/4

branch. The funclions A, j.ax represent amplitudes of elastic (o = 8: j = k) or inclastic

(o =92 j # k) scattering and rearrangement (o # 3) for the (2 — 2.3) process. in the initial

state of which the pair subsystem is in the &-th bound state and the complementary particle is

asvimptotically free, “T'he function Ay represents for this process, a breakup amplitude of the

system into three particles, The amplitudes A, ;0 and Agg correspond to processes respectivly,

(3 = 2) and (& — 3) in the state where initially, all three particles are asymptotically free.

Remember that contributions to Agg from the single and double rescattering represent singular

distributions (cm. [1]).

Desceribing in Sec. 4 of the paper (1] the analytical properties in variable 2 and the smooth-
ness properties in angular variables P or jpo and ' or Pg, of the matrix T kernels we have
described thereby as well the properties of the amplitudes A(z).

o scarch for the amplitudes A(z) continued on the physical sheet, onacan use c.g.. the
formulation [3], [11] of three-body scattering problem based on the Faddeev differential equa-
lious for components of the scattering wave functions considered in the coordinate space. It is
necessary only to come in this fornmilation, to complex values of energy =, The square roots
Sand (2 = A )3, a = 1,23, j = 1,2,..,n,, presenting in the formulac of (3], [H]
determining asymptotical boundary conditions at the infinity, have to be cousidered as the
main branches of /= and /z — A, ;. Solving the Faddeev differential equations with such con-
ditions one finds really the analytical continuation on the physical sheet for the wave Tuhetions
and consequently, for the amplitndes A(z). Knowing the amplitudes A(z), one can construet
a necessary truncated scattering matrix S;(2) and then find those values of z for which there
exits'a nontrivial solution A 1o Iiq. (7.1). As mentioned above these valnes of = represent
the three -body resonsances on respective sheot. 1.

il

where for the function =V=3/1 one takes the main

Concluding the paper we make the following remark.

It. is well known [3] that a generalization of the Faddeev equations [2] on the case of

systems with arbitrary number of particle is represented by the Yakubovsky cquations [13).
ny -, . M 1y .
Phe latter have the same structure as the Faddeev equations. Thus the schieme used in the
present paper, may be applied as well to construction of the type (4.34), (5.1) and (6.1) explicit
representations for analytical continuation of the 7 and scattering matrices and resolvent on
unphysical part of the energy Riemann surface in the & - body problems with arbitrary V.
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Mortosuaos A.K. E5-95-46
[1peacrasacHus Asl TPEXUACTHUHOM T—Ma'rpuum
Ha HeU3UUECKUX JIUCTAX: AOKA3ATEIbCTBA

JlacTcs MOKAa3aTe/bCTBO SIBHBIX TPCACTABACHHI, CGOPMYJIMPOBAHHBIX
B npeanixyuieid paboTe aBTopa ANS AHAJIUTUUCCKONO MPONOIKEHHS KOMIIOHEHT
Maanecsa TpexuacTuyHoi T-MaTpuubl Ha HE(PU3UUCCKNE JUCTHl PUMAHOBOM
nmoscpxHoctn 2Hepruu. [IpoBoauTcs OOOCHOBaHME AHANOrMUHBIX MPCEACTaB-
JICHHUE AJ19 AHAZTUTUYECKOrO MPOAOIXKEHNS TPCXHYACTHUHBIX MATPHLL PACCESTHUS
“ pe3oabBeHTH, OOCYXaaeTcs aaropuTm HaXOXACHNS PE30OHAHCOB B CUCTEME
TpeEX KBAHTOBBIX YaCTHL, HAa oCHOBaHuM auchdepeHuuansibix ypasHeunit Pan-
Aecesa.

PaboTa BbINONIHCHA B .ﬂaﬁopampuu TEOPETUUCCKOMN (busmm uMm. H.H.Boro-
mwbosa OUSU.

Mpenpuir OObLEAMHCHHOTO UHCTHTYTA SACPHBLIX HeCaesoBanuit. dy6ua, 1995

Motovilov A.K. ' | E5-95-46
Representations for Three-Body T-matrix
on Unphysical Sheets: Proofs '

A proofis given for the explicit represcntations which have been formulated
in the author’s previous work for the Faddeev components of three-body
T-matrix continued analytically on unphysical sheets of the energy Riemann
surface. Also, the analogous representations for analytical continuation
of the three-body scattering matrices and resolvent are proved. An algorithm
to search for the three-body resonances on the base of the Faddeev differential
equanons is discussed.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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