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ABSTRACT 
Ion Bernstein waves (IBWs) have been generated by mode conversion of ion cyclotron 
range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these 
discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at 
the passing/trapped boundary, indicating that passing particles are being moved onto loss 
orbits either by increase of their v± due to the wave, by outward transport in minor 
radius, or both. The lost particles appear to be DD fusion produced nitons heated to -1.5 
times their birth energy. 

INTRODUCTION 
IBWs have been produced in TFTR by mode conversion of ICRF fast waves in 
plasmas with large fractions of 3 He, for the purposes of electron heating and 
current drive.1 The mode conversion occurs at the two-ion hybrid layer, and the 
resulting IBW is absorbed by electrons within a few cm of the mode conversion 
layer. The major radius of the mode conversion layer can be controlled by varying 
the toroidal field strength and the fractional abundance of 3 He (the remainder of the 
plasma being principally D and 4He). Typical discharge conditions are: R=2.625 
m, a=0.99 m, B T=4.8 T, I p=1.4 MA, n e(0)=5xl0 19 m - 3 , n 3He/n e^0.1, T e(0)=7 
keV, P N B = 0 - 1 0 MW, and P R F = 3 - 5 MW (43 MHz). Under some conditions, 
enhanced losses of charged fusion products (CFPs) are seen at the wall during 
these experiments. The CFP loss rate is measured by detectors at 90°, 60°, 45°, and 
20° below the outer midplane, at a single toroidal location.2 Each detector measures 
the total flux and the gyroradius and pitch angle distributions as functions of time. 
They are, however, unable to discriminate between ions of different charge or mass 
if they possess the same gyroradius. 
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CHARACTERISTICS OF THE LOSS 
Figure 1 compares the time histories of two similar IBW discharges. The only 
difference between them is in the fraction of 3 He present. The solid line shows data 
from a discharge with 67% 3He in the gas puffed into the vessel, while the broken 
line is for one with 50% 3He. The total CFP loss rate for the discharge with 67% 
3 He puffing exceeds that in the other on all detectors by up to a factor of ten. The 
losses in the comparison shot are about at the level of first orbit loss, ~10% of the 
CFP birth rate. 3 The variation of the losses appears to be correlated with small 
changes in the edge density, and may relate to the coupling or propagation of waves 
in the edge. Another comparison shot, like those shown but with no NBI, has no 
detectable losses. This indicates that the losses are indeed fusion products, since 
these detectors are insensitive to beam ions and there is no rf-produced energetic 
tail. From Fig. 1, it is clear that the loss rate can transiently be a substantial fraction 
of the source rate. Such large losses in a reactor might damage the first wall. 

Figure 2 compares the pitch angle distribution of the loss to the 90° detector during 
IBWH with a normal first orbit loss distribution. The loss during IBWH is 
centered at the pitch angle of the passing/trapped boundary for this detector, and the 
width of the distribution is equal to the instrumental width. Loss at the 
passing/trapped boundary would be seen if the CFPs are being transported outward 
in minor radius4 or if they are being given additional vj_ by the IBW. 5 

Figure 3 compares the gyroradius distribution of the loss in the 90° detector during 
IBWH to first orbit loss. The first orbit loss distribution shows the effect of 
instrumental broadening, since it consists of only birth-energy particles. The 
distribution during IBWH peaks at a higher gyroradius and has a larger FWHM 
than does the first orbit loss distribution. Both indicate that escaping particles have 
been significantly heated. The observed gyroradius distribution matches that of 
CFPs at 50% above their birth energy. 

SPECIES INVOLVED 
The losses described above have been seen in plasmas which are principally 
composed of 3 He, 4 He, and D, with D neutral beams. Hence, there will be both 
DD and D 3He fusion products present which may be lost. However, some features 
of the detector system allow the range of species involved to be narrowed. 

The D 3 He fusion products are a 14.7 MeV proton and a 3.7 MeV alpha particle. 
The DD CFPs are a 3 MeV proton, 1 MeV triton, and 800 keV 3 He ion. Of these, 
the 14.7 MeV proton can be eliminated since its gyroradius does not match that 
seen, and it contributes negligibly to the total signal. The 800 keV 3He ion cannot 
enter the detectors unless it is heated to >900 keV, and even then its gyroradius 
does not match the observations. Hence, it can be omitted from consideration. The 
remaining particles, the 3.7 MeV alpha, the 3 MeV proton, and the 1 MeV triton, 
cannot be excluded based upon detectability. All have similar gyroradii as well. 

2 



If the D beams are replaced with T beams, the IBW-related loss appears to vanish. 
Two possibilities might explain this change: (1) the loss has, in fact, stopped; or (2) 
the loss is still present, but is overwhelmed by the loss of DT alpha particles. This, 
we suggest, makes it unlikely that the observed losses are due to the 3.7 MeV 
D 3 He alpha particle. T beam injection produces alpha particles at 3.5 MeV, an 
energy only 6% different from the D 3He alphas. Since the process involved 
increases the lost particles' energies by -50%, we expect the loss process to work 
equally well with DT alphas as with D 3He alphas. Yet, with a substantially larger 
source of alphas, the loss does not grow but remains the same or vanishes. Hence, 
we conjecture that the IBW-related losses are not of alpha particles. 

This leaves the DD CFPs, 3 MeV protons and 1 MeV tritons, as possibilities. Of 
these two, the plasma conditions are such that there will be a 2Q.j resonance at 
R=3.00 m, while there will be no proton cyclotron resonance in the plasma at all, 
favoring the hypothesis that the losses are of energetic tritons. 

POTENTIAL FOR CONTROL OF a PARAMETERS 
The above results indicate that there is a strong interaction between the IBW and 
CFPs under appropriate conditions. This interaction might have use in ash removal, 
burn control, current drive, and transfer of the alpha particle energy to plasma 
ions.6 In this last case, the object would be to improve the reactivity of a plasma by 
direct transfer of alpha energy to the ions, while at the same time transporting the 
alphas toward the plasma edge where they would eventually be pumped out. 
Considerable further experimentation, analysis, and modeling will be required 
before the intriguing results reported here can be applied to practical needs. 
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RGURE 1 . ICRF power, neutral beam power, neutron rate, and fast ion loss rate to detectors 90° 
60°, and 45° below the outer midplane for two similar discharges in TFTR. The shot plotted with 
the dashed line (81548) had 50% 3 H e in its gas fueling, while the shot plotted with the solid line 
(81547) had 67% 3 H e gas fueling. 
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FIGURE 2. Pitch angle 
distributions of the IBW-
related loss (solid line) 
and first orbit loss 
(dashed line) in the 90° 
fast ion detector. The IBW 
loss is centered at 
thepitch angle of the 
passing/trapped 
boundary, and its width is 
due to instrumental 
broadening. The IBW loss 
has been normalized to 
the amplitude of the first 
orbit loss in this figure. 
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FIGURE 3. Gyroradius 
distributions of the IBW-
related loss (solid line) 
and first orbit loss 
(dashed line) in the 90° 
detector. The width of the 
first orbit loss distribution 
is due to instrumental 
broadening, and its peak 
is at the gyroradius 
corresponding to birth-
energy charged fusion 
products. The IBW loss 
case peaks at a higher 
gyroradius and is broader, 
both indicating significant 
heating of the fusion 
products before their loss. 
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