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M O D E L I N G SPACE C H A R G E I N B E A M S F O R HEAVY-ION F U S I O N 

W. M. Sharp 
Lawrence Livermore National Laboratory L-440, Livermore, CA 94550, USA 

Abs t rac t 
A new analytic model is presented which accurately es­

timates the radially averaged axial component of the space-
charge field of an axisymmetric heavy-ion beam in a cylindri­
cal beam pipe. The model recovers details of the field near 
the beam ends that are overlooked by simpler models, and the 
results compare well to exact solutions of Poisson's equation. 
Field values are shown for several simple beam profiles and are 
compared with values obtained from simpler models. 

I . In t roduct ion 
Longitudinal confinement of space-charge-dominated 

beams in induction accelerators requires detailed knowl­
edge of the beam space-charge field. Unlike radio-frequency 
accelerators, the accelerating fields of induction accelera­
tors provide no longitudinal focusing, so time-varying elec­
tric fields must be added to the acceleration field in at least 
some induction modules to balance the space-charge force. 
For the ion beams considered for heavy-ion fusion (HIF), 
which are typically meters long and only a few centime­
ters in radius, these longitudinal-control fields, referred to 
here as "ears," are highly non-linear and must be calcu­
lated from the measured beam quantities like current and 
radius. 

In HIF experiments [1] and some analytic work [2], the 
beam space-charge field has been calculated from a simple 
one-dimensional model. By assuming axisymmetry and a 
uniform charge density p, it can be shown that neglect­
ing the axial derivative in Poisson's equation leads to the 
simple result, in SI units, that 

<*«>--£K5)]£ « 
Here, A = irpa2 is the beam line-charge density, z is axial 
distance in the beam frame, and the angle brackets denote 
averaging over the beam cross section. The logarithmic 
factor in Eq. (1) is call the "geometry factor" or "g-factor," 
and a and R in the term denote the radii of the beam and 
the beam pipe respectively. A slightly more sophisticated 
treatment, including the possible axial variation in a gives 

{E^)K-^\b + ln{^)\^--a^\- ( 2 ) 

These simple expressions are not expected to be valid at 
the beam ends because neglecting the axial derivative in 
Poisson's equation is clearly invalid there. The failure of 
Eqs. (1) and (2) is evident, for example, for a beam with 
a uniform charge density. For this case, a vanishes at the 
beam ends, and both (Ez) expressions unphysically be­
come singular there. 

In this paper, a Green's function is used to derive a 
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more general expression for the radially averaged axial 
space-charge field (Ez) of a nonrelativistic ion beam cen­
tered in a perfectly conducting cylindrical pipe. The ex­
pression is specialized to beams, like those in induction 
accelerators, that are much longer than their radius, and a 
closed-form approximation to {Ez) is obtained for the class 
of beams with a/R ^ 0.05 at all points. This calculation 
is done in the beam frame, but since HIF beams are non­
relativistic, {Ez) is effectively the same in the laboratory 
frame. The importance of beam-radius variation is illus­
trated by plotting the space-charge field for several beam 
profiles, and results of the new model are compared with 
predictions of the simpler g-factor models. 

H . Derivation 
A general expression for {Ez) is derived from a Green's 

function equivalent to that in Ref. [3]. The Green's func­
tion G for the potential of a ring of charge with unit mag­
nitude centered in a perfectly conducting pipe of radius R 
is obtained from Poisson's equation, given in SI units for 
this case by 

V2G{r,z;r',z') = -±-6(r- r')6(z - z'), (3) 

where the primed coordinates denote the source location, 
and unprimed coordinates are field points. A straightfor­
ward solution gives 

G(r,zy,z') 
1 

where Jo and J\ are Bessel functions of the first kind, and 
an denotes the nth zero of Jo- The potential 4> for any ax­
isymmetric charge distribution with density p(r, z) is then 
found by integrating G over all r ' and z', and the cor­
responding axial space-charge field is given by Ez{r,z) — 
—d<l>(r, z)/dz. When p is assumed to be independent of r 
within some radius a(z), then the Ez expression is trivially 
averaged over r, giving 

(Ez(z)) = 
1 CO 

U/2 

/ dz'sgn(z 
•Lb/2 

anJi{ocn) 

z^-MAna^exvi-A^z - z'\) 

(5) 
Here, the notation An = an/R has been introduced, and 
z has been assumed to be zero at the beam midpoint, so 
that the ends of a beam of length Li are at ±L t /2 . 

The integral in Eq. (5) cannot in general be evaluated 
in closed form. However, for typical beams from induc­
tion accelerators, the axial scale lengths of a and X are 
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much longer than the exponential scale length A~x for all 
n. This short exponential scale length allows us to expand 
the integrand linearly about the z' value where the inte­
grand magnitude is maximum. Equating the derivative of 
the integrand with respect to z' to zero gives a transcen­
dental equation for this integrand extremum. Rather than 
solve this equation numerically, we simplify the equation 
by assuming that the Bessel-function arguments are small, 
as is appropriate when A„a' & 1. The resulting equation 
for the location of the integrand peak is 

l-sgn(z-z')A„('xO, (6) 

where C(z) = (-tj/2) — \z\ is the axial distance from the 
nearest beam end. Examination of Eq. (7) shows that the 
integrand peak is 

C w m a x f c . i O s C (7) 

The significance of Eq. (7) is that the integrand is ex­
panded about the exponential maximum except very near 
the ends. The approximation leading to Eq. (7) proves 
to be excellent in cases where a(±Lt/2) «C R, and it still 
is usable for larger beam-end radii because a varies slowly 
near the beam ends, so errors in £„ have little consequence. 

After linear expansion of the integrand about £„, the 
integral in Eq. (5) is evaluated in a straightforward manner 
and, after some algebra, gives the following Bessel-series 
expression for (Ez): 

• \ sgn(z)—Ji^nanjexpC-ylnC) 

(8) 
where an and An are values at £ n , and 

/„(*) = 1 - | [1 + max(l, AnQ] exvi-AnC)- (9) 

Here, the fact that AnL\, ^ 1 has been used to discard 
exponentially small contributions from the farther of the 
two beam ends. This expression is found to be in excellent 
agreement with the exact expression Eq. (5) for every case 
examined. 

Eq. (9) is an important result of this paper, but the 
summation in general requires laborious numerical evalu­
ation. In the following section, however, it is shown that 
the expression may be approximately evaluated for beams 
with sufficiently large radii at the beam ends. 

I I I . Special Cases 
A. Beam Profiles 
The radius a of the axisymmetric beam and the line-

charge density A in Eq. (9) are in general independent 
quantities related by the beam transverse emittance and 
the accelerator lattice. In this work, A is taken to be any 

non-negative function that vanishes smoothly at the beam 
ends. For the equilibrium axisymmetric beams considered 
here, a, A, and the normalized edge emittance CAT are re­
lated approximately by the steady-state envelope equation 

4L 2 + f l a 3 0. (10) 

Here, <r0 is the phase advance per lattice period 2L in the 
absence of space-charge effects, and 

1 2eA A 
K ~ 47T€0 02MC2 ~ / ? 2 (11) 

is the beam perveance, with /? being the beam axial veloc­
ity scaled by c. Four cases are studied here: 

(1) Uniform radius. Here, e# is obtained directly from 
Eq. (10) and increases toward the beam ends to balance 
the decreasing transverse space-charge force. 

(2) Uniform normalized emittance. For this case, Eq. (10) 
is solved trivially for a 2 , giving 

2L 2 4 + ( ^ + ^ ) " ] . <„> 
(3) Uniform "transverse temperature". Even though the 
envelope equation Eq. (10) is derived under the assumption 
that the beam is cold in the transverse plane, the trans­
verse temperature of a bean is in general proportional to 
T = €%/a2. If this temperature-like quantity is treated as 
uniform along a beam, Eq. (10) gives 

4L 2 

(Kw+T) (13) 

(4) Uniform charge density. If the charge density p is as­
sumed uniform along the beam, then 

a 2 = 
wp 

(14) 

and the normalized emittance e^ from Eq. (10) vanishes 
at the beam ends along with A and a. 

Although these simple profiles are unlikely to match 
that in an experimental beam, they illustrate the sensitiv­
ity of the space-charge field to the beam radial variation. 
Fig. 1 shows field values calculated for beams with identi­
cal parameters and line-charge profiles, but differing radial 
profiles. The parameters are those of a small recirculating 
induction accelerator being built at the Lawrence Liver-
more National Laboratory [4], except that the midsection 
of the beam has been shortened to highlight field changes 
near the ends. As expected, one finds that the peak space-
charge field increases for profiles that have smaller end 
radii. It is also evident that (Ez) for the uniform-density is 
qualitatively different from the others. For the cases with 
a finite beam-end radius, the field magnitude is seen to 
drop significantly in a narrow region at the beam end. In 
this region, which has a characteristic length of R/ai, the 
absence of charge outside the beam reduces the axial field, 
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1 Radially averaged space-charge field for beams 
with various radial profiles but the same line-
charge density. 
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and at the endpoints, the field is reduced by approximately 
half. In contrast, (Et) for the uniform-density case varies 
monotonically near the end due to the rapidly decreasing 
radius. Another distinction of the uniform-density case is 
that about 250 terms are required for convergence of the 
Bessel series in Eq. (8), whereas the other cases require 
between 20 and 40 terms. This difference arises because 
the beam radial profile is poorly fit by a Bessel series when 
a/R is small, and many terms are needed for an adequate 
representation. 

S. Analytic Approximations 
Since the series Eq. (8) converges rapidly when a/R k. 

0.05 for all z, it is sensible to approximate the (Ex) expres­
sion by setting n = 1 in / „ and in the exponential factor. 
Also, since a varies only slightly between the ends and Ci 
for such beams, leading Bessel factor and the derivatives 
of a and A can all be evaluated at Ci with negligible error. 
These approximations leave two Bessel series that, remark­
ably, can be exactly summed. Expressed generally, these 
Bessel sums have been verified numerically over the range 
1 > x > 0: 

*E (A) 2- 7f(«« i) 1 
n = l <4/?(«») = l2+ln{h) (15a) 

(15*) 

Outside the specified range, these sums either fail to con­
verge or give other values. Substituting Eq. (15) into the 
approximate form of Eq. (8) leads to the expression 

- s g n ( 2 ) - ~ - e x p ( - J i n C ) 

'ft \ d X 

d 

-AW 
'Xdal 1 

(16) 
This expression is a numerically tractable generalization of 
Eq. (2) and is a very good approximation to the Bessel-
series expression Eq. (8) for most experimental beams. As 
expected, it gives an inaccurate but non-singular result for 
uniform-density beams. 
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Fig. 2 
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Radially averaged space-charge field for a constant 
emittance beam calculated using various approxi­
mations 

Sufficiently far from the beam ends, the exponentials in 
Eq. (8) vanish, and Cn = 0 m this c a s e » the Bessel sums in 
Eq. (15) can be used to evaluate Eq. (8) without further 
approximation, and the result exactly recovers the general 
g-factor expression Eq. (2). It follows that Eq. (2) gives 
(Et) accurately in the interior of any beam in which A and 
a vary on length scales that are long compared with Rjai. 
The expression only fails within a region a few times i t / a j 
in length at each end. 

The various approximate expressions for {Ez) are com­
pared in Fig. 2 for a beam with a uniform normalized 
emittance and the same lattice and beam parameters as 
the beams shown in Fig. 1. The Bessel-series approxima­
tion has been compared with the exact integral expression 
Eq. (5) at selected points along the beam and is found to 
agree within 1% everywhere. The new analytic expression 
Eq. (16) deviates from the Bessel-series result by a few per­
cent near the peak magnitude of {Ez), but it nonetheless 
reproduces the main features of the more exact expression. 
Both curves overlay the general g-factor model away from 
the ends, as expected. The curve generated from the sim­
ple g-factor expression Eq. (1) deviates from the other 
approximations in the beam interior, underlining the fact 
that variation of the beam radius cannot in general be ig­
nored. 
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