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SOLUTION OF K-V ENVELOPE EQUATIONS 

O.A. Anderson, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, C A 9 4 7 2 0 U S A 

The envelope equations for a KV beam with 
space charge have been analyzed systematically by an 
e expansion followed by integrations. The focusing 
profile as a function of axial length is assumed to be 
symmetric but otherwise arbitrary. Given the beam 
current, emittance, and peak focusing field, we find the 
envelopes a(s) and b(s) and obtain •<a>, a m a x . <J, and 
CO- Explicit results are presented for various truncations 
of the expansion. The zeroth order results correspond to 
those from the well-known smooth approximation; the 
same convenient format is retained for the higher order 
cases. The first order results, involving single correction 
terms, give 3 to 10 times better accuracy and are good 
to ~l% at o"o = 70°. Third order gives a factor of 10-30 
improvement over the smooth approximation and 
derived quantities accurate to - 1 % at c o = 112°. The 
first order expressions are convenient design tools. They 
lend themselves to variable energy problems and have 
been applied to the design, construction, and testing of 
ESQ accelerators at LBL. 

I. K-V ENVELOPE EQUATIONS 
A non-relativistic beam with a uniform density 

(K-V distribution) transported by a series of linear 
symmetric quadrupoles is described by the paraxial 
equations for the envelopes a and b: 
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a" = -K(z )a+^r+—— (1) 
a 3 a + b 
e 2 20 

b" = -K(z)b+-*•+ — — , (2) 
b a + b 

where K(z) represents the alternating 
quadnrpole gradient and 6 is the emittance (we assume 
6 x = G y)' Q is the normalized perveance, defined 
nonrelativistically by Q = (4;ceo)-l(m/2q)l/2IV-3/2, 
with I the beam current and qV the beam energy. 

A Review of Smooth Approximation Formulas 
Before presenting our own results, we recollect 

the well known smooth approximation results [1], [2], [3] 
and introduce more of our notation. Equations (31) and 
(37) in Ref. [1] are 

1 21- o 0
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— J K(z)p(z)dz = —2-=- (3) 
2L o (2L) 2 

and 

air 
e 2

+ Q 

where we have converted to our notation: u.0 -» 
CO, S - * 2L, R -» A, K -> Q, Sx(s) -» K(z), 5x(s) -» 
p(z). In Eq. (3), it is not clear in Ref. [1] how p(z) is to 
be calculated, but if we use our Eq. (21) [below] and 
change the order of integrations, the left side is 

( [ Jz dz'K(z)]2)-, where <...> means averaging over a 
cell of length 2L. We use this quantity often and name it 
Keff, the effective focusing force: 

Jdz'K(z') ) * K e f f (4) 

The zero-order matching equation is 

A 4 \ z 
(5) 

The above result is also given in Ref. [3], Eq. 
(10.92), which explicitly defines to lowest order 
ao 2 / (2L)2 = •< [ j*dz'K(z)]2>. Therefore, in this paper 

CTOsmooth = 2LKeff 1/2 (6) 

is called the smooth approximation for o°o. 
The depressed tune s is (Ref. [2], Eq. (6)), 

OOsmooth = 2L —s- , (7) 
A z 

where A - 2 is obtained from the zero-order 
equation (5). 

The smooth-approximation formulas are popular 
design tools for AG systems because they are simple 
and explicit. However, they become seriously 
inaccurate for applications with large focusing fields and 
large phase advances. Our simple generalizations 
derived below improve the accuracy by a factor of 3 to 
10 or more (Table 1, Section III) while retaining the 
above simple explicit formats. 

H. SYSTEMATIC SOLUTION 
We allow the form of K(z) to be arbitrary 

except for the assumption of symmetry. We write K(z) 
= Kh(z) with K = K(0) and h(0) = 1 and define the cell 
length as 2L. We assume the quadrupole form factor h 
is symmetric about z = 0, periodic over a cell length 
and antiperiodic over a half-cell length: 

h(-z) = h(z), n(z - 2L) = h(z), h(z - L) = -h(z). (8) 

It follows that: h(L/2) = 0, h is antisymmetric about 
L/2, h(z) ranges between +1 and - 1 , and <h(z)) = 0. In 
the following, we start all our integrations at z = 0, 
where h = 1. 

A Expansion about Mean Radius 
We assume the beam is matched so that 

(a) = (b> = A and expand about the mean radius: a(z) = 
A+a(z) = A(l+p), where we define the ripple ratio 

p(z) = — 
A 
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The assumption of quadrupole symmetry means 
that b(z)= -a(z), so that a+b= 2A. (Actually, there is a 
correction term which we drop without affecting the 
results, as discussed below.) In any case, the coupling 
between Eqs. (1) and (2) is eliminated: 

a" = -K(z)a + \ + —. (9) 
a A 

(After solving for a, the solution for b is 
obtained by changing the sign of terms containing odd 
powers of K.) Substituting A(l+p) for a(z) in (9), 
expanding, and dividing by A, we have 

e 2 O 
p" =-Kh(z) - Khp + - x ( l - 3 p + 6p 2 . . . )+ -^-. 

A A 
(10) 
Averaging, 

0 -K<hp>+ - 5 - ( l + 6<p2>...)+ - ^ . (11) 

Subtracting, 

p" = -Kh(z)-K{bp}- 3e ' (p-2{p 2 }. . . ) , (12) 

where the operator {..} gives just the oscillatory part of a 
function: 

W • *-<<!>>• (13) 

If we assume that a never vanishes, then p < 1 
and the above Taylor expansion converges; (11) and 
(12) taken together have exactly the same content as 
the original equation, (9). Reference [4] extends 
Eq. (10) through p 6 . 

B. Systematic Solution: Periodic Part 
We follow Courant and Snyder in their 

treatment of the Hill equation [5]. They regard the 
focusing coefficient K(z) as "small in some sense," put 
K(s) = 1/2 eg(s), and expand their beta function (~a2) 
in powers of the "smallness parameter" E. Our treatment 
differs in that we include space charge and must work 
with a = A(l+p) instead of their beta function: 

p(z) s efi(z) + e 2te(z) + e34>3(z) +... . (14) 

In Ref. [4] we show how to feasibly include 
terms through e7<j>7, but here we use only the three 
terms shown in (14). 

As in [S], our basic small quantity is the 
focusing strength K, and we write 

K m Ek. (15) 

From Eqs. (4) and (5), K2L2(Const = e 2 / A 4 + 
Q/A 2. The terms on the right can be no larger than 
e 2 K 2 L 2 , so we give them E 2 ordering and define a and q 
by: 

3 6* 

e2q. 

(16) 

(17) 

(We assume that either of these terms could 
dominate, i.e., s is in the range 0 < o < oO.) 

We insert (14M17) into (12). Through e3, 

Efl"+e 2f 2"+e 3f 3" = -ekh(z)-e 2k{hfl}-
e3k(hf2) -e 3 af i . 

Equating like powers of E, fj" = -kh(z), (2" = -k{hfi), 
f3' * = -ofi -k{hf2}. Integrating, 

fl = -k/Jh 
h = k2U(hg) 
f3 = +ak|Jg -k3JJ{hS}, 

where 
:J/h, 

and the small term 
8(z) = JJ{bg) 

(18) 

(19) 

has double the fundamental frequency of the focusing 
lattice. The operator JJ gives just the oscillatory part of 
the repeated integral 

J J v - jjdz'Jv(z")dz M L 
lo 0 J 

ih -

z i 
Jdz'Jv(z")dz" 

LO 0 
Note: For an operand such as g(z) with the symmetries 
ofEq. (8), 

z z' 
fdz'Jy(z")dz" 

JLI2 0 
For an operand such as {hg} which lacks this symmetry, 
one could construct the appropriate lower limit, but 
more easily subtract the average as in (13). 

A feature of our ordering is that fi, f3, etc., turn 
out to have only odd harmonics and odd powers of k, 
while f2, etc., have only the even cases. Thus 

S(z) p = _ : 

= — = +£kg + e 2 k 2 S + E3ak/Jg - E3k3JJ{hS}+...(20) 
A 

Defining the leading-order ripple, 

-Ekg + e 2 k 2 6 + E3akJJg - E3k3J/{h8}+... 

p 0(z) = -Ekg = -Kg = -KjJh 

and using (IS) and (16), we have, finally 

(21) 

a(z) 3 E Z 

= - ^ = + p 0 + K ^ ( z ) - ^ - J J p 0 - K 3 / J { h S } , (22) 
A A A 

b(z) 
A 

- p 0 + K 2 8 f e ) - 2 £ - I f p 0 . 
A 

K 3//{h5} (23) 
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Note: For large focusing strengths, the double-frequency 
term K2d becomes significant: e.g., if oo = 120°, 
K 28 » 0.025. Then, noting from (22) and (23) that a + b 
= 2A(1+ K2S), one might think it necessary to include 
the correction factor (1 - K28) on the Q term in Eq. (9). 

• In Ref. [4] this done and shown to affect the results only 
in higher order: for oo as large as 120°, the correction 
contributes at most 0.04% to the maximum radius and 

1 nothing at all to the matching equation. 
The matching equation, derived below, gives 

the mean radius A needed for (22) and (23). 

C. Systematic Solution: Average Part, Matching 
Equation 

We insert (15H17) into (11) to get 

ek<hp> = e 2 - + 2E2a(p2> + e2q, (24) 
3 

where p(z) is given by (20). To order e4, 

2e2a<p2> = 2E4ak2<g2). (25) 

By above-mentioned k parity, (hf2) = 0, so 

ek(hp) = -e 2k 2(hj/h) + £

4otk 2(hJ/g)- E4k4(hJJ{h8}) 

= + e

2 k 2 ( [ J h ] 2 ) + E

4 ak 2 (g 2 >-eV([ l{hg}] 2 >. 

We reordered integrations using the h(z) symmetries, 
Eq. (8). For example, -<h/ih> = <[Jh]2), with notation 

z 
J\|/ = J\l/(z')dz'. 

0 
The <g2> term cancels half of (25), and the 

matching equation through e 4 is 

e2k2<[Jh]2> + e 4 k 4 <[J{ng}] 2 )=E 2 - + 
3 

E W ^ + E ^ . (26) 
Using Fourier expansion of h(z) for the small 

second term on the left side, we find [4] 
<[/{hg}]2> = 1-8 <g2)(l + 20/27 c 3 +...) ([Jh]2>, 

where C3 is 3 times the ratio of the 3rd 
harmonic to the 1st harmonic of h(z). (For FOFO with 
occupancy T) = 0.5, C3 = 1.) We define the LHS of (26) 
as 

K? f f sK2<[Jh]2Xl+l/8H3<po2» 
= K e f f(l+l/8H 3<po2», (27) 

where H3 s i + 20/27 C3, and where we use the 
abbreviation 

l (P02> = K2(g2> = K2<[tfh]2), (28) 
the mean-square ripple to leading order. On the 

right side of (26), if we define 
e i 2 = e 2 ( l + 3 ( p 0

2 » , (29) 
our matching equation is 

easily solvable for the mean radius A, required 
for p and o. We have retained the convenient form of 
the smooth approximation (5) by introducing the one-
term corrections denoted by subscripts I. (In Ref. [4] we 
go to higher order and calculate 6 correction terms.) 

Envelopes: For matched beam, a(z) = A + a(z) and 
b(z) = A + b(z), where one uses (30), (22) and (23). 

D. Phase Advances 
Depressed Tune: From the well-known phase-amplitude 
result [5], the phase advance per quadrupole cell of 

2 L -7 length 2L is c=e J a dz. Using the definition 
0 

a(z) =A[l+p(z)], expanding, and noting that the 2p term 
has zero average, one obtains o = 2Le A~ 2(l + 3(p2)...). 
To leading order, (p2)= <po2>, and 

O = 2 L 4 - ( I + 3(PO 2)) , (31) 

where A~2 is calculated from (A56). Except for 
the correction term, this has the form of the smooth 
approximation, Eq. (7), but A - 2 is calculated more 
accurately here. 

Undepressed Tune: We set Q = 0 so that (30) becomes 

with Kf from (27). Combining this with (31) for 
Q = 0, we eliminate e A - 2 to get 

o 0 = 2L(Kf f f)X (l + 3(p 0

2 ))) - (32) 
[Cf. Eq. (6).] We will see below that these simple 
formulas for o and 00, with single correction terms, give 
3 to 10 times greater accuracy than the smooth 
approximations. 

We emphasize that all the above results apply 
to a general symmetric lattice [4] with or without 
discontinuities in K(z). 

IE. SPECIAL CASE: FODO LATTICE 
A Solution of Ripple Equation 

For the FODO cell, it is not hard to obtain the 
lowest-order ripple function po(z)—see Ref [4]. Here, 
we just quote its maximum value. With h the occupancy 
factor, 

L/2 z 
Ef[(0) = po m a x =K J dzjh(z')dz' 

0 0 

= I T | ( 2 - T | ) K L 2 . (33) 
o 

For E2f2 = K2Jj{hg}, it is convenient to Fourier 
analyze because most harmonics make negligible 

3 



contributions to the results. Writing h(z) = hi[cos(jtz/L) 
+ C3COS(3TE/L) +... ], 

E2f2 - 1/8 p m

z (1+ 10/27 c 3) cos27tz/L ; (34) 

C3 = 1 for h = 0.5; rm * hiKL2/»c2. Neglected terms in 
(34) would contribute less than 0.06% to the final result 
for amax. 

. For e 3f3 we integrate the first term but us: 
Fourier representation for the second. We quote just 
maximum value [4]: 

• W u £ « ) • <3S» 
The maximum radius is 

a m « = A[l + efi(0) + £2f2(0) + £3f3(0) ], (36) 
adding up the results of Eqs. (34) - (36). 

B. Matching Equation, Phase Advancejransportable 
Current 

For the FODO model, we obtain 

K2<[Jb]2> = l/12n 2(3-2n)K 2L 2, (37) 

eff which is used to calculate Kf on the left side of the 
matching equation (30). On both sides of (30) there are 
correction terms involving <po2); from Eq. (24) we find 

for the hard-edge model. With these results, Eq. (30) 
can be solved for the transportable current Q or the 
matched beam radius A. We also use (38) in (31) and 
(32) to get the phase advances c?0 and o shown in Table 
1. 

4.3. Discussion of Table I. 
In Table 1, the lattice parameters, quadrupole 

voltage VQ, beam current I, and normalized emittance 
e N are given quantities. First-order results for A, a m a x , 
a, and c 0 are calculated from Eqs. (30), (36), (31) and 
(32), respectively, along with (37) and (38). The lattice 
parameters shown at the top of Table 1 are the same as 
for the MFE prototype ESQ accelerator [6], except mat 
here the occupancy h is taken to be 0.5. 

The analytic results in Table 1 are compared 
with exact values obtained by numerical integration of 
Eqs. (1) and (2). For the A, a m a x and a tables, the 
constant 20-kV focusing voltage VQ produces a phase 
shift so of 83.37°; the beam parameters (I,e) are 
adjusted to keep the beam radius roughly constant while 

i a varies widely. Table 1 also gives smooth 
approximation results for A, a, and o 0 and the lowest-
order result for amax. 

Third-order results from Ref. [4] are also shown, 
with accuracy usually within a few parts per thousand. 
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