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ABSTRACT 

Identification of the types of accidents and proper actions is required at an 
early stage of an accident in nuclear power plants. The accident of the plant can be 
identified by their symptom patterns related to the principal variables and operating 
status of major equipment. The patterns are identified by the Self-Organizing Feature 
Map (SOFM), unsupervised artificial neural network, for feature mapping algorithm 
and the Hidden Markov Model (HMM), a stochastic technique for solving the time 
series problem. The off-line data from a compact nuclear simulator are vector 
quantized by SOFM clustering algorithm. The HMM is created for each accident 
from a set of training data which are the result of vector quantization. The accident 
identification is decided by calculating which model has the highest probability for 
given test data. The system uses a left-to-right model including 6 states and 16 input 
variables to identify 7 types of accidents and the normal state. The HMM is trained 
by the maximum-likelihood estimation method which uses forward-backward 
algorithm and Baum-Welch re-estimation algorithm. The optimal path for each model 
at the given observation is found by Viterbi algorithm, and then the probability of 
optimal path is calculated. The simulation results show that the proposed system 
identifies the accident types correctly. It is also shown that the diagnosis is 
performed well for incomplete input observation caused by sensor fault or 
malfunction of certain equipment. 

I. INTRODUCTION 

The term diagnosis, as applied to an engineering system or process, means the 
determination of the cause which brought about an undesirable state or failure of the 
system. The diagnosis can be done at several different levels, e.g. component, 
subsystem, function or event.1 At the proposed accident identification system, 
diagnosis is made at event level to determine which accident has occurred. This system 
is intended to support operator's decision-making by interpreting major plant variables 
and operating status of the plant. The accident identification system has been 
developed using the techniques of rule-based system, artificial neural network, and 
fuzzy theory. But most of them are under test with test facility, not applied to 
operating Nuclear Power Plant (NPP).2,3 ,4 
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Accidents in a NPP are associated with unique patterns of major variables and 
equipment status; hence, diagnosis can be treated as pattern classification. A pattern is 
a quantitative description of objects, events, or phenomena. The classification may 
involve spatial and temporal patterns. Temporal patterns usually involve ordered 
sequences of data appearing in time. The goal of pattern classification is to assign a 
physical object, event, or phenomenon to one of the prespecified classes11. The same 
accident may occur under different conditions such as full power or half power, so it 
is possible to adopt a stochastic approach for classification of the patterns. Hidden 
Markov Model (HMM) is such a stochastic technique to solve the identification 
problems associated with time series, such as speech signal or plant process signal. 

II. DEVELOPMENT OF ACCIDENT IDENTIFICATION SYSTEM 

1. An Outline of the System 

Identification of unknown patterns Л!" corresponds to finding optimal model W that 
maximizes the conditional probability P(W\ X) over the types of accident W. We can 
apply Bayes rule, 

D ~ P(X\W)P(W) 
P(W\X)= max—-—•— -

The conditional probability P{X\W) comes from comparing shapes of the accident 
models with input observations while a priori probability P(W) comes from the 
accident model which represents how often the accident appears in NPP. Since P(JV) 
is independent of W, we get 

P(W\X) oc P'X]W)P(W) 
= max [P(X\W)P(W)] 

It is difficult to calculate a priori probability P(W) in NPP, so we can assume the 
probabilities of all accidents occurring are equal. In this paper, HMM is .used to 
estimate the conditional probability P(W\X). An HMM is trained for each accident 
from a set of training data. Incoming observations are recognized by calculating which 
model has the highest probability for producing that observation. 

The training and test data are provided off-line from a compact nuclear simulator. 
Major variables and equipment status are combined for input symptom vector in each 
accident when the simulator emulates an accident situation. The collected input 
symptoms are vector quantized for feature extraction, which means JV-dimensional 
measurement space transmitted to 1-dimensional feature space. Vector quantized code 
book is the input of the HMM identifier which is already trained. The final decision is 
the result of comparing with an HMM identifier to determine which model has the 
highest probability. <Fig. 1> shows a block diagram of the accident identification 
system. 

The accidents are simulated in a compact nuclear simulator by activating 
malfunctions during normal operation. We then get parameters, such as 
temperature, pressure, flow, pump status, or valve open/close. The accidents that can 
be diagnosed by the accident identification system are: 
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Accident 1 ; ATWS (Anticipated Transient Without Scram) 
Accident 2 ; LOC A (small break Loss Of Coolant Accident) 
Accident 3 ; SGTR (Steam Generator Tube Rupture) 
Accident 4 ; RCPT (Reactor Coolant Pump Trip) 
Accident 5 ; FWLB (FeedWaterLine Break inside containment) 
Accident 6 ; MSLB (Main Steam Line Break) 
Accident 7 ; PORV (Power Operated Relief Valve stuck open) 

The input symptom vectors are a collection of principal variables and status of 
major equipment from accident in the compact nuclear simulator. The following 16 
major variables and equipment status are used to identify the seven different types of 
accidents and one normal state. 

(1) pressurizer pressure 
(2) pressurizer level 
(3) reactor coolant average temperature 
(4) reactor coolant flow 
(5) steam generator pressure 
(6) steam generator level 
(7) main steam flow 
(8) main steam pressure 
(9) reactor power 
(10) turbine power 
(11) main feedwater pump flow 
(12) main steam enthalpy 
(13) fuel temperature 
(14) status of reactor coolant pump 
(15) reactor trip signal 
(16) status of main steam isolation valve. 

2. Self-Organizing Feature Map10'11 

Feature extraction is an important task both for classification or recognition and is 
often necessary as a preprocessing stage of data. In this way data can be transformed 
from high-dimensional pattern space to low-dimensional feature space. Our goal is to 
identify a neural architecture that can learn feature mapping without supervision. The 
feature mapping algorithm is supposed to convert patterns of arbitrary dimensionality 
into the response of one-dimensional array of neurons.11 

Suppose that an input pattern has N features and is represented by a vector x in an 
N-dimensional pattern space. The network maps the input patterns to an output space. 
The output space in this case is assumed to be one-dimensional array of output nodes, 
which possess a certain topological orderness. The question is how to train a network 
so that the ordered relationship can be preserved. Kohonen proposed to allow the 
output nodes to interact laterally, leading to the Self-Organizing Feature Map (SOFM), 
in other words Kohonen network. A simple configuration of the SOFM is illustrated in 
<Fig. 2>. 

The most prominent feature of the SOFM is the concept of excitatory learning 
within a neighborhood around the winning neuron. The size of the neighborhood 
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slowly decreases with each iteration. A more detailed description of the training phase 
is provided below: 

1) First, a winning neuron is selected as the one with the shortest Euclidean distance 

j| x - - min I x - w,\ ' 

between its weight vector and the input vector, where w< denotes the weight 
vector corresponding to the rth output neuron. 

2) Let i* denote the index of the winner and let /* denote a set of indices 
corresponding to a defined neighborhood of winner i'. Then the weights 
associated with the winner and its neighboring neurons are updated by 

Aw; = T](x - wj) 
for all the indices y e / * , and 77 is a small positive learning rate. The amount of 
updating may be weighted according to a preassigned "neighborhood function", 

л ( / , 0 . 
Aw,- = 77 Л(у',/*)(х - wj) 

for all j . For example, a neighborhood function A(J,i') may be chosen as 
A(j,i*)= exp(- |r , -nf /2cr 2 ) 

where rj represents the position of the neuron j in the output space. The 
convergence of the feature map depends on a proper choice of 77. One plausible 
choice is that 77 = 1 / / . The size of neighborhood should decrease gradually. 

3) The weight update should be immediately succeeded by the normalization of Wi. 

In the retrieving phase, all the output neurons calculate the Euclidean distance 
between the weights and the input vector, and the winning neuron is the one with the 
shortest distance.12 

3. Application of Hidden Markov Model 

3.1 Hidden Markov Model6'7'8 

The basic theory of HMM was introduced in late 1960s and implemented for 
continuous speech recognition in mid 1970s. After this application, HMM has been 
successfully applied to real problems which can not be solved by conventional 
Markov models. HMM has advantages that provide proper solutions by modeling and 
learning by itself even if it does not have exact knowledge about problem solving. 

HMM is represented by a graph structure which consists of iV nodes called state 
and arcs that means a directional transition between nodes. In a graph, the 
observation symbol probability distribution which models spatial characteristics and 
initial state probability distribution stored in a node, and state transition probability 
distribution which models time characteristics stored in an arc. HMM states are not 
directly observable, and can be observed only through a sequence of observed symbols. 
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То describe the HMM formally, the following model notation for an HMM can be 
used. 

N : the number of states in the model 

L : the number of distinct observation symbols per transition, denote the set of 
individual symbols V = {vl,v1,—3vL} 

T: the lengths of the observation sequence, Ол,02,—,0Т 

S = { S t } : a set of states, st s { l , 2 , - - , ^ } , t = 1,2,—, Г, 
state / at time / may be denoted by st = i 

A = {au} : the state transition probability distribution, i,j = 1, 2,.... N, 

cr5 = P(stMÏ = j\st = 7") : the transition probability from state / to state j, the 

parameter should satisfy the stochastic constraint ^ а

ч ~ I 

В = {bj(k)} : the observation symbol probability distribution, 

k = l,2,-,L, Ь,{к) = Р(ук\5м=у) : 

observation probability of kth symbol vk in transition atj, the parameter should 

satisfy the stochastic constraint ^bj(k)= 1 
к 

7Г — {7Tj} : the initial state distribution, where 

яг, = Pr(s; =/ ) , / = 1,2,-~,N satisfying ^ л-,. =1 
i 

S j : a set of initial states, 
SF : a set of final states, 

Nj : the number of initial states, 
NF : the number of final states. 

An HMM can be represented by the compact notation Л = (А,В,я). 
Specification of an HMM involves the choice of the number of states, N, the number 
of discrete symbols, L, and the specification of three probability densities with matrix 
form, A,B and яг. 

3.2 Training and Identification 

Training means that the characteristics of input patterns to be modeled by the 
parameter of Я = (А,В,тг). An HMM is applied to an identification problem under 
the assumption that we can precisely determine the model parameters for given 
observations. But it is difficult that this assumption is exactly realized because of the 
complexity of problem and having local optimal not global optimal. At present, we are 
satisfied to find local optimal in parameter optimization methods. In this paper, we use 
the maximum likelihood estimation for training. This method maximizes the following 
equation given input observations O. 
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It calculates the probability of given observation symbols at all paths from initial to 
final state. The model parameter which maximizes the above equation is efficiently 
computed by forward-backward algorithm and Baum-Welch re-estimation 
algorithm. The forward variable at (/) can be defined : 

at(i) = P(.0lt02,-0tyst=i\Ä) 

This is actually the probability of the partial observation sequence to time t and 
state i which is reached at time t for a given Л. We can calculate at(i) by forward 
algorithm as follows:7 

Step 1 : аг (/') =я"Д (Ol), for all states /" (if / e S , 7r,= — ; otherwise к~ 0 ) 
Ni 

Step 2: Calculating a ( ) along the time axis, for t=2,---,T, and all states j , 
compute: 

i 

Step 3 : Final probability is given by: P(0\X) = £ ^ (O 
is St 

The backward variable ßt (г) which is used to optimize the model parameter 
with forward variable, can be defined as : 

ß,(i) = P{Ot_„Ot+2,~<0T\st=i,X) 

i.e. the probability of the partial observation sequence from t+l to the final 
observation T, given state /' at time r and the model Я and /?,(/) can be calculated by 
backward algorithm as follows:7 

Step 1: ßr(i) = — , for all states / ZSF, otherwise ßr(J) = 0 
NF 

Step 2: Calculating ßQ along the time axis, for t = T-1, T-2,-• • ,1 and all states 
j , compute: 

г 

Step 3: Final probability is given by: p(0\Д) = n b >{01) ß -.(i) 
t<=Sl 

The most difficult problem in HMM is how to adjust the model parameters 
(A,B,7t) to maximize the probability of the observation sequence given a model. The 
iterative algorithm used in HMM-based recognition is known as the Baum-Welch 
algorithm. The a posterior probability of transitions, yt(j,j), will be defined as the 
probability of a path being in state /' at time t and making a transition to state j at time 
/ т 1, given the observation sequence and the particular model. It can be computed as : 
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Р(0\Я) 

5>г<*) 

Similarly, a posterior probability of being in state /' at time /, у, (/), given the 
observation sequence and model is 

I c e S , 

At this point, a,j , bj , 7 i t of re-estimated new model Л can be computed as: 

T-1 r - i 

l^Y&j) 2 > r ( U ) 

» r-i r-i 

YLr&ji 2>,(o 

2>,0) 
f=l 

^ = r i ( 0 

Thus, if Л is iteratively to replace Л and repeat the above re-estimation 
calculation, it can be guaranteed that Р(0\Л) can be improved until some limiting 
point is reached. 

Identification or recognition means to find the best path in each model and select 
the one which maximizes the path probability for a given input observation. There are 
several possible ways to find the optimal state sequence associated with the given 
observation sequence. One possible optimality criterion is to choose the states, st, 
which are in the best path with the highest probability, i.e. with maximum P(0,S\l). 
A formal technique for finding this single best state sequence is called the Viterbi 
algorithm, which works as follows:7'8 

Step 1 : Initialization. For all states i, 

yriii) = 0 
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Step 2: Recursion. From time t=2 to T, for all states j, 

i 

у/ = arg max[S t - i(i)a,j] 
i 

Step 3: Termination. (* indicate the optimized results) 
P* = M z x [ J r ( 5 ) ] 

s'r = arg maxfj T(S)] 
seSr 

Step 4: Path (state sequence) backtracking. From time T-l to 1 
S*t = у/ t + l ( S * r + l ) 

4. Design of a Prototype Accident Identification System 

At first, we collect 10 training and test data per accident from the compact nuclear 
simulator. The collected training and test data are vector quantized by the SOFM 
clustering algorithm as shown in <Fig. 1>. The SOFM, unsupervised artificial neural 
network, clustered input vector into M disjoint sets. In our implementation, we chose 
84 clusters for an optimal solution after several attempts. It means every input vector is 
assigned to one of 84 clusters. <Fig. 3> shows the distribution of 84 clusters given 
682 input vectors. The code book size is 15, this means this system receives 15 time 
interval input vectors. 

A left-to-right HMM has been considered appropriate for processing those signals 
whose properties change over time.8 The underlying state sequence associated with 
the model has the property that as time increases the state index increases (or stays the 
same), i.e. the state proceeds from left to right. This model consists of 6 states which 
have less than 2 direct transitions to the right state; the state transition probability a y 

satisfies the following condition : 
av = 0 for j < i or j > i + 3 

Few initial conditions are given to this model, and these initial condition are 
equivalent to all accident models. When the transition is occurred to 3 ways, the initial 
value of aiS are 0.333, to 2 ways like just before last state, the initial values of a4 

are 0.5, to 1 way like last state, the initial value of atj is 1.0. By assuming that the 

observation symbol probability is equivalent to each state, observation symbol 
probability £.(v t ) =0.0119 when satisfy the equation 

L> « r = i 

Initialized HMM is illustrated in <Fig. 4>. In this system, we use 8 models for 7 types 
of accidents and 1 normal model. 

The training is performed by calculating a value from forward algorithm, ß value 

from backward algorithm, and re-estimate from Baum-Welch algorithm in each model 
given multiple input observations. The re-estimation is done until the convergence 

condition, Р(0\Л) ^ P{0\X), is satisfied in each model. 
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The probability, P(P\ Я), is calculated by the optimal path which is obtained by 
Viterbi algorithm for given input observations in each model. We identify the accident 
by examining which model has the highest probability for given input observations. 

5. The Result of Experiment 

The experiments were carried out offline in HP715/33 workstation the programming 
done with "C" language. <Table 1> shows the best path probability of each model 
which is the result of Viterbi algorithm when the input observation is the same as 
training data. In this case, model #2 accident, ATWS, has the highest probability. In 
the case of one sensor fault or equipment malfunction, the accident identification 
system also exactly identified the accident as shown in <Table 2> for model #4 
accident, SGTR. However, it could not correctly identify the accident when more than 
2 sensor faults or equipment malfunctions have occurred. 

Ш. CONCLUSION 

We proposed a prototype accident identification system based on the stochastic 
modeling approach of HMM. We can identify accidents by recognizing the patterns of 
accidents, which is a new attempt to expand the application area of HMM to accident 
identification. After a proper training using the train vector, the prototype system 
exactly identifies the accidents from input observations. At present, this prototype 
system is implemented off-line, but it should be implemented on-line to accept 
continuous time series data in real time. There are a lot of problems which should be 
solved before its actual application to an operating plant. However, this system have 
advantages such as an easy expansion of accident types and observation symbol 
sequences, and a relatively short time for training. Further effort is being made to 
improve the system. 
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<Fig. 3> Cluster Distribution by SOFM 
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<Fig. 4> Initialized HMM with 6 states 

<Table 1> Likelihood probability (Case I) <Table 2> Likelihood probability (Case II) 

Accident Model 
Likelihood 
Probability Accident Model 

Likelihood 
Probability 

Normal 0.0 Normal 0.0 
ATWS 9.506e-30 ATWS 0.0 
LOCA 3.547e-35 LOCA 6.699e-43 
SGTR 2.232e-39 SGTR 2.153e-35 
RCPT 1.398e-42 RCPT 2.675e-38 
FWLB 1.447e-43 FWLB 2.209e-39 
MSLB 8.668e-43 MSLB 2.131e-41 
PORV 3.283e-44 PORV 5.993e-43 
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