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ABSTRACT

Proposal of a new launcher of the lower hybrid waves for the current drive in future
big thermonuclear facilities operating at 10 GHz frequency range is given. We com-
bine the principle of the quasi-optical grill with the concepts of the hyperguide and
the multijunction grill. As an example we optimize a six rod structure mounted in a
oversized waveguide and irradiated by the oblique plane wave emerging in the form
of a higher mode from an auxiliary oversized waveguide. The rods of the optimum
structure have the clongated form of the cross-section with the resonant length (in
the direction of wave propagation) equal to a multiple of half wavelength of the
fundamental mode of hyperguide. This row of rods forms a multijunction grill with
the zero phase shift between waveguides. The second row of rods supporting the
constructive superposition of the incident and doubly reflected waves enhances the
efliciency of the structmie. The optimumn structure has the power spectrum with
two narrow peaks (the main Ny = —2.15 and the parasitic .V = 3.13), the low
power reflection (R = 15%), the high coupled power diwectivity (6cp = T0%),
the reasonable Vy-weighted directivity (]6g8p] = 35%) and the peaking factot on the
electric field equal to 3. On the basis of the optimization it is possible to design the
patameters of a big structute with tens of rods. The number of the construction
clements of this structure can be reduced 20-times in comparison with the standard
multijunction array. ' '



1 Introduction

It is generally accepted that the lower hybrid current drive and the plasma heating
should play an important role in the modern large thermonuclear facilities. Because
the magnetic field intensity is here greater than 5 T. the frequency of the lower hy-
brid waves used for the current drive can reach 10 GHz. Thus the development of an
alternative wave launcher is urgent. The waveguides of the contemporary multijjunc-
tion grill would have to be very nartow with the thin walls between them. Cooling
of such structure is very difficult and influences design of the present launchers
strongly (eg the "passive-active” structure operating at 3.7 GHz on TORE SUPRA
or the similar structure for ITER [1]). The quasi-optical launcher of the lower hybrid
waves, which was originally presented as an infinite set of circular rods placed in a
free space in front of a plasma and irradiated obliquely by the properly polarized
plane wave, offers oue possible solution of this problem [2].

To make clear the preceding statement we compare the periodicity length 57
of the standard multijunction grill (the width of one waveguide plus the thickness
of the wall separating the individual waveguides) with the same quantity -56‘&“’ for
the quasi-optical grill (the width of the gap between rods plus the rod diameter).
The I'loquet’s theorem. determining the positions of V.-peaks in the space power
spectrum of waves 1adiated into a plasma. gives for MJG
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where A¢ is the phase shift between the adjacent waveguides, k. is the vacuum
wavevector equal to w/e and s determines the diffraction order. If we require that
the wavelength A; of waves in the plasma along the toroidal magnetic field is a half
of the vacuum wavelength A, (:V; = 2) and if we consider the main peak (s = 0)
and the current drive phasing (Ao = 5), we have 2 piod = & what gives 3.7mm
for f =10 GHz.

For the quasi-optical grill we have much more satisfying 1esult. In this case the
Floquet's theorem has a form
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where V¢ = kirt/k, = sin a. a is the angle of incidence of a vacuum wave incident

ol)llquel\ on the rods. Ileie the zero diffraction order does not contribute to the
spectrum of waves in a plasmd (] \'“‘ [< 1) and thus the most important is the
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order s = —=1. For s = =1. N: = =2 and a = 30° we have :qqq" = _\T:'T\_I %
what gives 12mm for Ay = 3cm. Thus QOG has three times less construction

clements than MJG and instead of thiee tiny waveguides and walls we lm\c a ﬂap' o

and one huge rod.
The most important reduction in number of the construction elements of QOG | -

follows from the basically unlimited height of rods. To be able to reach’ the needed

phase shift between adjacent waveguides of MJG we must use for the final multi--

'~ junction scctlon only one mode waveguides, ie they must have the hewht lo“cr then. e



A, and must be arranged in many rows in the poloidal direction. Thus, 'foi 10GHz,
N: =2 and Ao = %, MJG must be assembled from waveguides ~ 3 x 25 mm. The
height of the rods of QOG for the same case can be well above 20cm. The combined
saving in the complexity of the construction of QOG in comparison with MJG can
reach a factor of more than 20.

A good survey of the present state of the quasi-optical Iaunchcls was gnen at
the Workshop on QOG which was held in Prague, April 1991.

The theory of the quasi-optical grill started in 1939 with M. L. Petelin and IV
Suvorov paper [2]. They considered the infinite number of equally spaced. infinitely
long, rods with the circular cross-section placed in one plane parallel to the surface
of the homogencous plasma with the density n higher then the critical density ngg.
This array is irradiated obliquely by an clectromagnetic wave having the clectric
field perpendicular to the rods.

M. L. Petelin in Prague presented the new achievements of Rthsmn group of
theorcticians [3]. He discussed the effect of the clliptical cross-section of rods. which
improves the efliciency of the s=-1 space harmonic generation. if the long axis of
cllipse is parallel to the incident ray. He also mentioned that the reflection coefheient
of QOG formed by two rows of rods can be practically zero it the (Ilsl.uu ¢ between
rows fulfils 1esonance condition.

F. Santini, M. Santarsiero and G. Schettini described the diffraction of an clectio-
magnetic wave incident obliquely on .V infinite rods of the circular cross-section
arranged in one or two rows in a free space in front of a plasma [1]. The main row
(at plasina) consists of the "strips™ of two cylinders imitating thus the cross-section
of rods clongated in one direction. They solved the problem by the full wave method
and thus their numerical results are reliable. It seens, that for the finite nuinber of
rods (.V = 6.8.9). they were not able to reach, even in the case of two rows, the
power l(.‘ﬂ(!(thIl cocflicient lower than 30%.

The quasi-optical grill with the rods represented by flat clnps was (l(-scnhcd by
G. Tonon. The pessimistic conclusions about the efliciency of QOG expetled by J. P.
Crenn and P. Bibet in the conclusion of [3] are questionable because in the flat strip
model one nnportant parameter, ie the length of rods in the direction’ of the wave
propagation. is missing. Also the method of solution of this diffr actmn problem -
some mixture of the "equivalent circuits™ with the far field for mula fmm (Ilil'mcuon
of light on a grating - does not seem fully adequate.

All these structures are supposed to be placed in a free space and to be it radiated
by a plane wave. The rods aie infinitely long and. in some models.’ lll(' infinite
number of rods is assumed. In the experiments d" these assumptlons ate |||¢|(lcqu.uc
- the structure is bounded with some confining walls. the nmnl)(-l of 10ds i is finite, it
is difficult to create a plane wave. The paraboloid mirrors used for l.h(.-_ulacllzgtlon
of rods calls for the "point-like”™ source and thus all power must come tlllrm'w,h one
narrow waveguide. The waves reflected from the walls distort thv spectrum because
their angles of incidence are partly unpredictable and partly unsmtablc It is not
‘solved how to annihilate the power reflected from the: plasma in the space ﬁlled up
with the mirrors and the feeding equipment.. : '

'\ll tht.se problelm can be solved by anew structure in wlnch the rocls are placed



in one oversized waveguide - hyperguide - and irradiated obliquely by the wave
emerging in a form of the higher mode from an auxiliary oversized waveguide. The
confining walls are now an intrinsic part of the structure, there are no mirrors, no
point-like source and the reflected power can be handled by the standard waveguide
technic. The structure is compact, it is highly effective and the problem of the the
wave diffraction can be casily solved by the full wave method. The first proposal
of such a structure was given by the author in [6], where the preliminary numcnml
results were also presented.

Figure 1: Section through our quasi-optical grill through the plane perpendicular to
the rods. Two rows of rods are depicted and the ray trajectories corresponding to
the incident higher mode in the auxiliary waveguide are indicated.

In Fig. 1-we see a section of the suggested structure through the planc perpendi-
cular to thc rods. The whole stiucture is mounted in one oversized waveguide; with
the rectangular cross-section a x b, whose shorter side b is parallel to the plane
of our section and whose axis lies in the plane of the section. In the mouth of
this waveguide one or two rows of rods are placed. On the opposite side the main
waveguide is split into two oveisized rectangular waveguides. In one of them the
higher mode is incident having the electric field perpendicular to the rods. . The:
z-component of the electric ficld of this mode near the axis of the wa\egmde has a' ,
form E; ~ cos(k,z)e'*s*, - :

To make clear how the structure operates we depicted in Fig. 1 the set of thc_-"-'

: geometric optics rays corresponding to this mode (we suppose that the helght a
- of the Wa\'egulde is much larger then its width so that A,/L., is suﬂicnentlv small) .



If we choose the distance &y + Iy = (b/2) cot @, where the angle of the incidence
a = arctan(k./k;), the rods are obliquely irradiated by the plane wave. The row of
rods at the grill mouth forms a multijunction grill with the zero phase shift between
the adjacent waveguides. The set of these rods forms an open resonator and the
effliciency of the structure is highly improved if the rods are elongated in the direction
of the wave propagation so that their length [, = mmM\g/2. where Ap is the wavelength
of the fundamental mode TE;g and m is a natural number. The distance between
rows I3 = 22 cos @ ensures that the incident and doubly reflected waves are in phase
and thus it improves the overall efficiency of the structe. To simplify mathematics
and to obtain an efficient numerical code describing the diffraction of waves in this
structure we choose the rods with the rectangular cross-sections. We start the
optimization process with thickness of the rods perpendicular to the waveguide axis
equal to A, /1 as it was found optimum for QOG in a free space ([3] [1]). Such
a structure involves the concepts of the quasi-optical grill, the multijunction grill
and the hyperguide in one compact launcher which J.G. Wegrowe envisaged in the
closing speech of the Prague Workshop. In the next section we give the outline of
the theory describing the diffraction of waves in such a structure. We use for this
purpose the theory of the standard multijunction grill developed by the author [7]
and we generalize it for hyperguides, rods and an additional waveguide splitting.

In the third scction we give the results of the numerical optimization of the
launcher having six rods operating at 9.6 GHz. Similar structure but with smaller
dimensions is under construction in Prague and it will soon operate at C ASTOR
tokamak (3].

In the last section the main conclusions are summarized.

2 Theory of the quasi-optical grill mounted in
the hyperguide

In Fig. 2 we sce the section through the considered structuie where all relevant
parametcrs arc denoted. The coordinates are chosen so that the x-axis is directed
into the plasma (parallel to the density gradient). the z-axis is parallel to the toroidal
magnetic field and the y-axis has the poloidal direction. It is supposed the structure
has the uniform height « in the y-direction. The whole structure can be divided
into five regions. The first one has two subregions. cach of them.is forimed by an
oversized waveguide with the rectangular cross-section a x by. These two waveguides
are separated by a wall with the thickness ;. The 1egions {2} and {1} are the
hyperguides « x b, The region {3} consists of Ny,q + 1 narrow \\d.\'(‘“lll(l(‘s a x by
separated by Nj,q10ds (I xaxdy). This tow of 10ds only slightly (-nlmn( e the o\m all
efficiency of the structure and can be omitted. The region {5} is the most important
for the wave diffraction and is formed by the (\Nj,q+ 1)-waveguide multijunction grill
with the zero phase shift between individual waveguides. These wav: eguldu hme the
cross-section a x bs and arc separated by the huge rods (I; x a x ds)

~ Each.subregion of our structure can be regarded as a a portion:of thc wa\egulde
‘ '-\uth the rectangular cross-section and thus lhc- electric and magnetnc ﬁclds of the
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incident and the reflected waves can be expressed as a sum of modes

L,:t_:l.ﬂ = Sin-‘-i'—l- —~ (AaB kM (r=ra) Ba? lk,':(::—r..))
i a n=0
X COS "(-b_ ‘-0.3),
H:\.ﬁ — ﬁl 'J Z (1‘0)2 ( ‘la.." thp{r—za) + Bn..i(‘—ik;:(r-rn))
g = sin— . ks -ATe ahe
nw(s - 2,
X cos —(——i-"—) (3)
ba
The index a@ =1,2.....5 corresponds to the individual regions. the index 3 1o the

subregions. We have 3= 1,2 for a = 1: for a = 2 or 1 we have 3 = | and we can
omit it, for a = 3,5 we have 3 =1,2.....Noa + 1. Here

Lo \/k3 - (£ = (=)} forn=0.1,.... N8 (propagating modes). '
a 1 ‘/( ZF + (552 — k7 for n= NP 4 1,... (evanescent modes). 4

For the fundamental mode (n = 0) A = ky = ‘/k'f. - (£)? . We supposc that
the number of propagating modes (1 + N"'°P) in the regions {1} ,{2} and {4} is
greater than one (hyperguides) but only the fundamental mode propagates in the
narrow waveguides in the region {3} and {3} (V)" = M = 0). The face of the
wall separating waveguides {1,1} a {1,2} has the position z; = —(l. + L+l 4+ 1)
ll|c centres of waveguides {2-1} ha\e the x-coordinates za = —(% + Iy + Iy + 1),
= _(.z + L+ 4)and x4 = —(--l + ;). The main rods start at z; = - [,
.md end at x = 0. The coordinate of the left wall of the {a.3}-th waveguide is
zad = (8 = 1)(bs + d,). We also denote the z-coordinates of the left wall of the
{a, 3}-th septum separating the waveguides as 2,5 (Zas = 3ba 4 (3 = 1)d,).
Because the structuie has the unified height « we can confine ourselves to the
modes (1,n), ie to the y-dependence of the ficlds in the form sin{wy/a) in {(3). Thus
for n = 0 we have the fundamental mode TE g which has only the z-component of the
clectric field. Because the electric field of the incident wave must be perpendicular
to the rods we choose, for n = 1,2,..., such combinations of the TE,, and TM,,
modes that have E, = 0. The form of ficlds (3) ensures the automatic fulfilment
of this condition. It can be proved that if the incident mode does not contain any
yv-component of the electric ficld the diffracted and reflected waves have not it cither.
In the following section, it is described how to excite such a mode in lh(' oV msm-d
waveguide. :
\\c do not need the expressions for the remaining tangential mmpom-ms of fu-lcls
because £y = 0 and the continuity of /. follows, in this case. fiom the continuity of.
E; and H,. Thus the only conditions, which must be fulfilled at the discontinuities.

at z; and z5 (eventually at r3 + [,/ 2), follow from the continuity of thc u)mpuncnls g
E; and H,. .
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Figure 2: Scction through our quasi- optical grill by the plane perpendicular to the
rods. llere we indicated five regioas in which the solutions (3) are continmous and
also all notations used for the structure dimensions. We also depicted the plasa
in front of QOG in the distance &, with the step and ramp density plofllv

To fulfil tllc boundary conditions at z — —oc we must set .‘l,'.""? = él__-‘c‘f,;,;_g.-"hll;l‘
for 3 = 1,2, n = 0,1,2...., where [, is the order of the incidemt mode . jn the
{1.1}-waveguide and 6,,,,, is the Kronecker delta. Because we investigate only the
highly elor:2ted rods in the row at the grill mouth, we have | k3, >l forn =
1,2,...and we can set B> = 0 for 3 = 12,0, Na+ 1 and n = 1.2,.... Thus.
we supposc that the power transmission between the interior of thic sunrtu.c and
the space in front of the grill is realized through the fundamental mode onl\ On
this assumption we can split the solution of our problem into two paits. Fiist we
can comj)ul'e the transmission and reflection cocfficients of our weﬁwguiclcjunction'
consisting of alrcady mentioned five regions and than we can determine the coupling
of the junction through the (NVy,4 + 1)-waveguide multijunction grill 10 the plasma.



From the general theory of the waveguide junctions it follows that the amplitudes
of waves outgoing from the junction are lincar functions of the amplitudes of waves
ingoing into the junction [9). Thus we can express the amplitudes of the waves
incident on a plasma in the individual waveguides of the final multijunction section
of our structure as

. ‘\.,ol +1 .
"\?)'n =T Al ine E N3 BS"'v 3=12....,Nua+ 1. (3)
=1

While the travsmission coefficients g depend on the order of the incident mode
in the feeding waveguide, the reflection cocfficients pgs, depend on the geometry of
the junction only. Similarly we can write for the amplitudes of reflected waves in
the feeding waveguide {1,1} and in the passive waveguide {1.2}

Negt+d
BE = ALY S Tl 812 me02. NPT (6

The numerical values of the amplitude reflection and transmission cocfficients (pa-,
Tg at z = z5 and pY'3, 7%, at r = z,) can be determined from the continuity
conditions of E. and H, at all discontinuitics of the junction (see (31-3:4) in Appen-
dix).

Now we discuss the coupling of waves in our structure to a plasma in front of
the grill. As was stated the discontinuities at the splitting (z = x5) and at the
grill mouth (z = 0) can be than solved independently. Waves traveling through
the waveguides {5,3}, 3 = 1.2,..., Noq + 1, gain the same phase shift ¢y = koly
in each waveguide. To simplify the calculation of the grill-plasma coupling we use
the parallel-plate waveguide model for the grill mouth. The electric field in the grill
mouth can be written as : '

-\'.r odt 1

E: = Z 0,4(5)cto0 =" (.—I.—;c""' + Bye™ T + cvan.modcs) . Y)
3= ’

Here 0,(z) = 1 in the 3-th waveguide mouth and 0 elsewhere. Using (5) the ampli- -
tudes of the incident waves in the grill mouth can be written in the form - ‘

1\'-191"'l

A. I ' ' . ‘ .
AB = 2_;’3:70’1:.:,: + g ﬂ-"vcz ooB‘h ."= 1-25--' ~-‘.\|m| + 1. .' (8)

The amplitudes (8) have the same form as in the theory of the multijunction grill
[7] and thus can be inserted into the Brambilla equations describing the wavegnide
grill [10]. Solving this system we obtain the amplitudes of the waves reflected from
the plasma Bj;, the amplitudes of the evanescent modes in the grill mouth and also.
the ampllt.udos of the incident waves A3. We can thus determine the sp(-ctla of the

wa\es radiated from our structure into a plasma. The amplitudes Bu ar(- given b\ Lo

BY = ‘/:-Lie?'éoa,,. C ()



Inserting (9) into (6) we obtain the amplitudes of the reflected waves B' o
At the end of this section we write down the explicit expressions for the total °
time-averaged incident, reflected and transmitted power flows. These global pa-
rameters represent the most important results of our theory and, morcover, the
conservation of the total power flow can measure the numerical precision of our
computation. For the incident power flow P in the {l,]}-wm'ctrl‘lidc we have

piv = _/ (1J/ d= (-/ (T—)RL.RH dt
IAII 2. . (lo)

llllf

"'zl.'

where K, = c(ko)?a/(167k,) and T' = 27 /w. The reflected power flow can ‘be written

ils prop
2 \

lJllﬂ__ l\l 2 z: ‘-: 'l"d 'l, | : ’ (ll)

J=1 m=0 '

:l

where gp =1 and z,, = % for m > 0. Finally for the transmitted power we have
. by Veea$! 5.3 (2 5.3 |2 o
ptransm _ p- 0 2 _ Iz ' 2) -
P g 7§=:l {1 46717 -1 B5° 17} o (12)
The power flow conservation asks for the fulfilment of the relation

Plrnnsm Pmr P;ell' . . o | (13)

The total power reflection coefficient can be written as

R = 25— Ly

3 Optimization of the quasn-optlcal grlll
mounted in the hyperguide

3.1 Structure dimensions and plasma parameters

Now we give a realistic example of QOG mounted in the hy pclﬂuule c.«um and_' .

optimize its dimensions to obtain the structure with as low power reflection’and as*
high directivity of the spectrum as possible. We have chosen the working flcquonC\

f =9.6GHz (k, = 2,012, A\, = 3.12cm). the height of the main hy perguide a'= Sem.

and its width b = 7.4cin. The feeding waveguide has the same height ‘@ and lhc-:;_,.-"_‘
width b = 3.5cm. The same dimensions have the passive \\.uegmd(- and- tlu- \mll.-:-_'-..,_.'
separating them has the thickness d; = 0.4 cm. We assuine that the structme has : six U

rods in a row and one or two rows of rods. The other dimensions will bé dctermmed.
durmg the optlmlzauon Their sta.rtmg va.lues are given bv the esuma.tes stdted m"

R




the Introduction. When we change the dimensious of rods and gaps we all thc time
supposc that 7 x b, +6 x dy = b, for a = 3. 5.

We assume that the surface plasma density ngy ¢ in front of the grill is hi'rhcr
than the critical density (ngurr/neie = 1 = 10). We take the density gracdient 2 o=
7 x 10" cm™ but we found that the results are practically insensitive to the value of
this parameter if the plasma has the over-critical surface density. 13g for nyy/neie =
2 there is no observable change in the cfficiency of the structure for the density
gradients in the range from 0 to 2.5 x 10" cm™.

The smaller variant of the structure (¢ = 5.2cm. b = 6.8 ¢cm) is now assembled
in Prague and it will operate at the slightly lower frequency 9.3 Gllz at CASTOR
tokamak [8]. The plasma parameters used in the optimization fit well with those at

CASTOR tokamak but the direct application of the results of our theory is rather
questionable because the toroidal magnetic field in CASTOR is low (1.3 T) and the
working frequency is too high to fall within the lower hybrid frequency range. The
determination of the surface plasma impedance would be complicated here because,
in this case, we couid not neglect the coupling between the fast and the slow wave
in a plasina [11]. On the contrary, in our theory. we use the standaid step and
ramp plasma surface impedance [12], because we are aimed at the application of our
results on the large facilities where the toroidal magnetic field is sufficiently high.

3.2 Incident mode

Now we must specify the incident mode in the feeding waveguide {1,1}. We picked
up the (1,1)-mode (ie i, = 1) which has the angle of incidence o = 27° (k, =k} =
0.873k,, k. = /by = 0.459k,, the remaining component k, is small (k, = =/a =
0.195k,)). The fundamental mode TE o (ko = 0.978k,) has proper polarization of
the clectric field (2, only) but it is incident perpendicularly on the rods (k. =0 ie
a = 0). The last propagating mode (1,2) has the large angle of incidence o = 66°.
(ke = k} = 0407k, k. = 27 /b, = 0.918%,) and. as a consequence of it. the radiated
spectiuin contains too much waves with N, = 1.
The incident mode (1, l) must have the clectric field perpendicular to the 1ods,

To obtain such a polarization the following arrangement can be used. We first split
the power from the generator into two one mode auxiliary standard waveguides (in
our case¢ 2.3 x 1cin) and excite there the TEyg modes to be in antiphase. Than
we enlarge continuously the dimensions of waveguides (in some hoin-like sections)
to the desired a x (b — dy)/2. Because, in our case. (b — dy)/2 = 1.55c¢m and..
" therefore. it is smaller than the half vacuum wavelength. only the TE,,o modes can
propagate in these waveguides. Further. if we take the length L of this horn-like
widening sufficiently long. only the TE¢ modes are exited in the enlarged auxiliary
waveguides. From the the geometiical optics it follows that L = aky(a = ayandaa)/ =,
ie L = 30cm. Now, if we put one waveguide on the other by the long sides and if
we cancel the septumn between them at some distance ftom the horun-like section we
_obtain the waveguide a x by in which the mode (1.1) of the desired polarization is
excited. The numerical verification confirms that this junction converts two - ll..o :
‘modes in antlphase into one (1,1)-mode with practically 100% cﬂicnonu '

10
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3.3 Parameters describing the directivity and efficiency

To be able to compare individual structures and to distinguish which of them are
the most efficient we can use the total reflection cocfficient (14) and either directly
the power spectra or some global parameters derived from them. We introduce three
parameters describing the directivity or current drive efficiency. The most simple is
the coupled power directivity

fep = / ' G(N.)dN.. : (15)

where N is the parallel wave index, G(.V:) is the normalized spectral density of the
power radiated from the structure to the plasma (%5 G(.NV.)dN. = 1 and G(N;)
is defined eg in [13]). This quantity determines how much power is radiated in the
useful direction (the (-z)-directiou in our case, because the waves with s = —1 are
the most important in (2)). Such quantity was used in [1] to estimate the directivity
of QOG but. because it is related to the coupled power only. it does not give the
full information about the actual current drive efficiency of the specific stiucture.-

As a more useful parameter can serve the standard current drive directivity 63p
given by

8 = (1 = R.m){/m G(N.)dAN. —/_lC:(;\'.)¢l_\’.}. | (16)

This quantity is negative for our spectra because the power is 1adiated plcdomnmmh
in the (-z)-direction.

As the best estimate of the cuirent drive directivity of the spccnum can be used
the ".Vj-weighted directivity™ based on the theoretical curieiit drive efficiency of
waves [14]. In our case we define it as

S _ Abeak e x ('(\=) AN -1- '\G(\ ) -
6Cl) = (l lilol)(-‘\: )2 {/ l-\': / d.\: } (ll)

42 N2 e N2

Here NPk js the value of the parallel wave index at the s = —1 peak of the power
spectrum. We introduce a small parameter A to cut the fast waves ofl from our
spectra. The spectrum of QOG contains too much waves with .V; = £1 which can
spoil the resulting directivity. This is caused by the presence of waves corresponding
to the zero order peak in (2). It is placed in the forbidden band of wavelength in the
plasma, but the Floquet's theorem is strictly valid for the infinite structures only,
where the peaks have a form of the &-functions {15). For our structure the peaks
have a finite width and the wings of the peaks can leak out fiom the forbidden band.
We set A = 0.15 and thus we exclude the resonant electrons with th(' energies Idl‘“(‘l
then 0.5 MeV from our considerations. '

Finally, to optimize our structure, we introduce the power transmission t.-ﬂ'iéicnc_\'
npt {16]. The incident and reflected powers, "¢ and P!, in the waveguides of the
final multijunction section of our structure are distributed highly unevenly aud this

_parameter can help to determine the maximum feeding power for which we keep
below the clectric breakdown in the most overloaded waveguide. Such a 'pa_ral_rle!.éi :
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can be defined as
Jine
Py

<1 2mi{_l | — 7
£ Y TTA TP L ("\'I."d + l) (\/ljliuc + \’ lJlleu)

In the ideal case (ypt = 1) we have no reflected powers and the incident ones equal
to 1/7 of the total incident power.

wor = (18)
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Figure 3: Power reflection coeflicient, standard and weighted directivities vs distance
l; between the mouth of the active auxiliary “a\caundo and the row of rods. The
one row of six rods is supposed and the (1,1)-mode is incident in {1.1}-waveguide
(a = 27°). The optimum ma(hatlon of rods is recached at [} = 6cm. The other
parameters are: the working frequonq f = 9.6 GHz, the structure dimensions
a =8cm, b = 34cm, dy = 0.4cm, ds = 0.79875cm, l; = 3.13em. the distance
between plasma and the grill mouth rp = 0.124 em and the plasma parameters are,
Ngurf = ceie and " =T7x 10" em™1.

3.4 One row of rods

" We shall suppose tlmt the structure consists of one row of rods, ie we set l 2.5 l 3= 0 ) .'
"At= A’ and sd = s? in (31 32). ‘
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To optimize this problem in a gencral way is very difficult because it depends
on many parameters. Thus, we first fix several of them (the frequency. the order of
the incident mode, the dimensions of the main hyperguide, the thickness of the wall
separating the active and passive auxiliary waveguides. the distance of the plasma
from the grill mouth, the surface plasma density and the density gradient) and then
we attempt to reach the optimum by changing one of the remaining parameters while
the rest of them is kept fixed. The independence of the physical processes underlining
the determination of the optimum explains the success of this procedure.

The optimum distance I} giving the best irradiation of rods is determined only
by the geometry of the main waveguide. From Fig. 3 we sce that the power reflection
cocflicient and both the standard and weighted directivities have the optimum at
Iy = 6cm. This distance is about 17% shorter then the estimate based on the
geometrical optics given in the Introduction. It can be explained by the inadequacy
of the GO inour case in which the diffraction plays an important role. It is confirmed

co - 01 -
L8 -
i 00 -
!
!
C7 -
. -01-
cé6 1
. -02-
o5 -
:
' -02
04
!
ST mm———— T T T T T - _0": T T =TT T _T T
01 02 93 0% 05 €6 C7 c& 09 10 €1 02 €3 04.95 06 07 08 09 10
dy [em] ds [cm]

Figure 4: Power reflection coefficient. standard and weighted directivitics vs thick-
ness ds of the rods. The optimum diffraction is obtained for ds =~ 0.8cm. We usc
l; = 6cm and the other parameters are given at Fig. 3. ‘

also by the optimization of the smaller structure where this discn‘cplel(;_\"is higher
because GO works here even worse. In the process of the optimization we also paid
an attention to the distribution of the incident powers in the waveguides of the final
multijunction section. If /, is too short the power in the {3,1}-waveguide is too high,
* if, in turn, I, is too long the same is true for the {5,7}-waveguide. We also examined -
the power spectra and observed the parasitic peaks corresponding to the wave with

13



(-k:) for both the shorter {; than optimum and the longer one.

The optimum for the thickness d5 of the rods follows from the compromisc be-
tween the substantial diffraction of waves, which calls for the huge rods. and the
broad gaps through which waves can well penetrate. From Fig. 4 we see that the
rods must have the thickness equal A, /4 to be effective. There is a slight dependence
of the optimum ds on the surface density and we use d; = 0.8 cm which works well

for the higher surface density (ny,r = 4ncic). The gap between the rods is narrow
(bs = 0.37 cm)

Figure 5: Directivities, power reflection cocfficient and power transmission cfliciency
vs lcngt.h ly of rods ( the length of the waveguides of the mulluum.tmn section).
The optimum is reached at resonance values Iy = n x 1.592em. n = 1,2..... Only
the values of npr are unsatisfactory here. We use §} = 6em. x, = Oﬂllum.
Nyurf = 2n¢e and the olhcn parameters are given at Fig. 3.

The impressive picture of the resonant behavior of all interesting quantities gives
the dependence of the power reflection coefficient. directivitics and power transmis-
sion efficiency on the length l; of the rod cross-section (sce Fig. 3). The reso-
nances occur at the exact multiples of the half wavelength of the fundamental inode
(Ao = 27 /ko = 3.184 cm in our case). All quantitics manifest also the full periodic-
ity with respect to this quantity, because the length I enters into our calculations -
only through the factor ¢2'® (see (8-9)). Thus the same results can be obtained for |
ls = 1.592cm but we used Iy = 3.181 cm to separate well the junction ploblem from :
the couplmg problem.
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The reflection cocfficient decreases and the directivity (in the absolute value)
increases substantially in the resonance region but. at the same time. the power
transmission cfficiency falls. The main cause is the formation of the strong standing
waves in the separate waveguides of the terminal multijunction section (see Iig. 6).
The same but much weaker effect was observed at the standaid multijunction grill
(17] in which the non-zero phase shifts between the adjacent waveguides prevent the
waveguides from being resonant all at once. We suppose that the large structures
with many rods can be optimized with respect of gpp by an uneven (anlmnon of
the incident power in several feeding waveguides.

1.0 T T T T T
-l
4 O Incident
] a)
@B Reflected
0.5 —
0.0 -
1 2 k] 4 5 6 7
Waveguide No.
1.0

+ D N |  E— T
2 Incident

b)

@B Reflected

0.5

J

0.0
1 2 3 4 5 6 7
Waveguide No.

Figure 6: Distribution of the incident and ieflected powers (divided by the total
incident power) in the individual waveguides of the multijunction grill, formed by
the gaps between the rods. The fifth waveguide is highly overloaded and the incident
powers arc distributed highly non-uniformly. The case a) one row of rods (5py =

0.0962) and the same parameters as in Fig. 5;: b) the parameters couespond to

the optimum structure with two rows of rods with the spe(uum gncn in’ lw 14
(np1 = 0.0806).
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Figure 7: Directivities, power reflection coefficient and power transmission efficiency
vs surface plasma density. The same parameters as in Fig, 3 with the optimum
l, =6cm.

The best coupling of the waves in our structure to the waves in a plasma is
reached for nur = (2 — 6)ngy, (see Figs. T and 9). In the rarefied plasma with the
Nt < Nerie the structure cesses to operate.

The quasi-optical grills are very sensitive to the distance between the grill mouth
and the plasma (sce Fig. 8). The standard directivity is very low at 2, = 0 and also
the absolute value of the weighted directivity decreases here, the both™ quantities
rcach the optimum for £, = 1 — 2mm. This behavior can be understood from
the dependence of the spectral power density on x, and N.. For |.V;| > 2 “c can
approximate G(.V,) as

G(N;) = ¢~ Herel: 'M. 9
V|

where D(N.) is the Fourier transform of the z-component of the electric field E. and
its absolute value is symmietrical with respect to .\, = N, As r,, grows the short
wavelength waves cannot get over the vacuum gap and the spectrum cousists mainly
of the waves corresponding to the s = —1 peak. But at the same time the the power
reflection coeflicient sharply increases and, at the higher z,. the undesirable waves
with |V | = 1 appear in the spectrum. Thus the directivity has the,optiixium at
some small but finite z,,. S

.In Fig. 9 we show that this optimum z;, shifts slightly to the hlgher \alues as the
surface plasma. density grows. At low densities the optimum z,, is practu.alh cqual

16



IO-I

99 -
08 - 5
Ocp

0_/ 'i bP’-”
0g | -7

| ”
0.5 4
04 : Riar G)
AJ e -

03
92 -
91
26 -—

-0.2
-03
—() 1 el " —- . T 1
0.0 0.1 0.2 0.3 0.4 0.5
X, [em
10 -I
09 4
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vs distance rp between the grill mouth and the plasma. The case a) the structure
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Figure 9: Power reflection coefficient and weighted directivity vs the distance zp
between the grill mouth and the plasma for several surface plasma densities. The
same parameters as at Fig. 3 with the optimum [} = 6cm.
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Figure 10: Power spectrum of the optimized six rod quasi-optical grill m_ountc;l‘in the -
hyperguide. The curves composed from "= represent the integrals f**,‘\" G(N:)dN:.
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The power spectrum for the optimum structure and plasma parameters is shown

in Fig. 10. The left peak (N. = —2.13) coriesponds to the s = —1 diffraction
order in (2), the right one (.V; = —3.13). coriesponding to s = 1. is parasitic and

its presence cdiminish the vesulting directivity. The positions of peaks coincide well
with the predicted ones on the basis of the Floquet's theorem. The curves made of
”oar

represent the integrals f:,‘“ G(N.) dN: and they can be used to estitmate how
much power an individual peak contains.

0.05

0.0 Llem WK
(10) (11) (12 (10) (ll) (12) Mode
Active wav, Pasive wav.

10 1y (12 (10) (11) (12) ‘Mode -
Active wav, Pasive wav.

Figure 11: Distribution of the normalized 1eflected powers between the. auxiliary
waveguides {1,1} and {1.2} and three propagating modes. The’case a) corresponds
to the optimized structure with six rods in one row having the spectrum clepicled in

Fig. 10. The case b) corresponds to the optimized structure with t\\o lO\\S of rods’
having the spectl um depicted in Fig. 14. '

The waves ave reflected pretlommantl\ into the passive 4ux|llan wav cgmde {l 2} |
in the form of the (1,1)- and (1.2)- modes (see Fig. 1la). lhe reﬂectcd \\a\es m_
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the active waveguide consist practically of the (1,2)-mode which cannot be casily
damped here and it is partly reflected back to the rods. In the present paper we
neglect this reflection.

3.5 Two rows of rods

The sccond auxiliary row of rods can impiove irradiation of the main row of rods
situated in the grill mouth. In the cowrse of optimization we found that the proper
irradiation of the main row of rods can be achieved only if the sum of the distance ¢,
from the junction of the auxiliary waveguides to the auxiliary row and the distance
Iy from the auxiliary row to the main row is equal to the value obtained in the
optimization of the structure with one row of rods only.ie {) + I5 = 6 cm in our case.
We also found that the magnitude of Iz. ic the lcng,th of the auxiliary rods in the
direction of the wave propagation, | ' optimum. lhus

we supposc that these rods MWH&WHM Ju {-

Y WY W S

a3 -
-03 -
0z - 1
: |
X i
1 -
i ‘
61 - e Tt T -0 4 +r- -ty r—r —
05 0 15 =20 25 30 35 o5 0 15 20 25 30 , 35
Iy [CMI Is [ch

Figute 12: Power 1eflection coefficient, standard and weighted diectivities vs dis-. -
.tance I3 between the auxiliary row and the main row of rods. The six rods in each
row is considered. The optimum is reached at I3 = 1.2cm. We suppose the optimum
h+lb=6cm,l = & and d5 = 0.51 cm and the same parameters as at Fig. 3. )

The optimum distance between the auxiliary and the main rows is reaclied at the -

.sllghllv shorter distance than gives the condition of the constructive superposition ‘of
. the incident_and doubly reflected waves. In our case, the optimum /3 = 1 2cm (sce .-

Flg 12) is lower than the estimate from the lntloductlon which gives I3 ='1. 4"cm
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The second optimum at I3 = 2.9cm in Fig. 12 is inferior to the first because the first.
row is too close to the mouth of the feeding auxiliary waveguide in this case.

The described optimum differs from the optimuin resonance distance between
rows found by M.L Petelin (3] for QOG in a free space or used in the design of the
new QOG for TORE SUPRA [19]. This resonaunce distance D is determined by the
condition kD = = and corresponds to excitation of the travelling TAl, mode in the
parallel-plate waveguide formned by two rows of rods (E. ~ sin{mr/D)e*=*_ E, ~
(ik:/ ky) cos(wa/ D)e*==). Such a mode can exists only if nothing prevents the waves
from propagating freely along the rows of rods ( in the z-direction). If the quasi-
optical grill is immersed into the cavity the travelling modes should be converted into
the cigenmodes of the closed resonator (E, ~ sin(xy/a)sin(kir)cos(nwz/b),n =
1,2,3.1) but from Fig. 12 it seems that no eigenmodes are excited at all. The
cigenmodes ought. to have the negative effect on the directivity and the decrease
of R at I3 = 3 can be attributed rather 1o the fulfilment of the condition ly =
Apcosa = 2.8 than the resonaunce of the fourth mode (D, = =/k = 3.12). We
tested, with negative result. the problem of eigenmodes ou the case when we kept
{; = 6cm (the optimum irradiation of the anxiliary row of 10ds) and changed the
distance &y from 1 — 4 cm.
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Figure 13: Power reflection coeflicient, standard and weighted directivities vs thick-
ness d of the auxiliary rods. The optimum diffraction is obtained for d3 ~ 0.6 cm.
We use I, = 4.8cm. Iy = 1.2¢m and the other parameters érc giveli at l-' ig'.'3."

I‘ he optimuin thickness dy of the rods of the all‘(llla.l ¥ row |s shghtl\ below “ \e /4
l"rom Fig. 13 we see that d3 = 0. 6cm RN
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From Fig. 8b it follows that the optimum distances x;, for the weighted directivity
and for the power reflection coefficient practically coincide for the two row structure.
This cexplains the lower reflection at the optimum in this case. On the contrary. for
one row structure (Fig. 8a). the minimum of the reflection coefficient is shifted with
respect to maximum of [6¢p| to the lower z,,.

_.
n
!

f=9.6 a=8.0 b,=3.5 d.=0.4
b,=b,=7.4 b;=0.55 d;=0.59166

1.4 ] H be=0.3725 ds=0.79875
-| Lh=4.8 1,=009+66 1,=1.2 1,=3.18
17 a=27° x,=0.124 .
'I n,u,,/n.,,—40 dn/dx=7.0x10"
e - Rin=0.178 §"c;=—0.348
~ |
Z“O.B |
5 J
04 ‘-! -.
“

Figure 14: Power spectrum of the optimized quasi-optical grill consisting of two
rows of rads mounted in the hyperguide. Each of rows has six rods.

The power spectrum for the fully optimized structure with two rows (cach having -
six rods) is given in Fig. 14. The spectrum has practically the same shape as in the
case of the one row structure (sce Fig. 10) but the reflection cocflicient is. smallc "
and the directivity is slightly better. L

The. second row improves the distribution of the incident po“els in. thc thc_
waveguides of the final multijunction section (the main 10w of rods) whicliis dt' icted . -
in Fig. 6b (waveguides 1.2.6.7), but the overloading of the central waveguides is -
stronger than that in the case of one row (npy = 0.0851 for one 10w .m(l n,m; =-
dnery)- o

The 1cﬂectcd power of the two row structure does not contain p|a(t.|call\ an\ '
(L.1)-mode as it is seen from IMig. 11b. The sccond row prevents this mode from
. escaping the space between rows and thus it is radiated into the plasma llns
- explains the lower reflection of the two rows structure. : i .
We could-continue with the optimization of the second row b) se\cral dlfferent

methods. It is p0551ble to shift the row as a whole about a small dlstance in the‘f_,'-. o

z- (llrccnon to change the irradiation of the rods. lt. is also posmblc to use the rods'- s

9
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with different thickness and change the width of gaps between them irregularly to
achicve a better distribution of the incident and reflected powers in the individual
waveguides of the final multijunction section and suppress the overloading of the
central waveguides. In the present paper we confine to the simple optimization
described in the first paragraph of this section.

3.6 Computation precision

In the one row case we use about 75 modes at each discontinunity. ie we finally
solve the set 150 equations to obtain the transmission and reflection coefficients (31-
34). The power flow (13) is conscrved to four digits. \When we solve the coupling -
problem we use T modes per cach waveguide and we also compare the power flow in

the plasma obtained by the integration of the power spectrum with the \h\usll\ntod

power flow (12): we found that both values fit well 10 the same precision.

Two row problem has four discontinuities and asks for the solution of 300 equa-
tions. The resulting precision of the power flow conservation is only 1% in this
case.

4 Conclusions

From the preceding discussion and numerical calculations it scems that the our

design of the quasi-optical grill mounted in the large waveguide cavity could ‘be a
poverful alternative launchier of the lower hybrid waves for the current drive in large '
thermonuclear facilities. We revealed several important facts about QGG mounted |
in a oversized waveguide

¢ The conducting walls surrounding our QOG do not prevent the rods from being .

irradiated properly. This is not true for all such stiuctures. ¢g the (.oufining
walls distort the form of wave. if the rods are irradiated b\ the p(u d|)0|l( mmm N

[6].

o The 1esonant length Iy of the cross-section of the main 1ow mds (m thc dlrcc- U

tion of the wave propagation) ensutes that the structure even with“one. row =
of rods is highly ecfficient (R, = 0.2. §cp = 0.7, 68, = 0. 3). llns |esonam'_:. ;

length of rods mnust give the same excellent results also fm thc stu'

erating in a free space. This fact was overlooked in {18] (thie authors’ :docs not-".:--’-:.'

rcach the resonant clongation) but it scems that the pu'lnmn.u\ pmposal of
the new QOG for TORE SUPRA working at \C.II/ [1Y] env |sagcs |t :

o The overloading of our structure is not so severe as for. the snu«um-s \uth
the resonant distance between two rows of rods. In [3] the estimated clcctnc

field is 35 higher than the ideal one; for the new QOG with, thc horn and hok

.mirror arlangement [19] the estimate gives the factor 4- -5;- For’ our. structure
NpT = 0 l ic the clectuc field i is only 3 times higher t.hul the 1deal on
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e The sccond row of rods improves the efliciency of our structure (R, = 0.15,
bcp = 0.7, 6&p = —0.35) but we do not confirmed the existence of the res-
onance distance between rows of rods for the structure bounded by the con-
ducting walls.

e The structure has (3 x a/A,)-times less construction elements than MJG.

We can compare our structure with the waveguide grills described in the survey [20].
The big multijunction grills have the weighted dirvectivity about 30%, the power
reflection coeflicient about 5% and the peaking factor on the electric field equal 2. 1f
we consider, that our structure has only 6 rods and serves as an example how such
a structure can operate, our results seem to be very promising. The lower weighted
directivity of QOG has two main reasons: the long wavelength parasitic peak and
the presence of the waves with N; = %1 in the spectrumn. The directivity of large
structures could be better, because the width of the peaks in the power spectrumn
decreases with the increasing number of rods and thus the leaking of waves with
N: = %1 is reduced. The limiting power density increases with the grow of applied
frequency so that the wavegunide overloading need not be so severe.

There are two ways how to cieate a large stincture. We may simple artange
several units (eg having about 10 rods in one row and placed in the separate hy-
perguide) side by side in one vow. The incident waves must be properly phased.
This configuration resembles the multijunction airays. We may also cicate one big
hyperguide with several tens of rods in one row. To irracdiate them properly we can
use several feeding waveguides, in each of them the properly polarized aud phased
higher mode is incident. The feeding waveguides fill one half of the common hyper-
guide (the second half forms an passive structure which absorbs the reflected power)
and the walls between them retreat subsequently from rods forming the triangular
structure - echelette - which irradiates the 1ods obliquely by the plane wave. Such a
structure resemble the original proposal of the quasi-optical grill and it could have
a larger flexibility than the preceding one.

Appendix

DETERMINATION OF THE TRANSMISSION

‘AND REFLECTION COEFFICIENTS OF THE
JUNCTION

First. we derive the set of the linear equations for the amplitudes of both propagating
-and evanescent modes in our structure. The method which we use here was adopted
successfully for the solution of the discontinuities in waveguides by R. Mitra and
S.W. Lee (21]. The same method proved to be useful in the theory of the’ mulluum-
tion grill [7]. L
. The tangential components of the electric and magnetic fields must be contmuos 3
. at the discontinuities at xy, r3 £ 12/2 and z5. Moreover E, must be equal to zero'on .-
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the faces of all rods and walls. The continuity conditions in the z-1epresentation do
not suit well for the numerical solution and must be Fourier analyzed. If we exclude
the unknown amplitudes B2, A33, B3? and A%® we obtain the set of the lincar
equations for the unknown amplitudes A2, B? ¢I.lld Al . B! of modes in the main
hypergnide. A2, B2. etc are the abbreviated notations for A%, B2! ctc.

From the continuity conditions at ¥ = r; we have

.\'P_l:l L 2 .
3 ( 12531+ =+ K + i(1 — ‘— ) Rl = 28,6554,
n=0 $
3=12, 1—0.1._....,:\'1,,,.—-1. (20)
where s2 = e-ikal/2 N1 is the number of modes in the waveguides {l..Bl}, RYFRTS

the number of modes in the connecting oversized waveguide {2} and the Fourier
cocflicients

za.24ba -z a(z—=
Rl = l)l_,/,,, P os "";- cos a(z bu-n"j) ds. (21)
The condition £. = 0 on the face of the wall separating the waveguides {1.1}
and {1,2} gives
Not =1 ,
> (A,is,i + ) R (n.l) = 0. I=0.12,....N -1, (22
n=0 r-

where Nyy is the number of modes on the face of the wall separating waveguides
and the Fourier coefficients

) Eu atdn 17z 7(2 = Za,; '
R, l) = %/ " cos "b cos l 7 ) d:. : (23)
aJdia g dqy

The continuity conditions at »r = 3 £ [./2 gives

NMar=1 /42 &3 ‘ o
Z ( (- l)-f-B (l+,‘z )s',’lf""’(n.l)—

n=0 n
Niot =1 3 1 “ 33y
> (Al - HE_“ 2 ) - 9(31_:,1) = 0,
=0 R}
Nia-1 A? k R33(n.d
35 (S0 + 10+ g2z - o) B0
N =1 K 1 A'J o '
Z (l,'.s,'(l + -:—12-) -B—(l - “ ).s‘,’lf""(n.l) = 0, N
3= L2 N ] D= 012 Ny = Lo (20)

where 3 = e='*ahk/2 g3 = e='Mil/2 qud Ny, is the nmumber of modes in _th(; wavesuides
The condition E; = 0 on the faces of the rods at xy £ 1,/2 gm's
Nior~1

2
z_:o (%+Bﬁsﬁ) R*4n.l) = 0. .3=1.2,....'.. iod
Nuo=1 B _ _— . .
» (4' i 2 ) R¥(ml) = 0. I=0.1.2.....N5 = 1.7 . - (23)

n=0

2
(1]



where N3z is the number of modes on the faces of rods at x5 £ 2/2.
The continuity conditions at r = r5 gives

N -1 AI
Z (s"(l )+Bn n(l + l)) Z‘,a(nal) = )&OB

n=0

.3=1121'-'-.‘\rod+]! 1_0 l----"a-'\'S!..-—la (26)

where ;.. is the number of modes in the waveguides {5.3} of the final multijunction
grill.
The condition [, = 0 on the faces of rods of the main row at x = x5 gives

Niar—1 A'l .
> (9—;‘- + B;:s','.) R™(n.l)y = 0.
n=0 “n

3=12,..... Vioa.  1=0,1,2...., N5, =1, (27)

where N5y is the number of modes on the faces of rods at @ = ;.
We nced also the expressions for the amplitudes A3 of the waves incident on
the plasma. From the continuity conditions of the fields at & = x5 we have

_,\.,z.:_.(,;;(l 2)+13"(1— )

= n=0 n

R*3(n.0), 3=1.2.....N0 + 1. (23)

Similarly, for the amplitudes B,"a of waves reflected back into the waveguides
{1.1} and {1,2}, we obtaiu fromn the conditions at r = x,

' Nior—1 1
25113,'", = Z (lfl 2(1 - —-)+ B, (l +L )

2
1=0 ‘

R'(n.1), _3=1,2. 1_012 ...... Npror, (29)

The set of the equations (20). (22), (24-27) has 1Ny unknowns and it must hold
that Ny = 2.V, + \-lf = ( Neoad+ 1) Naw +:Nvod \'U = ( Neod+ 1) V504 Noa \.nj These
numbers must be chosen in the agreement with the requirement of the (ondluoncd
convergence of the problem of the wave diffraction on the object with edges [22]
ic we must try to fulfill the conditions Ny./Ny = bi/dy, Nuw./Nay = bs/ds au(l E
.'\'-:,u-/."\-sj = bs/(lr,. : S

The right hand sides of our sct are given by the amplitude .4,'. "': of the-incident
higher modeé in the {1,1}-waveguide and by Nyea+ 1 unknown amplitudes By of the
waves reflected from the plasma. To obtain the general solution of our set of lincar
cquations we must solve this system (Nyoq+2)-times setting each time only’ onc from

the incident amplltudcs cqual to 1 and the other to 0. In this way we oht ain Nod +_-: .

solutions A%(k), B3(k), A}(k), B}k). n =0.1,2,... N =120 \,,,d + 2.
The general solution can be than written as s
Nioa+1 I .I A v ’
AL = ALMAL + Y AL+ 1)130-”. n=01,2,.... ot = 1 (30)
. 4=l A ‘ ) -
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and the similar expressions for B2, A}, B).

If we insert the general solutions (30) into (28) and rearrange the terms we obtain
the explicit expressions for the amplitude transmission and reflection coeflicients at
I = Ts

A : ko
T = % Z (—‘iﬂﬂ(|+%)+l3(l)s(l——) R (n.0).  (31)

n=0 n
Niot—1 ko
Par = l,z (——(’|+——1—1( )+B(-+l)~(l-—)><
=~ n=\ b"
R5"3(1z,0), ,3.']' = 172v' o --\'rml + 1. (32)

Finally, if we insert the general solutions (30) into (29) and rearrange the terins
we obtain the explicit expressions for the amplitude transmission and reflection
cocflicients at » = 1,

1 Niot~1 ) ) I 132 + 1 !

T = 5 2 (Af.(‘r+l)-*i(l )+-—(q——)(l+ “')) X

=-r =0 n i

R (n.m), m=0,1,2....,! \'"‘"' , (33)
m R 20112 ky 32(1)
pl.3 = 25’" ﬂgo (A"(I)S"(l - L—_'{) 3?‘. (l + 5 Lz )) x

R“(n.m). 3,4=12..... Viod + 1. _ (34)
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