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Abstract 
We discuss an internal dosimetry problem, 
where measurements of plutonium in urine are 
used to calculate radiation doses. We have 
developed an algorithm using the MAXENT 
method. The method gives reasonable results, 
however the role of the entropy prior distribu­
tion is to effectively fit the urine data using 
intakes occurring close in time to each mea­
sured urine result, which is unrealistic. A bet­
ter approximation for the actual prior is the 
log-normal distribution; however, with the log-
normal distribution another calculational ap­
proach must be used. Instead of calculating 
the most probable values, we turn to calculat­
ing expectation values directly from the pos­
terior probability, which is feasible for a small 
number of intakes. 

1 Introduction 
In the field of health physics, exposure to 
alpha-emitting radionuclides like plutonium is 
usually monitored by periodic urinalysis. We 
have developed a new algorithm to calculate 
the radiation dose to an individual from in­
ternal depositions of plutonium (by inhalation 
or via contaminated wounds) based on their 
urinalysis data. The code is described in more 

detail in Ref. [1]. The mathematical method is 
to maximize the Bayesian posterior probabil­
ity using an entropy function as the prior prob­
ability distribution. The MAXENT method as 
implemented in the MEMSYS software pack­
age is used. Some advantages of the new code 
are that it ensures positivity of the calculated 
doses, it smooths out fluctuating data, and it 
provides an estimate of the propagated error in 
the calculated doses. This method is generally 
applicable to the internal dosimetry problem, 
and we plan to implement it also for tritium 
and uranium, which are also monitored by uri­
nalysis. 

The MAXENT method, although an ad­
vance over previously used data unfolding 
methods, is still not definitive, since the en­
tropy form of the prior probability distribution 
is not realistic. The entropy function has the 
property that its standard deviation divided 
by its mean is always less than V2, which is 
the limiting value for small a, as will be dis­
cussed. A more realistic prior would have a 
larger value of this quantity, as is the case, 
for example, with the log-normal distribution. 
We believe the log-normal distribution to be a 
better approximation to the actual prior dis­
tribution as determined by statistical studies 
of historical data. The relative narrowness of 
the entropy prior leads to an underestimate of 
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radiation doses in the internal dosimetry prob­
lem. We will discuss a Bayesian calculation for 
a log-normal prior distribution. 

The current approach to internal dosimetry 
is to interpret bioassay measurements in terms 
of radionuclide intake quantities. Let a;,- for 
i = 1,M denote the intake that occurred dur­
ing time interval i, where M is the total num­
ber of time intervals. For example, in pluto-
nium dosimetry a:,- is the activity of plutonium 
taken into the body on the i i h day by inhala­
tion or via a contaminated wound. 

The bioassay data are denoted by yj for 
j = l,iV, with uncertainty estimates (stan­
dard deviations) Oj . For example, yj is the j l A 

measurement of plutonium activity excreted 
per day. The biokinetic response is assumed 
linear and known, so that 

M 

i=l 

is the predicted bioassay result at time ,;' given 
intakes Xf, where «,;• is the biokinetic response 
at time j for unit intake at time i. 

The problem is to determine the "best fit" 
values of {x,} given {y,} (read {a;*} as "the 
set of a;,- for all i"). The MEMSYS method is 
to define "best fit" as the a;,- values that give 
a maximum of the Bayesian posterior proba­
bility of {a:,}, given the data and an entropy 
prior probability distribution. 

2 M A X E N T 
The entropy form of the prior distribution is 
given by 

P(z,-) = Cexp[aS(xO]. (1) 

where 

S(xi) = Xi-TTli~ X{ log — - , 

a and m,- are parameters, and C is a normal­
ization constant such that 

(note the metric factor 1/ar/ )• 
In Ref. [1] a simplified approximation for 

the entropy function is obtained for the case 
of small a. For small a, 

P(xi) = ^expi-Xxil (2) 

where A = 2alog(C). The quantity £ is deter­
mined by solving the equation 

^ V 2am,-log<' 

iteratively for £ starting with ( = e as the 
initial guess. This requires that a not be too 
large. Using this approximation, the mean and 
standard deviation about the mean of x« are 
given by 

V((Ax,)2) = V2(x{) (3) 

The entropy distribution has the property 
that it's standard deviation divided by mean 
is always less than \ /2 , which is the limiting 
value for small a. A more realistic prior prob­
ability distribution would have a larger value 
of standard deviation divided by mean, as will 
be discussed. 

A test of the MAXENT code using real 
239p u u r m e excretion data is shown in Fig. 1. 
The MAXENT code reconstructed the intake 
scenario using a noninformative prior prob­
ability distribution (uniform small values of 
mi). 

Basically, the intake scenario calculated in 
Fig. 1 is reasonable. However, on closer in­
spection, one sees that an upward excursion 
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distribution of radionuclide intakes for a pop­
ulation of exposed workers. The log-normal 
distribution has mean and standard deviation 
given by [2] 
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Figure 1: Example of a MAXENT code dose 
calculation. 

of a urine excretion data point is fit by as­
suming intakes occurring very close in time to 
the time of the urine data. A "hand fit" for 
a simple case by a professional health physi­
cist would usually assume an intake occurring 
further away in time, and giving a higher dose 
estimate. 

3 Log-Normal Prior Dis­
t r ibut ion 

The log-normal distribution has the form 

P(x)dx 1 
\/2~Jr<7o exp 0°g£y dx 

- • ( 4 ) x 

The log-normal distribution is known empiri­
cally to describe many cases of interest[3]. We 
suspect, and have some empirical evidence, 
that it gives a reasonable description of the 

(*> = me 'V* 

y/((Ax)*) = {x) Ve"l - 1 (5) 

Thus, in contrast to the entropy distribution, 
the log-normal distribution can be arbitrarily 
broad for large <7o. 

The log-normal distribution does not have 
the inverse property of the entropy distri­
bution that allows solution of the maximum 
probability equations by data space mapping. 
That is, if 

/ ( z ) = A [ l o g P ( z ) ] , 

not all values of y allow solutions of y = f(x). 
This means that the maximum posterior prob­
ability problem with M variables (M might 
be 10000) and AT data points (N might be 
100) will involve M equations in M unknowns 
rather than N equations in N unknowns-a 
very important practical difference. 

Perhaps using the log-normal prior distri­
bution fundamentally changes the mathemat­
ical character of the problem. To begin to 
understand whether this might be true, we 
consider a very simple case, with one intake 
x and one measurement y. It turns out that 
the problem easily generalizes to multiple mea­
surements with one intake. 

The posterior probability is then given by 

P{x\y)dx ~ exp (xu - y)2 

2<7 2 lal ( ' < m/ 
dx 
x 

where u is the fraction of intake excreted at 
the sampling time after an intake, x is the 
intake amount, y is the measured activity of 
plutonium excreted per day, a is the measure­
ment error standard deviation, and <r0 and m 
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are log-normal parameters that are considered 
known. Simplifying the notation, 

dz 
P(x\y)dx ~ exp [-a(z - z0)2 - /?(logz)2] —, 

(6) 
where 

x 
z = m 

y 
um' 
{urn)2 

" = si-

z0 = 

a — 

CO 

If we ask the question "What is the most 
probable value of x?", the first problem is to 
decide "With respect to what variable?". If 
the probability density is plotted versus x, the 
maximum will occur at a different x than if F i g u r e 2 : Graphical solution of the equation 
plotted versus log a;. The second problem for determining the most probable z values. 
Eq. 6 is that there are sometimes multiple 
local maxima. 

The maxima of the exponential in Eq. 6 
occur when 

dz 

or, when 

[<*(z -z 0 ) 2 + /? ( logz) 2 ]=0 , 

0 log z 
z — z0 = = 

a z 
where we have defined 7 as 

7 = ~ a 

- 7 " 
logz 

(8) 

(9) 

Figure 2 shows that Eq. 8 always has solu­
tions. However, for large 7 there are multiple 
solutions as shown in Fig. 3. The critical 7 
turns out to be 

fcrit = 2e 3 = 40.2, (10) 
Figure 3: A case where multiple local maxima 

and, for 7 > 7 c r j t , there are multiple solutions, occur. 
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For these two reasons, 1) ambiguity about 
metric factors, and 2) possible multiple local 
maxima, we propose that finding the maxi­
mum of the posterior probability may not be 
the optimum approach. 

Another approach is to directly use the pos­
terior probability distribution to evaluate ex­
pectation values. This is conceptually simpler. 

For the problem at hand, 

{ }~ J?P(*\y)dx ' ( i i ) 

with P(x\y)dx given by Eq. 6. We therefore 
can easily calculate (x), ((Aar) 2), (x2) and 
other quantities of interest. 

If there are multiple measurements, the gen­
eralizations of Eqs. 7 are 

z 0 

1 E;=l to,-

Wi 
(12) 

and 
N 

a = m2J2v>J, (13) 

where the weighting factor Wj is given by 

«? 

4 Conclusions 
The form of the prior distribution is impor­
tant. We see this clearly in the internal 
dosimetry calculation where the MAXENT 
doses are smaller than those calculated "by 
hand" for simple cases. Unfortunately, the en­
tropy form of the prior distribution is not able 
to approximate what we believe is the actual 
broad form of the prior for cases of interest. 
Thus, we are led to investigate application of 
the log-normal prior distribution. 

With the log-normal prior, 1) data space 
mapping fails, and 2) there may be multiple lo­
cal maxima of the posterior probability. Thus, 
we cannot simply change MAXENT to use a 
log-normal prior, and are led to consider alter­
nate approaches. 

An elegant approach is to directly evaluate 
average values using the posterior probability 
distribution. Straightforward application of 
this method is practical for determining small 
numbers of intakes and quite trivial for single 
intakes. The single-intake method can be used 
in a data unfolding procedure where multiple 
intakes are successively determined by one or 
more subsequent data points. The challenge 
for the future is to find methods to evaluate 
very large dimension integrals in order to be 
able to simultaneously determine large num­
bers of multiple intakes. 
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