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This talk is intended to be a brief introduction to experiments at the TRISTAN e+e~ collider for 
very young theorists. In most pan of this written version, individual publication will not be 
referred to. Instead, a list of publication is provided in APPENDIX for convenience. 

1. Choice of Energy 
Electron-positron colliders had played critical roles in the progress of particle physics in 

the 1970's and were expected to do so in coming years. Accordingly, any successor of 
PETRA and PEP colliders was expected to extend the energy reach to the region where the 
weak interaction effects would, become sizable in annihilation processes. The aim was to reach 
the level where an all-round study of the Standard Model could be performed in a clean system 
of e+e~ collisions. It was also aimed to explore the energy region where the top quark pair 
production would be very likely. As far as the top mass is concerned, a reasonable guide to its 
estimate had been the obseived hierarchy in qtiarkonium mass ; 

M(<i>) = 30, MQV) = 3 ' , M(T) - 32 GeV. 
Lacking any reason that the top be special in its status, a naive expectation had held for 
topponium to be roughly 33 GeV. After initial search at PETRA, theoretical speculations on 
the top mass widely ranged from 20 to 40 GeV. 

Considering the available site for accelerator construction and the expected size of the 
electroweak interference effects, the target energy was set to 60 GeV at the lowest. On the 
other hand, machine physicists knew that, because of radiation energy loss, the optimized 
betiding radius of a collider ring should increase in proportion to the beam energy squared. 
Optimized TRISTAN ring would have been 3 km in diameter. Instead, the largest possible in 
the site was 1/3 of it. A hard decision was thus made to equip the ring with unusually many 
accerelating RF cavities and to apply superconducting technology to a significant part of them. 
The world accelerator community was understandably skeptical about this. 

2. Long-Range Physics Program 
The experiment, TRISTAN-I, has first made an exploratory study over the new energy 

region up to 64 GeV and is now carrying out deeper and broader studies with as high 
lumunosity as possible1. Aiming to accumulate at least 300 pb"1 of high-quality data, the 
experiment will continue for about two more years. Note that the total cross section for quark-
pair production at 58 GeV is 140 pb and a numerical factor corresponding to the procuct 
(detector acceptance^ (radiative correction) happens to be colse to unity, convenient for a quick 
conversion. 

TRISTAN-I experiment is a big initial step in our long-range physics program. The 
Laboratory has established the plan to move on to TRISTAN-II (B-Factory) Project2 after the 
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scheduled completion of the current experiment. It will be a natural cxtcntion of the present 
accelerator complex. Recall that Japanese theorists have made pioneering contributions to the 
physics related to CP violation3. At the 12-GeV Proton Synchrotron, three large-scale 
experiments are in preparation for CP and related researches in K-mcson system4, 
Forthcoming experiment at the B-factory will make a systematic and decisive study of CP 
violation in B-meson system. Thus, the 30-year long puzzle is going to be attacked from every 
aspect. 

Central to the future plan is the construction of a high energy c+c" linear collider, the 
JLC in short. R&D for this major project had to start from scratch, but it has progressed 
remarkably well in the past 5 years. The second-stage plan for the next 3 to 4 years is to 
construct and study with a large-scale accelerator test facility aiming to establish key 
technologies and to prepare a conceptual design of JLC-I, a 300-500 GeV linear collider, A 
series of studies on physics and experimentation has already shown that JLC-1 will be a crucial 
machine for particle physics^. 

3. TRISTAN Accelerator 
The TRISTAN Main Ring (the storage ring) is illustrated in Fig.l. It has a 3 km 

circumference and is located approximately 12 in underground. Two e" bunches and two e+ 

bunches injected at equal intervals are accelerated to the final energy and are kept circulating in 
opposite directions. Due to the relatively small size of bending radius, energy loss of a 30 GeV 
e"/c+ is as large as 290 MeV per turn. It has to be compensated for by a constant acceleration 
even during circulation, ie in the storage mode. Opposite-going bunches, each containing 

about 2-101! particles, cross each other at 4 

Accelerating 
cavities ~~ 

s Experimental hall 

Bending radius 
= 347m 

Radiation loss 
= 290McV/tum 

TRISTAN 
Main Ring 

(3 km circumference, 
12 m underground ) 

bunch 

13 

10 um = 2x 10 particles/bunch 

Fig.l TRISTAN Min Ring. 

points (the collision points) at every turn. 
At this instant, the bunches are tightly 
squeezed by a superconducting magnetic 
lens system to about a 10p.m • 300p.m cross 
section, thereby significantly increasing the 
chance of e+e" collisions. The intrinsic 
spread in collision energy is about 100 MeV 
around Vs = 60 GeV. 

Fig. 2 illustrates the time sequence 
of storage ring operation for experiment. 
Beam bunches of 8 GeV are injected one by 
one from a pre-acceleration system (the 2.5 
GeV Linac and the Accumulation Ring not 
shown in Fig.l), two for each Main Ring 
bunch. After a further acceleration, the 
operation is automatically switched to a 
beam collision mode for experiment. The 
circulating beam particles are gradually lost 
due both to beam-beam Bremsstrahlung and 
beam-gas interactions. Since the chance of 
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Circulating Beam 
Current Fig.2 Time sequence of TRISTAN 

Main Ring operation. 

Beam Life = 240 min 

'^ Acceleration ( S-*-30 GeV ) 

!—' e~ bunch injection ( 8 GeV ) 

e bunch injection ( 8 GeV ) Fresh Beam 

e+e" collisions decreases in proportion to the product of the numbers of crossing particles, it is a 
usual practice at TRISTAN to dump a beam after about 90 min of data taking and then to inject 
fresh bunches. All of these, the system and its operation, might sound simple, but are in fact 
an art of accelerator science. 

The TRISTAN currently provides the peak luminosity of about 5-1031 cnr2sec_1. The 
integrated luminosity of 1 pb"1 / day / experiment was reached in the end of 1991 and 100 pb"1 / 
year / experiment in FY 1992. The history is shown in Fig.3 where a rapid increase in 
luminosity is clearly seen after a few years of exploratory experiment. 
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Three experimental groups (the AMY, TOPAZ and VENUS Collaborations) have been 
collecting data with their own general-purpose detectors and continue to improve event statistics 
for basic annihilation processes. Efforts are also being made to significantly reduce systematic 
uncertainties dominating the final precision. The role to be played by TRISTAN can be seen 
from such basic data shown in Figs. 4 to 6. 

One of the distinctive features of the covered energy is that the total annihilation cross 
sections (Fig.4) are nearly at the minima in the region below Z°. It implies that 

1) large integrated luminosities are required for high precision measurements, 
2) the Standard Model background is smallest for search of new physics, and 
3) studies of t-channel exchange and two-photon processes are easiest. 
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60 

The quark-pair production receives a considerable contribution from Z°. It is clearly seen 
(Fig.5) when plotted relative to the QED pair-production cross section for point-like fermions 
like [X's. One consequence was that the initial cross section data correctly predicted the Z° mass 
to 1.7 % before SLC / LEP came on, though totally insensitive to the width. Note that the total 
cross sections for lepton-pair production are much less affected by Z° due to the smallness of 
the vector coupling constants. 

Another distinctive feature appears in the differential cross sections as in Fig.6. 
Angular distributions exhibit substantial asymmetries indicating the presence of a large 
electroweak interference. It is clear that TRISTAN sits where the electromegnetic and the weak 
interaction maximally cross over. 

4. 2. New Particle Search 

Needless to say, one of the urgent initial tasks of TRISTAN was a search for every 
conceivable new particle, even unthinkable ones. Here, a few out of many cases will be 
mentioned. New heavy quarks including the top were searched for by 

1) looking for quarkonium peaks, the triplet lS-state in particular, 
2) measuring multihadronic cross section in continuum, and 
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3) studying event shapes of multihadronic events with or without high energy leptons. 
The first two methods, 1) and 2), rely on expected effects^ on the cross section shown, for 
example, in Fig.7. As already shown in Fig.5, the pair production of a new charge 2/3 quark 
was easily ruled out, but uncertainties remained for a charge -1/3 quark. 

Fig.7 Calculated lopponium spectrum for 25 GcV lop. 
Important effects of initial-state radiation and 
intrinsic beam energy spread arc taken into account. 

W ( GeV) 

The third method uses the simple kinematics that quarks produced near threshold will fragments 
into many undirectional hadrons leading to a spherical distribution in momentum space. Such a 
shape analysis was in fact very effective as seen in Fig. 8. 
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Since the top turned out to be too heavy to produce, a new possibility was pointed out^ 
that the 4th-generation down-type quark b', if not that heavy, would prefer to decay as b'—>by, 
b+gluon by effective flavor-changing neutral current interactions rather than decaying to the c-
quark by the charged-current interaction. A thorough search was thus made to give the last 
words regarding the number of quark (lepton, too) generations in the covered mass region. 

It should be mentioned that, through a series of searches at PETRA / TRISTAN / SLC / 
LEP / SppS / Tevatron, the current upper bound of the top mass has already reached about 110 
GeV (for Standard Model decay modes), well above the W-mass. Clearly the top can not be 
regarded as a mere 6th quark any more. Its exceptionally large mass among fermions is a 
completely new feature in the electroweak sector and plays a role to discriminate among various 
scenarios of next physics. 

Fig.9 summarizes the results of search. A most part of them has naturally been 
superseded by later results from larger accelerators. It should be stressed that these are solid 
bounds not depending on theoretical assumptions-. 
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Not included is an indirect search of an additional Z-boson. Theoretical possibility of an 
additional U(l) symmetry implies the existence of the second Z, denoted Z', though its mass or 
mixing with Z is not predictable. Though small, the fermion-pair production cross sections at 
TRISTAN will be affected due to a long-range interference effect by an amount depending on 
the Z' mass and other properties. The TRISTAN results have so far been competitive with a 
direct search at Tevatron for specific types of Z'. To improve the limits, it is imperative to 
reduce systematic uncertainties in the measurement. The same data set has also served to set 
bounds on quark / lepton compositeness scale to a few TeV or higher. A theoretical 
assumption, however plausible, is inevitable in deriving such bounds. However, it is clear that 
high precision measurements of annihilation cross sections are very important in many respects. 
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Since the 10p tu山1 1"刊~d out 10 】be1【o【()hcavy 10 pヲηI代roひヲX刈ducむ， a ncw possibiJity was pointec.l 01117 
that the 4th-gencratioll down-type ql1ark b'， if 1101 that hcavy， ¥Vould prcfer to dccay as b'→by， 
b+gluon by effective f1avor宇changingneutral Cl1rrcnt interactions rather than decaying to thc c-

quark by the charged楢currenlintcraction. A lhorough 5carch was thWi madc to givc thc last 

words reganling thc numbcr of quark (lcJヲton，too) gcnerations in the covcrcd mass region. 

lt should be mentioncd that， throllgh a serics of scarches m PETRA / TRIST AN / SLC / 

LEP / SppS / Tevatron， the ClJn"cnl lIppcr bOllnd 01' thc top mass has already reached abolll 110 
GcV (for Standanl Modc1 c.lccay modcs)， wcll above thc W-mass. Clear1y thc top can 110t be 
regarded as a merc 6th l]lIark any 1110re. 11S exccptionally large mass among fermion5 is a 

complelely new featurc in thc elcctrowcak scclor and plays a rolc to discriminate among variOllS 

scenarios of next physics. 

Fig.9 sU¥1ll1larizes the results of search. A most part of them has naturally been 

supcrseded by later results from largcr accelcrator日. 1t should t可cst陀 sscdthat these are solid 
bounds not depcnding 011 thcol・じticalassl1mption分.
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assumptIon， however plausible， is inevitalヲlein deriving such bounds. However， it is clear thm 
high precision measurements of annihilatIo日crosssectiolls are very important in many respects. 
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e+e 
The latest particle search was triggered by an observation8 at LEP of apparent excess of 
1+1"YY (1 = e or (i) events in which the invariant mass of the photon pair sharply clustered 

around 59 GeV. One of the possibilities was the production of an unexpected neutral boson X, 
predominantly decaying into two photons. Since its interpretation as a Higgs boson was not 
possible when combined with informations on other final-states, the possibility of X having a 
sizable coupling to electrons remained. Previous data on e+e~—»e+e"\ yy, yyy at TRISTAN did 
not show any anomaly, but a narrow resonance could have been hidden. In addition, the rate 
of such cluster of events was only a few per million and a decisive result could be hardly 
expected from LEP. 

An energy scan was thus quickly conducted at TRISTAN over the suspected mass 
range. The energy interval was chosen such that there would be no hole left in sensitivity, 
taking into account of the existing data points and the intrinsic beam energy spread. In any 
final states, no deviation from the Standard Model was found as shown in Fig.K). The 
conclusion was the stringent bounds on ree-BR(X-*each decay mode) 9. 
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4.3. Elcctroweak Interactions 
Beside the direct search of new heavy fermions, the number of fermion generations can 

be experimentally studied through neutrino counting. The neutrinos being practically invisible 
in detectors, only viable way to do this at TRISTAN energies was a cross section measurement 
for the radiative neutrino-pair production : e+e"—>yvv . Here the emission of a single photon 
signals that a collision has taken place. This is a well-known, very difficult technique since 
many QED reactions can mimic it and, furthermore, the reaction cross section would be as small 
as 0.1 pb at 60 GeV for a typical detector configuration (Fig.l 1). Having the best solid-angle 
coverage, VENUS challenged it and came to conclusion that Nv < 3.9 (90% confidence level) 
when the initial data was combined with existing upper bounds from PEP/PETRA. Therefore 
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4. 3. ElectrO¥v引 lkInteractiolls 
Beside the direct search of new heavy fennions， the nllmber of fermion generations can 

be experimentally studied through nelltrino counting. The neutrinos being practically invisible 

in detectors， only viable way to do this at TRISTAN energies was a cross section measurement 

for the radiative nelltrino-paIr productIo/1 : e+e-→yvv. Here the emission of a single phown 
signals that a collision has taken place. This is a wellトト-kα叩no】wn凡1し， very d副if汀fi比Cll叫.Ilttechnique since 

manyQED 1"児.芯e，ω1ωctionscan m吋imi比cit aω叩mdし， fl仇11山l日川r口'1山h児lel白1111
as O.lpb a瓜t60 GeV for a typical detector configl1ration (Fig.l1). Having the best solid-angle 

coverage， VENUS challenged it and came to conclusion that Nvく 3.9(90% confidence level) 

when the initial data was combined with existing upper bounds from PEP/PETRA. Therefore 
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the later LEP result deduced from invisible width and peak cross section of Z° did not come as a 
surprise, but its precision was admirable10. 

The electroweak interference effect manifests itself as a contribution odd in cosi3 to the 
differential cross section for fermion-pair production. At energies well below Z°, this is 
predominantly due to an interference between the axial vector coupling to Z° and the vector 
coupling to y that provides the best means of determining the sign and the magnitude of the axial 
vector coupling ap. It is a common practice to express it as the forward-backward (or charge) 
asymmetry. Fig. 12 shows such data for leptons and heavy quarks. 
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Fig.12 Forward-backward 
asymmetries measured for lcplon 
and heavy-quark pair productions. 
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The observed large asymmetries immediately show that the Standard Model picture is essentially 
valid. In panicular, the data on b-quarks firmly established ab = T3L- T 3 R = -1/2 that had been 
suggested by PETRA experiment, ruling out any multiplet structures other than a left-handed (t-
b) doublet with right-handed singlets. This is an independent measurement from the later, 
more precise LEP experiments and is unique in that the negative sign was unambiguously 
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the later LEP result deduced from invisible width and peak cross sectioJl of ZO did nm come as a 
surprise， but its precision was admirablc 10. 

The electroweak interference effect manifests itself as a con汀ibutionodd in COS'O to the 

differential cross section for fermion-pair prodllction. At energies wel1 below ZO， this is 
predominantly due to an interference between the axiul vector coupIing to ZO and the vector 

coupling to 'Y lhm provides the best mean!'i of detennining the sign and the magnitllde of the axial 

vector coupling ar. 1t is a C0l111110n practice to express it as the forward-backward (or charge) 

asymmetry. Fig.12 shows such uata for leptons and heavy quarks. 
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The observed large asymmetries immediately show that the Stundard Model picture is essentiaIly 
valid. ln pa口icular，the data on b-quarks tim11y established ab = T 3L-T 3R =・1/2that had been 
suggested by PETRA experiment， ruling out any multiplet stnlctures other than a left-handed (t-
b) doublet with right-handed singlet~し This is an independent meaSl1rement fr0111 the later， 
more precise LEP experiments and is uniql1e in that the negative sign was unambiguol1s1y 
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determined. The same asymmetry data was also used to estimate the lower bound on Bs 

mixing, but now the LEP data are more precise on this subtle effect. 
The asymmetry data on leptons gave a ,̂ aT=-l/2 within 10% in a single experiment at 

TRISTAN, supporting the lepton universality. The analysis in the same context has not been 
updated with added data because more accurate values are supplied from LEP. 

The weak interaction is practically negligible in the "QED reaction", e+e"—>yy(Y). The 
data exhibited good agreement with QED calculation and were used to study electron 
compositeness by introducing a hypothetical chirality conserving eeyy contact interactions. The 
best limits were obtained, but were less significant than from e+e_—>e+e~ data. On the other 
hand, they can be translated to traditional QED cut-off parameters and then to a lower limit on 
the excited electron mass that is about 170 GeV for a unit e*ey coupling. QED was also 
examined to higher orders with the reactions e+c~-*c+e~Y, |i+|rY, c+c"e+c- and c+c~p.+n\ 

4.4. Studies of QCD 
Partons produced in high energy interactions appear as jets of hadrons. Studies of such 

jets occupied an important position in the physics program at PETRA, establishing basic 
analysis techniques. The parton-jel association is relatively easier at TRISTAN because of 
stronger collimation of the hadrons, although it can never be perfect. However complex in 
final states (e.g.,the mean chargcd-particle multiplicity is about 16 at 60 GeV), the quark-gluon 
dynamics is best .studied in jet production from e+e" annihilation. 

Only fundamental parameter of QCD is the effective coupling strength ccs ( or the scale 
parameter AQCD ), once its flavour independence is acknowledged that has been strongly 
supported by the flavor independent quarkonium potential and a recent comparison of as(b) and 
as(other quarks)11. The quark-pair production followed by a non-colinear hard gluon 
emission is controlled by ocs, and the scale involved in the process increases in proportion to the 
annihilation energy. Accordingly, the probability of 3-jet formation is expected to directly 
reflect the energy evolution of ocs. Note that the parton fragmentation is not a clean process and 
the number of recognized jets in each final state significantly depends on the jet algorithm. 
Fig. 13 shows the measured jet multiplicity as a function of the jet resolution parameter. Here, 

,„2 VENUS vr=54~6i4Gey a scaled pair mass of any two 
resolvable jets were required to 
exceed a threshold value12. 

IMJJ.13 Measured jet mulliplisity. 
JADE algorithm was used for jet 
finding. 
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detennined. The S<lllle asymmetry data ¥Vas also lIsed to estimate the lower bOllnd on Bs 

mixing， bllt now the LEP data aI・emore prccise on this slIbtle effect. 

The asymmetry data 011 leptol1s gave aμ， aτ=-112 within 10% in a single cxperilllcnt at 

TRISTAN， supporting lhe lcpton univer古川ity. The analysis in thc same context has nm been 

lIpdated with added data because more accurate valllcs are supplicd frolll LEP. 

The weak Interaction is practically negligible in the "QED reaction"， e+e-→Yf(y). The 
data exhibited good agreement with QED ca1cu1ation and were used to study e1ectron 

compositeness by introducing a hypothctica1 chirality consclVing eeyy contact interactions. The 
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The resulting 3-jet fraction is plotted in Fig. 14 against energy. This was the first convincing 
evidence for the running (decreasing) ocs and therefore the asymptotic freedom. 
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Fig. 14 Measured 3-jct fraction in 

multiparliclc production. 
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Precise determination of a s itself is still a formidable task because of uncertainties in 

hadronization and renormalization scale. The total hadronic cross section for e+e" annihilation 
is a totally inclusive quantity, free from ambiguities inherent to hadronization, and is the best 
place to determine ocs. Unfortunately, as seen in Fig.5, a portion sensitive to ocs is only a small 
fraction that is not sufficiently larger than typical systematic errors in measurement. Therefore, 
various event shapes, energy correlations and scaling violations have been the primary source of 
information. Progress is not as fast as one hopes, but analysis methods have been gradually 
improved. With improved event ststistics at TRISTAN, a variety of methods have been applied 
(Fig. 15). It is stressed that the limiting factor in a s determination is of theoretical nature and 
that the accuracies achieved are similar at TRISTAN and LEP. Systematic uncertainty differs 
depending on the analysis method, so that it is desirable to analyze data at sufficiently different 
energies (at PEP/PETRA, TRISTAN and LEP) with the same and as many methods as 
possible. Such efforts are going on. 
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Precise determination of αs itself is still a fOl・l1lidabletask becallse of uncertainties in 

hadronization and renonmtlization sca!e. The tow! hadronic cross section for e+e-annihilation 

is a total1y incIlIsive qllantity， free from ambigllities inherent to hadronization， and is the best 

place to determineαs. Unfortllnately， as seen in Pig.5， a portion sensitive toαs is only a smal1 
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depending on the analysis method， so that it is desirable to analyze data at sufficiently differcnt 

energies (at PEPjPETRA， TRISTAN at~d LEP) with the same and as many methods as 

possible. Such efforts are going on. 
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As a local non-abelian gauge theory, QCD requires the gluon to be color charged. A 
key phenomenon arising from this basic property is the existence of the gluon self-coupling (or 
the triple gluon coupling) at tree level. In e+e" interactions, it should first "appear in 4-parton 
final states as shown in Fig. 16. 

(!>) ( b ) ( c ) 

Fig. 16 4-p;irion production processes. 

As can be seen from Fig. 13, the 4-jet rate is only about \% of total. To be sensitive to the 
diagram d), TRISTAN experiments made use of the difference in spin structure of GGG and 
Gqq vertices that leads to different angular correlations among jet axes. The result of such 
study proved QCD prediction to O(ocs

2) and gave the first evidence for the gluon self-coupling. 
Behind the asymptotic freedom experimentally verified as in Fig. 14 lies this colored gluon. 
Effective antiscreening of color charge implies a limited number (16 or less) of the quark 
flavors. 

It is mentioned here that these studies on the fundamental laws of QCD would have been 
easier if the topponium had been in the present e+e~ collider's reach. In the planning stage of 
experiment at TRISTAN, the triplet lS-slate of the topponiutn had been expected to act as the 
most efficient gluon factory ; in contrast to the case with quark-pair production, the triple gluon 
coupling would dominate the final state of the topponium decay in the next to leading order, and 
the 3-gluon decay would allow a clean measurement of as. But, the top would have ended up 
being just one of many. 

The gluon was shown to be color charged as predicted by QCD. With a larger color 
factor expected for gluons than quarks, results of their fragmentation should be different, such 
that the gluon fragments into more particles. Stusies in the past were not conclusive, but recent 

results support the expectation that the 
gluon jet is softer13. At TRISTAN, 
comparisons were made of energy 
concentration near a jet core, rapidity of 
leading particles and more recently particle 
momentum spectrum. The latest case 
selected three-fold symmetric 3-jet events 
(qqG) and 2-jet plus a hard photon events 
(qqy) in the same three-fold symmetry at 
the same collision energy (Fig. 17). ro^~ 

MARK-II 
<Ej>~9.7GeV 

TASSO 
<Ej>~HGeV 

VENUS 
<Ej>~l9GtfV 

OPAL 
<Ej>~245GeV 

Fig.17 Methods of studying differences in 
quark and gluon jets. 
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Only assumptions are that one of the 3 j'ets be of a gluon origin and that the qq-system behave 
similarly both in qqG and qqy environments. The second assumption was checked with Monte 
Carlo method. The particle momentum spectrum derived from a statistical comparison of the 
two types of events clearly verified the prediction that the gluon jet is softer than the quark, jet of 
the same energy. As a result, a consistent result has been obtained for the average jet energies 
of 10, 20 and 25 GeV. 

The two-photon physics has recently become one of the important issues at TRISTAN, 
in that the QCD aspects of interacting photons can be studied beyond the tree level. While 
single-tag events mostly probe quark content of the photon, no-tag events significantly include 
hard interactions of partons from low-Q2 photons and tend to result in multiple jets14. This 
process is depicted in Fig. 18. 

Spectator jet 

r 
Fig.18 Mulliplc-jcl production by hard parton 

interactions in low-Q2 iwo-photon 

processes 

The first clear experimental evidence for this "resolved photon process" was obtained at 
TRISTAN. Recent experiments at the HERA ep collider also begin to see it15. 
The study of jet production in two-photon process thus serves to elucidate low-x parton 

distribution in the photon. One of such data is 
shown in Fig. 19. 

Fi(;.19 Inclusive P t distributions of single and double 

jets in two photon process. Symbols for 

individual curves represent specific photon 

structure functions. 

5 6 
P, (GeV) 

The resolved photon process in Fig. 18 is a new source of high Pt jets in high energy e+e~ 
interactions. These jets (called the mini-jets) were suspected to give huge background at future 
linear collider. Fortunately, the TRISTAN data such as shown in Fig.19 ruled out the 
possibility of large gluon content at moderate x and thus the mini-jets do not seem to jeopardize 
experiment at the next linear collider. 

Charmed quark production in two photon process (Fig.20) is also under intensive study 
at TRISTAN. It is being studied with two methods ; one is to reconstruct D* mesons through 
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their DJC decays and the other is through inclusive electron production. The second method will 
allow higher event statistics, but requires very good electron identification. Invariant masses of 
hadronic states of accepted events are large enough to avoid complicated threshold effects. A 
first glimpse of preliminary results shown in Fig.21 showed consistency of two analyses and, 
at the same time, found the cross sections larger than theoretically expected. See R. Enomoto16 

for discussion. 

Ffg.2() Charmed quark production proscsscs. 
J00 

Fij>.21 Very preliminary data on D* lolal 
cross section. The analyses arc 
being considerably refined. 

«0 70 

5. Conclusion 
Next "Workshop on TRISTAN Physics" will be held on Nov. 25 and 26, 1993. 
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Conclusion 

Next "Workshop 011 TRISTAN Physics" wi11 bc hcld on Nov. 25 and 26， 1993. 
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