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ABSTRACT=With the advent of ever more powerful computing and finite element analysis 
(FEA) capabilities, the bone and joint geometry detail available from either commercial 
surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of 
joints, precise articular contours are necessary to get appropriate contact definition. In this 
project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then 
scanned with an industrial CT system to generate a high resolution data set for use in 
biomechanics modeling. 
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TEXT=1. INTRODUCTION: 
Lawrence Livermore National Laboratory (LLNL) has been a leader in development of 
large-displacement, dynamic finite element analysis for application to defense systems. 
Recently, work has begun applying these codes (especiallly NIKE3D1 and DYNA3D2) to 
biomechanical systems. Geometries of the anatomy are available in the form of medical CT 
scans or bone surface coordinates3. Because of the constraint of radiation exposure to 
patients, voxel size has not been fine enough to precisely define the soft tissue of ligaments 
or the articular surface of joints for contact problems in finite element analysis. Strategies 
that acquire surface data by progressive dissection are by their nature limited in definition of 
internal structure. Tofedequately define both bone and soft tissue geometries, another 
source for anatomical data had to be found. 

There is also a great wealth of experience and expertise at LLNL in the field of 
Nondestructive Testing4,5,6. CT scans are one of the many forms of industrial 
radiography employed in defense applications?,8,9,10,11,12. If radiation dosage were 
not a consideration (as it is not in industrial applications), a major constraint would be lifted 
in obtaining a high resolution CT data set for geometries. Hence, it was decided to scan a 
fresh (previously frozen, but not fixed) archival cadaver limb. 

2. METHODS: 
The archived hand and forearm of a middle-aged white female were obtained from the 
Office of the Northern California Curator, via the Orthopaedic Biomechanics Instutite of 
Salt Lake City. The extremity was thawed and then immediately immobilized in parafin in 
a six inch diameter lucite cylinder so that it could be attached to a stage for scanning. 

Projection data sets were acquired with an industrial CT system that employs a scintillator. 
The scintillator was viewed by a 14-bit CCD coupled with a mirror and transmission 
optics. Seven hundred twenty projection views over 360 degrees were acquired, each 
consisting of 1020 by 1020 pixels. The data was reconstructed into equilateral voxels of 
142 micrometer dimension using a convolution back-projection algorithm and standard rho 
(ramp) filtering. 

The x-ray source employed for this work was a conventional industrial x-ray tube with a 
tungsten anode operated at 100 kV constant potential. No x-ray filtering was employed. 
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3. RESULTS: 
Contrast sensitivity on the CT images clearly resolves soft tissue from bone and cartilage, 
as well as fine structural detail in the trabecular bone. The skin/parafin interface is clearly 
resolved. 

4. DISCUSSION: 
The CT scans of the extremity that were obtained have more than met the expectations of 
the finite element analysts in providing a data set of appropriate detail for defining articular 
surface geometries and bone internal structural detail. The use of a fresh-frozen, thawed 
extremity provides minimal distortion from in vivo anatomy; the anatomy is far closer to in 
vivo than a fixed specimen would be, with the shrinkage in ligaments and cartilage that 
results from processing. 

Parafin proved to be a less than ideal support material because of the diifficulty in managing 
hot parafin, and the propensity to form air voids when cooling. Fortunately, the voids do 
not directly impinge on the extremity, so do not degrade any of the surface geometries. 

5. CONCLUSIONS: 
Industrial CT systems can provide a level of detail for anatomical structure that is not 
available from medical CT scanners because of constraints to limit radiation to living tissue. 
When scanning time and radiation dose are not determining factors, much higher quality 
images can be produced. Thus, a new research tool is provided by scanning archival 
cadaveric material with industrial CT. 

Future plans in CT development are to characterize our system with regard to x-ray and 
light scatter. Also, it is planned to reduce x-ray scatter effects by employing a low density 
foam support material in place of parafin in the container and by using suitable pre-
collimation and filtering. It is also planned to perform the reconstruction with a cone beam 
algorithml3. '<, 

Near future plans also include scanning lower extremities and spine segments. 
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