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1. Introduciion.

We share today's widespread opinion that Standard Quantum
Mechanics (SQM), in spite of its enormous successes, has failed in giving a
satisfactory picture of the world, as we perceive it. The difficulties about
the conceptual foundations of the theory arising, as is well known, from
the so-called objectification problem, have stimulated various attempts to
overcome them. Among these one should mention the search for a
deterministic completion of the theory, the many vorlds and many minds
intepretations, the so called environment induced superselection rules, the
quantum histories approach and the dynamical reduction program. In this
paper we will focus our attention on the only available and precisely
formulated examples of a deterministic completion and of a stochastic and
nonlinear modification of SQM, i.e., Bohm's theory and the spontaneous
reduction models, respectively. It is useful to stress that while the first
theory is fully equivalent, from a predictive point of view, to SQM, the
second one qualifies itself as a rival of SQM but with empirical divergence
so small that it can claim all the same experimental support. Accordingly,
they represent explicit answers to the conclusion reached by Bell (Bell
1987, 41) that either the wavefunction as given by the Schriédinger
equation is not everything or it is not right.

The specific purpose of this work is to compare the two just
mentioned theoretical schemes with reference to their formal structure,
their conceptual implications and the position they allow onée to take about
physical reality. As we will see, while there are similarities (typically the
privileged role assigned to positions) there are relevant differences
(particularly with reference to the non local characteristics) between the
two theories. .

Section 2 is devoted to a sketchy description of the hidden variable
program and of Bohm’s pilot wave theory. Section 3 recalls the main



features of the dynamical reduction models. In Section 4 we begin
comparing the two thearies with reference to their formal structure. In
Section 5 we will be mainly concerned with the problem of describing
physical reality. Section 6 deals with the classical and nonclassical
features of the theories under examination, while Section 7 is devoted to
discuss their nonlocal aspects and the ensuing implications for a
relativistic program.

2. Hidden Variables and Bohm’s Theory.

The hidden variables program consists in an attempt to make
epistemic the nonepistemic probabilities of SQM, by introducing, to
describe individual systems, parameters which have to be added to or
which replace the wave function in such a way that the resulting theory is
fully deterministic. As is well known any theory of this type meets some
difficulties in connection with the problem of attributing objective
properties to individual physical systems due to the unavoidable
contextual nature of some physical quantities.

The basic principles of the pilot wave theory (Bohm 1952, 165, 180;
Bohm and Hiley, 1984, 255) can be summarized as follows:

1. The wave function does not give a complete characterization of the state
of a physical system. In Bohmian mechanics one adds to it further
variables i.e. the positions of all the particles of the system under
consideration. Such parameters (which are the hidden variables of the
theory) correspond to properties actually possessed by the constituents.
Thus, any particle has a definite position at any time even though the
wavefunction is not a position eigenstate and particles associated to the
same wavefunction can have different posjtions.

2. The evolution of the wave function is governed by the linear

Schrédinger equation in all instances, in particular collapses never occur.

3. Position variables evolve according to a deterministic evolution
equation, the dynamics at a given point and at a given time depending on
the wave function evaluated at the considered point.

The ontology of the theory is quite simple: there are particles
moving along precise trajectories q,(t) and, in addition to them, there is a
reallll entity, the wave function ¥(g,.....qu,t). The evolution is governed
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by two fundamental equations. First of all, as already stated, there is the
Schrédinger equation

., d¥ n
T LI S S NN Y
ih = [ E‘ 5 IAI + V¥ (2.1)

and secondly, there is Bohm's equation for the position variables:
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dt  2mji 1W(q,.....q. I

1.

(2.2)

The right band side of this equation is the ratio between the probability
current and the probability density of SQM, evaluated at the point
q=(q,.....qy) of the 3N-dimensional configuration space. The specification
of the initial conditions requires to assign the wavefunction ¥(q,.....q,.0),
and the positions of all particles q,(0)=q°, (i=1,...N) at time t=0. The
trajectories of the particles are obtained by first solving Eq.(2.1), inserting
the solution in Egs. (2.2), and solving these equations with the assigned
initial values.

Obviously, when we perform a preparation procedure of the SQM-
type (such procedures are the only ones which can be performed), we have
no way to control the positions of the particles. It is assumed that after the
preparation such positions turn out to be distributed!“! in accordance with
the SQM probability density I'¥(q,.....q,.0). The very nice feature of the
formalism is that, as a consequence of the evolution equation, the
probability density of the positions of the particles at time t turns out to
coincide with I'¥(q,,...,q.1). This is the precise sense in which Bohmian
mechanics can be considered as empirically equivalent to SQM. The
measurement processes are described within the scheine without resorting
to any additional assumption, and the pointer of the apparatus ends up in
a definite position identifying the outcome obtained.

3. The Dynamical Reduction Program.

As already mentioned, genuinely Hilbert space models have
recently been presented which, by considering nonlinear and stochastic
modifications of Schrédinger's dynamics imply, without entailing any
violation of established experimental facts, wave packet reduction with
fixed pointer positions in measurement processes and, more generally,



forbid the persistence of linear superpositions of macroscopically
distinguishable states.

3.a. Quantum Mechanics with Spontaneous Localizations.

We begin by discussing a slightly modified version (in which mass
has a privileged role) of the first and simplest model of this kind (Ghirardi,
Rimini and Weber 1986, 470), Quantum Mechanics with Spontaneous
Localization (QMSL). The model is based on the assumption that, besides
the standard evolution, physical systems are subjected to spontaneous
localizations occurring at random times and affecting their elementary
constituents. Such processes, which we will call "hittings", are formally
described in the following way.

We consider a system of N particles. We suppose that when the i-th
particle of the system suffers a localization the wave function changes
according to

W(ry,...,Ty) 2 W (1, 1) = B (ry,., 0 || D]
“Z(r,-x? . (3'1)
O (ry,....ry)=@/m)¥e " W¥(r,..ry)

The probability density of the process occurring at point x is given by
IId,IF . For what concerns the temporal features of the processes we
assume that the hittings for the various particles occur independently and
at randomly distributed times with a mean frequency A, which depends
on the mass of the considered particle. We choose 1, =mﬂl, where m is
[}
the mass of the particle, m, is the nucleon mass and 2 is of the order of
107 sec™!. Th~ localization parameter 1/No is assumed to take the value
10-5 em.

Let a macroscopic system be in a state |¥ >=|¥, > +|¥, > which is a
superposition of two states |¥, > and |¥, > in which a certain number of
particles are in different positions. When one of these particles suffers a
hitting that localizes it in the position corresponding to the state |V, >
(J¥, >), the other term of the superposition is exponentially suppressed.
Therefore, the macroscopic system jumps either to the state |V, > or to
|¥, > every time one of the particles differently located in the two states
suffers a hitting. This implies that the frequency leading to the
suppression of the coherence between the two states increases
proportionally to the masses which are displaced.

The QMSL mechanism does not respect the symmetry properties of
the wave function in the case of identical constituents. Its generalization
satisfying such a requirement, the Continuous Spontaneous Localizations
Model (CSL), has been presented and discussed in various papers (Pearle
1989, 2277; Ghirardi, Pearle and Rimini 1990, 78; Ghirardi and Rimini
1990, 167).

3.b. The CSL Model. ‘ .

The model is based on a linear stochastic evolution equation for the
statevector. The evolution does not preserve the norm but only the average
value of the squared norm. The equation is:

(“L(‘;t(t)—>=l—%H+2A,w,(t)—72A,2]|‘i‘w(t)>. (3.2)
il 1 |}

In eq. (3.2), the quantities wji(t) are c-number Gaussian stochastic
processes satisfying

<<wi(t)>>=0, <<w(t)w;j(t)>>= v§;;8(t-t'), 3.3

while the quantities A; are commuting self-adjoint operators. Let us
assume, for the moment, that these operators have a purely discrete
spectrum and let us denote by Ps the projection operators on their
common eigenmanifolds.

The physical meaning of the model is made precise by the following
prescription: if a homogeneous ensemble (pure case; at the initial time t=0
is associated to the statevector |‘¥,0>, then the ensemble at time t is the
union of homogeneous ensembles associated with the normalized vectors
¥, (1) > /MY, (1) >, where |¥,(t)> is the solution of eq.(3.2) with the
assigned initial conditions and for the specific stochastic process w which
has occurred in the interval (0,t). The probability density for such a
subensemble is the "cooked one", i.e. it is given by:

Pegok[W] = PRraw WY, (1) I, (3.4)

where we have denoted by Pgp,w[w] the “raw" probability density
associated, according to eq. (3.3), to the Gaussian process w in the interval
(0,t), i.e.,:
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Ppo (W] = %e , (3.5)

N being a normalization factor.

One can prove that the map from the initial ensemble to the final
. ensemble obeys tiie forward time translation semigroup composition law.
It is also easy to prove that the evolution, at the ensemble level, is
governed by the dynamical equation for the statistical operator

L0 2 ip(H,HI+YZ, Ap(DA, - LT A% pco), 3.6)
from which one immediately sees that, if one disregards the Hamiltonian
evolution, the off-diagonal elements Pyp(t)P; (0#7) of the statistical
operator are exponentially damped.

For our concerns, the relevant feature of the dynamical process (3.2)
with the prescription (3.4) is that it drives the statevector of each
individual member of the ensemble into one of the common eigenmanifolds
of the operators A;, with the appropriate probability. To make this clear,
we consider (Pearle 1989, 2277) a simplified case in which only one
operator A appears in eq. (3.2). The solution of this equation corresponding
to the particular initial condition (involving only two eigenmanifolds of A
with eigenvalues o,)

|'P,0> = P;,] \¥,0> +Pg | '¥,0>, 3.7
when the Hamiltonian is disregarded, is3! :

[Wy (1) >= eV P 9,0 > +e* ¥V P |y 0 5. (3.8)
Here B(t) is the Brownian process

B(t) = [drw(x). (3.9)

Taking into account eq.(3.8) and the cooking prescription, one gets
the cooked probability density for the value B(t) of the Brownian process at
time t:

! 2
1 -E'(B(l)-laﬁl
[

P [B(D] = Py [BOOIIY (1) SIF =HP_ 1,0 >I?
(3.10)

1B, 0 i L T
+ 051 ———e 2
b Pyt

From (3.10) it is evident that for t—e, the Brownian process B(t) can
assume only values belonging to an interval of width \[ﬁ aroundl4! either

the value 2ayt or the value 2Byt. The corresponding probabilities are
IP1'¥,0 5117 and IIP,I'P.0 >I1?, respectively. The occurrence of a value near to
20yt for the random variable B(t) leads, according to eq.(3.8), to a state
vector that, for t—eo, lies in the eigenmanifold corresponding to the
eigenvalue a of A. In fact, one gets:

UPI¥a ) SIE g PGP0 5]
TACAGE IP.Iw,05F = " .11

Analogously, when the random variable B(t) takes a value near to 2pyt, for
t—eo, the state vector is driven into the eigenmanifold corresponding to the
eigenvalue B of A.

It is then clear that the model establishes a one-to-one
correspondence between the "outcome" (the final "preferred” eigenmanifold
into which an individual statevector is driven) and the specific value
(among the only ones having an appreciable probability) taken by B(t) for
t—eo, a correspondence irrespective of what |',0> is, provided only that it
has non-zero amplitudes for the two considered eigenmanifolds. In the
general case of several operators A;, a similar conclusion holds for the
"outcomes” o; of A; and the corresponding Brownian processes Bj(t).

This concludes the exposition of the general structure of the CSL
model. Obviously, to give a physical content to the theory one must choose
the so-called preferred basis, i.e. the eigenmanifolds on which reduction
takes place or, equivalently, the set of commuting operators A;. The
specific form that has been shown to possess all the desired features has
been presented in (Pearle 1989, 2277; Ghirardi, Pearle and Rimini 1990,
78). Recently various considerations have led to a slightly modified version
making the mass to play a specific role (Pearle and Squires 1994, 1;
Ghirardi, Grassi and Benatti 1995, 5). In this version one identifies the
discrete index i and the operators A; of the above formulae with the

continuous index r and the operator



M(r)=Y m“N*'(r), (3.12)
k

where m'®

is the mass of the particles of type k and N'*'(r) are the
number density operators giving the average density of particles of type k

in a volume of about 10-15 ¢cm3 around the point r:

: et
Nm‘”z['z%]-ZJ doe 2" 2" (@920, (0.9). (3.13)

Here a,,"(q.s) and a,(q,s) are the creation and annihilation operators of a
particle of type (k) at point q with spin component s, satisfying the
canonical commutation or anticommutation relations. Correspondingly
one has a continuous family of stochastic Gaussian processes satisfying:

<<w(r,t)>>=0, <<w(r,tw(r,t)>>= r—;%a(r-r')a(t-t'). (3.14)
0

In the above formula m, is the nucleon mass, the parameter a is assumed

to take the same value (1010 cm2) as in the case of QMSL and yis related
to the frequency A=10-16sec"1 of that model according to y=A(4/a)}¥/2. With
the above choices the theory exhibits the same features of standard CSL
.concerning the localization of nucleons. Obviously also other massive
particles suffer localizations but with a rate depending on their masses.
The nonhamiltonian terms in the dynamical equation lead to the
objectification of position variables.

4. A first corﬁparison of the two approaches.

In this and in the following section we will be interested in
comparing the two theories, in particular by taking into account their
formal structure, their achievements and the position they allow one to
take with respect to the .descriptionAof the world around us. As we will see
there are deep and interesting analogies as well as remarkable differences
concerning all the above mentioned points.

Bohm's theory, as already mentioned, assigns an absolutely
prominent role to the positions of the particles of which the physical
system under consideration is made up. These positions evolve in time
according to the precise equations (2.1) and (2.2) which uniquely

determine, once the initial configuration is specified by the assignement of
q and ¥(q,0), the positions at all subsequent times. The quantum
mechanical wave function, evolving according to the Schrodinger equation
at all times and under all circumstances (so, no reduction ever takes
place), enters the game only to the extent that it determines the particle
trajectories. Such trajectories are such as to reproduce at all times the
quantum distribution of the outcomes of position measurements on the
particles themselves. Thus Bohm's theory can be considered in a very
specific sense as "predictively equivalent” to SQM since it yields the same
statistical predictions. On the other hand, it is a different theory with a
precise conceptual status quite at variance with the une of SQM in all its
interpretations. In particular, the theory is completely deterministic and
fully reversible at the fundamental level. The positions of all particles of
the universe and its wave function are uniquely detcrmined at any time
given their values at an earlier time. ’ :

The quantum probabilities characterizing SQM which within such a
scheme have a nonepistemic nature, acquire an epistemic status: they
derive from lack of knowledge, ignorance, and not from any irreducible
element of chance in the laws of nature. Obviously, such ignorance plays a
fundamental role and has to be accepted as a matter of principle. In fact,
would the epistemic uncertainty turn out to be controllable, one could
easily prepare statistical ensembles violating the statistical predictions of
SQM. But what we cannot control and thus we are doomed to ignore
concerns a certain intelligible and precise feature of the world and not an
unspecified element of chance characterizing it.

On the contrary, dynamical reduction theories, which assume that
the wave function represents the most exhaustive, the complete
specification of an individual physical system, accept that genuine chance
rules natural processes. The wave function does not evolve according to
the linear, deterministic and reversible laws of SQM bhut obeys a modified
equation obtained by including stochastic and nonlinear terms yielding a
fundamentally irreversible behaviour. As a consequence the statistical
predictions of dynamical reduction theories differ from those of SQM.
Obviously the discrepancies are such not to contradict any known fact
about physical processes. The irreversible nature of the evolution implies
an energy increase even for isolated systems, so that the theory has an
arrow of time built in its very grounds.

It has to be stressed that, in spite of the fact that in the theory, as
well as in SQM, there is nothing but the wave function (Bell 1987, 41), the
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nonlinear and stochastic modifications of the standard evolution assign to
positions an absolutely privileged role. This is a feature which is shared by
both theories we are comparing. As it has been discussed many times, and
as it should be obvious from a general point of view, if one tries to induce
the objectification of macroscopic properties in a dynamical way, one has
to make a precise choice about which macroproperties have to become
objective (the so called problem of the preferred basis). At the macrolevel
the choice of the positions is quite a natural one (we recall Einstein's
statement (Born 1971, 223) that a macro-body must always have a quasi-
sharply defined position in the objective description of reality). Detailed
investigations (Ghirardi, Rimini and Weber 1986, 470) have shown that,
within a conceptual framework like the one of the dynamical reduction
theories, the only way of inducing precisely such a type of macro-
objectification by a fundamental universal dynamics, consists in assuming
that the same variables, i.e. positions, are, with extremely low
probabilities, objectified also at the microscopic level. Moreover it has also
been possible to prove (Benatti, Ghirardi, Rimini and Weber 1988, 333)
that processes objectifying other microproperties do not lead to the desired
amplification mechanism.

5. How physical reality is described.

We take a very simple position about science. A scientific theory is a
conceptual scheme dealing with formal elements which are supposed to
embody some information about something existing and to account for the
physical processes which take place “out there”. Among these processes
there are experiments performed by observers and also what have been
called measurement-like events which we are obliged to admit are going on
more or less all the time, more or less everywhere (Bell 1990, 17).

To be something more than a simple list of facts and to allow one to
go beyond a purely instrumentalistic position, i.e. to explain rather than
simply to describe, a theory must be supplemented with some sort of
interpretation. We are interested in interpretations which allow one to
make claims about properties related to specific variables, possessed by
individual physical systems. With reference to this crucial point, which is
the core of the debate about the foundations of quantum mechanics, we
start by making precise the statement that such properties are objective.

Definition: we will claim that a property corresponding to a value (a
range of values) of a certain variable in a given theory is objectively
possessed or accessible when, according to the predictions of that theory,
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there is an experiment (or a physical process) yielding reliable information
about the variable that would, if performed (or taking place), give an
outcome corresponding to the claimed valuel8). Thus, the crucial feature
characterizing accessibility (as far as statements about individual physical
systems are concerned) is the matching of the claims and the outcomes of
physical processes testing the claims.

5.a. Hidden variables and Bohm theory.

Historically, the search for hidden variable theories has been
motivated by the desire of getting a classical picture of the world
compatible with what had been discovered about microscopic systems. In
this spirit it was required that in the case of an individual physical system
to any observable of the theory corresponds an objectively possessed
property in the above sense. The Gleason theorem (Gleason 1957, 885) and
the Kochen and Specker analysis (Kochen and Specker 1967, 59) have
made clear that such a program cannot be consistently pursued. In
particular, it has been shown that there exist at least one (actually
infinitely many) non maximal observable A which turns out to be a
function, in the Dirac sense, of two maximal noncommuting observables
(A=f(B), A=g(C)), such that fib)g(c), where b and c are the values assigned
to the observables B and C, respectively, given the state of the system.

In spite of the above remarks one can build up dcterministic hidden
variable theories predictively equivalent to SQM provided one accepts the
contextual nature of some observables i.e. the fact that the complete
specification of the state assigns a definite truth value to a proposition
only relative to a specified context. In particular, as strcssed by Bell, if one
follows this line, one has to accept that the outcome of the measurement of
a nonmaximal observable might depend on which other observable
compatible with it is actually measured on the system (Bell 1966, 447).
From the previous discussion it should be obvious that, in general,
properties referring to contextual observables cannot be objectively
possessed!6l, After these general considerations we can analyze this
problem within Bohm's theory. . . .

Suppose one wants to claim that to any obsecrvable a definite
property corresponds at all times. Let us consider a particle in one
dimension and its momentum variable p.

a). If one would try to take a “classical” attitude, one could be tempted to
identify the value of the momentum with mq. This cannot be consistently

11



done. In fact, let the system be described, at t=0, by the non normalizable
state corresponding to the wave function:

B3 _ Red
L]

_.]_/ “n
¥Y(q.,0)= zm\e +e ). (5.1)

Since ¥(q.0) is real, according to Eq.(2.2) 4(0) =0 (independently from its
actual ‘position), for any particle of the ensemble associated to the
considered state. Then, at t=0, the momentum of all particles would have
the value p(0)=mq(0)=0. On the other hand, if one would perform a
measurement of the momentum of the particles of the ensemble, one
would find, according to the predictions of the theory, either the value +p,
or the value -p,. Therefore, one can conclude that there is no measurement
procedure of the momentum leading to a distribution of outcomes agreeing
with the one ot mq as given by Bohm's theory.

b). It is important to stress that, within the theory we are discussing,
there are various measurement procedures of the momentum whose
outcomes reproduce the quantum predictions. With reference to the
previous situation, let us take into account a measurement like process in
which the particle under consideration interacts with another particle
acting as a measurement device for the momentum. This second particle
(the pointer of the apparatus), whose position variable will be denoted as
Q, before the interaction takes place is associated to a wave function which
is very well localized around Q=0 (the "ready state" of the pointer).
Accordingly, the state of the system of the two particles at the initial time
t=0 is:

1 1 Y4 B8 _Pd P
W(q,Q_0)=7m(;) € e 1, (5.2)

The evolution during the measurement time interval (0,1) is governed by
the interaction hamiltonian

H=cpP (5.3)

where ¢ is an appropriate coupling constant which can take positive or
negative values at the experimenter's whim, and P is the momentum
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conjugate fo Q. Disregarding the kinetic energy terms, the wavefunction
associated to the composite system at time t € (0,1) is:

VAN /R WO SN - B PO
1 ("] € e 2T Lo T (5.4)

Y@Qu=57511

The final pointer position will be centered around either +cp,t or -cp,t. In
order that the measurement outcome be reliable the condition n(ep,t)’ >> 1
must be satisfied. Obviously, when ¢>0, we will attibute to the momentum
of the measured particie the value +p, if the pointer particle is, at the end

of the process, on the positive real Q-semiaxis, while we will attribute the
value - p, if it is on the negative semiaxis. If the experimenter changes the
sign of the coupling constant c, the opposite association of the outcomes of
the measurement to the position of the pointer must be made. No matter
which choice is made, the considered measurement. procedure gives a
distribution of outcomes agreeing with the quantum mechanical one.

c). It is important to stress and easy to show that for any definite initial
position of the measured particle (i.e. for any given value of the hidden
variable) one can get different outcomes depending on the specific
measurement procedure which is used. To see this, with reference to our
case one has simply to take into account that simmetry considerations
imply that the "pointer particle" cannot cross the origin. Thus, if it is on
the positive semiaxis at t=0, it will be shifted by a positive quantity of the
order of lcip,t independently from the sign of ¢. This shows that the
outcome of the momentum measurement on the tested particle depends on
the measurement set-upl?l. Therefore, in Bohm's theory, the momentum
variable is contextual and, consequently, no objectively possessed property
corresponding to such variable can be attributed to the particle.

To conclude this subsection we remark that the only consistent
attitude one can take about properties within Bohmian mechanics is that
of limiting his considerations to what Bell (Bell 1981, 611) has called the
exposed beables of the theory, i.e. the position variables. Since such
variables are noncontextual, their values are accessible according to our
previous definition. Obviously, within such a scheme, one has to give the
status of a beable of the theory also to the wave function since it
determines the evolution of the noncontextual exposed beables.

13



5.b. CSL, preliminary considerations.

We now discuss an analogous problem within the CSL theory. To
this purpose it is useful to devote some time to present a recently proposed
interpretation for such a theory (Ghirardi, Grassi and Benatti 1995, 5) and
to expouse the reasons which have motivated such a choice. We start by
pointing out the inappropriateness of the Hilbert space topology to

_ describe the concept of similarity or difference of two macroscopic states.

In fact, suppose a physicdl system S is an almost rigid body and let us
consider the following three states: 19* >, 19® > and 19* >. The state I¢p* >
corresponds to a definite internal state of S and to its centre of mass being
well localized around A, the state |¢® > is simply the displaced of l9p* > so
that it is well localized in a far region B, the state 1p* > differs from lp* >
simply by the fact that one or a microscopic number of its "constituents”
are in states which are orthogonal to the corresponding ones in 19* >.

It is obvious that, under any reasonable assumption about
similarity or difference of the states of the universe, 1§* > must be
considered very close (identical) to 19* > while I¢® > must be considered
very different from I¢* >. On the other hand, according to the Hilbert
space topology

li(ip* > —1§* >)lI=l(ip* > ~1g® >)i= 2. (5.5)

This shows with striking evidence that the Hilbert space topology is
totally inadequate for the description of the macroscopic world. Within
CSL, as we will show in Subsection 5d, taking advantage of its dynamical
features it becomes possible to overcome the now mentioned difficulty by
introducing an appropriate topology.

To pursue our analysis, let S be a physical system which constitutes
our universe, and let H(S) be its associated Hilbert space. Let us make an
attemnpt to describe the physical reality of what exists out there by giving
the status of exposed beables to the mean values of the average (over the
characteristic volume of CSL) mass density operator (3.12):

M(r,t) = <¥() | M (1) | ¥(t)>. (5.6}

If one assumes, as one can consistently do within a nen relativistic
quantum framework, that the system S contains a fixed and finite number
of particles, Eq. (5.6) establishes, for a given t, a mapping of the unit
sphere of H(S) into the space of positive and bounded functions of r.

14

A question naturally arises: within the conceptual framework we
are interested in does M(r,t) represent an objectively possessed property of
physical systems? Before answering this question a digression and a
comparison with the case of SQM are appropriate.

The map (5.6) is obviously many to one. To better focus on this point
as well as for future purposes let us consider a physical system consisting
of a very large number N of particles, two space regions A and B with
spherical shape and radius R and two possible statevectors I¥? > and
I¥® > of its Hilbert space. The state I'*® > is the linear superposition, with
equal amplitudes, of twa states I'¥4 > and 'V}, > in which the N particles
are well localized with respect to the characteristic length (10-5 e¢m) of the
model and uniformly distributed in regions A and B, respectively, in such
a way that the density turns out to be of the order of 1 gr/fem3. On the
other hand, 1¥*® > is the tensor product of two states 1}, > and 10}, >
corresponding to N/2 particles being uniformly distributed in region A and
N/2 in region B, respectively:

YO 5= -\;—E{I‘P; >HYE>), WP >=1dh, > ®IdY,, >. (5.7

It is trivially seen that the two considered states give rise to the same
function M(r).

Let us now investigate the status of the quantity M(r) within SQM.
1t is quite obvious that in the case of I'¥® >, M(r) cannot be considered as
an "accessible” mass density function. To see this, let us suppose that one
can use quantum mechanics to describe the gravitational interaction
between massive bodies and let us consider the following gedanken
experiment: a test mass is sent through the middle point of the line joining
the centres of regions A and B with its momentum orthogonal to it. In the
case of the state I'¥®> for the system of the N particles quantum
mechanics predicts that the test particle will not be deflected. On the other
hand, if the same test is performed when the state is I'W} > (I'¥]>),
quantum mechanics predicts an upward (downward) deviation of the test
particle. Due to the linear nature of the theory this implies that if one
would be able to prepare the state I'¥® > the final state vsould be

6 >=71_5[I‘*‘§ > @1p” > +WE > @I9™ >}, (5.8)
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with obvious meaning of the symbols. If one includes the test particle into
the "universe" and considers the mass density operator in regions
corresponding to the wave packets 19" > and [$°®*™ >, one discovers that
nowhere in the universe is there a density corresponding to the density of
the test particle. In a sense, if one would insist in giving a meaning to the
density function he would be led to conclude that the particle has been
split by the interaction into two pieces of half its density so that the test
has not a definite outcome. According to our criterion this proves clearly
that the mass density distribution M(r) in the case of the state I1¥® > is
manifestly nonaccessible.

5.c. CSL and accessible reality.

Coming back to CSL, it should be obvious that the situation is
radically different from the one in SQM since such a theory does not allow
the persistence for more than a split second of states like I'¥® > which are
those giving rise to the measurement problem.

To analyze this point it is useful to introduce a precise
mathematical criterion emboding, for the mass density function, the
accessibility request put forward at the beginning of this Section. To this
purpose, let us consider the mass density variance at r at time t defined by
the following map from the unit sphere of H(S) into R° :

V(r,t) = < POIM(r)- < POIMEIP) >TIP(L) >, (5.9)
We consider the ratio

R2(r,t)=V(r tYM2Ar,t), (5.10)
and we claim that at time t the mass density at point r is accessible if:
R(r,t)<<1.. (5.11)

This criterion is clearly reminiscent of the probabilistic interpretation of
the statevector in standard quantum mechanics. Actually, within such a
theory, Eq.(5.11) corresponds to the fact that the spread of the operator
M(r) is much smaller than its mean value. Even though we take a
completely different attitude with respect to the mean value of M(r), it
turns out to be useful to adopt the above criterion also within the new
context. In fact, as we will discuss in what follows, when one has a space
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region such that for all its points relation (5.11) holds, all reliable tests
aimed to ascertain the mass density value give outcomes corresponding to
M(r).

With reference to the previous example we stress that in the case of
I¥® > all points within regions A and B are such that criterion (5.11) is
very well satisfied. In the case of I'¥® > for the same points one would
have:

2

M(r)sgmo. V(r)= %'—mf, ©(512)

where d represents the average density in a volume of 10-15 ¢m3 around r.
There follows

R(r)=1, (5.13)

so that, as expected, the average mass density in regions A and B is
nonobjective.

Obviously for a microsystem, unless its wavefunction is localized
better than 10-5 cm, its average mass density turns out to be nonaccessible
at almost all times since CSL does not forbid superpositions of arbitrarily
far apart states. This fact does not constitute a difficulty for the proposed
interpretation, on the contrary, it embodies the fact that nature has
compelled us to allow electrons (in general microsystems) to enjoy the
cloudiness of waves, while our experience of the world requires tables and
chairs and ourselves, and black marks on photograph to be rather
definitely in one place rather than another and to be described in classical
terms (Bell 1986, 11). The possible nonaccessibility of the mass density
distribution does not entail that it is not real. Actually even regions in
which the mass density is non accessible according to our mathematical
criterion may piay an important physical rolel8! . We point out that the
requests of being able to speak, within a context like the one of CSL
leading to objectification at the macroscopic level, of objectively possessed
properties and of introducing an appropriate topology to describe
similarity and difference of macroscopic situations, has led us to consider
"two levels of reality”. The attribution of a real status to M(r) even when it
is not accessible does not give rise to the difficulties one meets when one
tries to interpret the wavefunction as giving the charge or the mass
density of the elementary coiistituents of nature. Actually this corresponds
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to plainly accept the well known fact that however far the wavefunction
has extended, the reaction of a detector ... remeains spotty (Bell 1990, 17).

5.d. The appropriate topology for the CSL Model.

Let us denote by 745 the unit sphere in H®) and let us consider the
non linear map M associating to the element |¢> of 245 the element
M(r, | 9>)=<@|M(r) | 9> of L(2), the Hilbert space of the real square
integrable functions on ®'”.

On U®) we define a topology by introducing a mapping A:

USI® 1US) > R* according to:

Al >y >)=Udr['n(r, | >)-Mdr, | \y>)]2}1/2. (5.14)

Such a mapping is not a distance since it may happen that A(lg>.ly>)=0
even though lg >=ly >. However A meets all other properties of a distance:

Al >,y >) = Ay >l9>) 20, Al >y >) < AP >l >)+ Al >y >), (5.15)

as one can easily prove.

From now on we will limit our considerations to the proper subset
AS) of S) of those states which are allowed by the CSL dynamicsf9. For
any element |¢> of (S} we then consider the set of states of AS) for which
A(lg >,ly >)< €. Here the quantity € has the dimensions of a mass and is
chosen of the order of 10"®m,, with m, the nucleon mass. From the

properties of the map A it follows that:
i. [A(lg >y >) <€ and A(lg >,13 >) <€) implies A(iy>.ly >)<E.
ii. {A(lg >y >)>>eand A(lg >,y >) <€) implies A(ly >,y >)>>€.

We have introduced the parameter £ in such a way that it turns out
to be sensible to corisider similar to each other states whose "distance" A is
smaller than (or of the order of) €. More specifically, when

Al >y >)<e . (5.16)

we will say that | > and | y> are "physically equivalent”.
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We now discuss the "distorted” (with respect to the Hilbert space
one) topology associated to the "distance” A. First of all ‘~e stress that the
two states 9" > and 1§* > which are maximally distant in the Hilbert
space topology, turn out to be equivalent, i.e. to satisfy condition (5.16) in
the new topology. This represents an example showing how such a
topology takes more appropriately into account the fact that, under any
sensible assumption, the "universes" associated to the considered states
are very similar.

Obviously, one problem arises. Criterion (5.16) leads to consider
equivalent states which are quite different from a physical point of view,
even at the macroscopic level. To clarify this statement we take into
account two states |¢> and |y> corresponding to an almost rigid body
located, at t = 0, in the same position but with macroscopically different
momenta, let us say P = 0 and P, respectively. Even though the two states
are physically quite different, their distance at t = 0 is equal to zero.
However, if one waits up to the time in which the stat | y> has moved
away from |¢>, the "distance” A(lg(t)>,ly(t)>) becomes large and the two
states are no longer equivalent.

5.e. The CSL ontology.

As we have pointed out at the beginning of this Section, we are
interested in describing something "existing and evolving ou: there" in
such a way that the resulting physical picture is compatible with our
experience of the world. This requires, as nicely pointed out by Bell (Bell
1989, 1) to make precise what he has called the kinrmatical and the
dynamical aspects of the theory. The kinematics requires ‘o identify
something as being really there i.e. something we are going to take
seriously, while the dynamics accounts for the way it changes with time.

For the reader who has followed the above analysis, it should be
clear that, within CSL, physical systems are fully rlescribed by the
statevector which evolves according to equations ernboding genuine
elements of chance. However, even though the s:atevector is everything
(Bell 1987, 41), since the dynamics itself tends to make objective the mass
density, it turns out to be appropriate to relate the kinematical elements
in Bell's sense to the mass density distribution. This is what we have done
in the previous Subsections by putting forwa=d explicit criteria allowing
one to recognize its being accessible and by showing the appropriateness of
resorting to the mass density function to define the idea of similarity and
difference between macroscopic situations.
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In a sense we could state that the exposed beables of the theory are
the values of the mass density function and that, at the appropriate level,
the dynamics allows one to take them seriously. All other properties which
emerge as a censequence of the now described process derive from this
basic dynamical feature concerning the mass density function. With
reference to the case analyzed at the end of the previous subsection we
stress that, if one has a superposition of the two considered states, the
macroscopic momentum of the system becomes accessible just as a
consequence of the objectification of the mass density.

6. Classical and nonclassical features.

From the previous analysis it should be clear to everybody that both
theories under discussion are basically non classical. However, they also
exhibit some relevant classical features which, in particular, allow one to
take a realistic position about nature. The classical aspects of CSL emerge
only at the macroscopic level. On the contrary Bohm's theory has a feature
in common with classical theories even in the case of microscopic systems,
i.e., the fact that particles have definite positions. In spite of this, the
status of a beable given to the wave function unavoidably brings into play
highly nonclassical features. We recall that, e.g., in the case of one particle
whose wavefunction is different from zero in two far apart space regions,
in spite of the fact that the particle must be claimed to be either in one or
in the other region, one must attribute a real status also to the branch of
the wave function corresponding to the empty region.

To see this let us consider the case (see Fig.1) of a particle whose
wavefunction is different from zero practically only along the two paths 1
and 2, and suppose that things are arranged in such a way that one has
constructive interference in one of the two final directions and destructive
interference in the other. In Bohm's theory the particle follows one of the
two paths. However, for particles following path 1, the insertion of an
absorber along path 2, allows them to activate, in some cases, the detector
correponding to destructive interference.

A A
pall Q 93\\\ Q
< ]
s, r
g th2 Absorber
Fig.1. An interference experiment which puts into evidence the
nonclassical features of Bohmian mechanics.
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Let us compare this situation with the one¢ in which the
wavefunctioa is different from zero practically only along path 1. In such a
case, obviously, the insertion of the absorber does not affect, neither
within SQM nor in Bohm's theory, the subsequent evolution of the system.
The previous statement about the emergence of nonclassical features of
the theory should now be clear. When standard quantum mechanics
allows to state that the particle follows path 1, the presence of the
absorber along path 2 has no effect whatsoever on the particle itself. When
the wave function is the superposition of two packets following the two
paths, in standard quantum mechanics one cannot even think of the
particle as following a definite path. On the contrary, in such a case, in
Bohm's theory the particle actually follows one of the two paths. However
even for particles following path 1 the presence of the absorber has a
considerably invasive effect since it may remarkably change their
evolution. This shows that even when the noncontextual property of being
along path 1 is possessed by an individual system, it docs not exhibit the
feature of a classical particle possessing such a property. It seems to be,
aware of "being in a superposition".

7. Nonlocal Aspects and Relativistic Invariance.

As is well known, the principal locality assumption needed to prove
Bell's theorem for the stochastic case (Bell 1971, 171) is equivalent to the
conjunction of two other assumption, viz., in Shimony's terminolcgy,
Parameter Independence and Qutcome Independence (Suppes and Zanotti
1976, 445; van Fraassen 1982, 25; Jarrett 1984, 569; Shimony 1984, 225).
In view of the experimental violation of the Bell inequality, one has to give
up either or both of these assumptions. We are interested in comparing
the status of the two theories under examination from this point of view.

To start with, let us fix our notation. We will denote by A all
parameters (which may include the quantum mechanical statevector or
even reduce to it alone) which provide, within the theorctical scheme one
is interested in, the complete specification of the state of an individual
physical system. For simplicity we will refer to a standard EPR-Bohm like
situation and we will denote by

pALR(x,y;n,m) (7.1)
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the joint probability of getting the outcome x (x=%1) in a measurement of

the spin-component along n at the left (L), and y (y=t1) in a measurement

of the spin-component along m at the right (R) wing of the apparatus.

' We assume that the experimenter at L can make a free-will choice

of the direction n and similarly for the experimenter at R and the direction

m. Both experimenters can also choose not to perform the measurement.
Bell's locality assumption can be expressed as:

palR(x,y;n,m) = pALG;n, *)paR(y;*,m) (7.2)
where the symbol * appearing in the probability distributions at the r.h.s.
denotes that the corresponding measurement is not performed.

As already remarked condition (7.2) is equivalent to the conjunction

of two logically independent conditions, i.e.:

pal{x;n,m) = p; L(x;n,*)

(7.3.1)
paR(y;n,m) = pyR(y;*;m)
and
pLR(x,y;n,m) = ppL(x;n,m)p; Riy;n,m) (7.3.1I)

where we have denoted, e.g., by the symbol p;{x;n,m) the probability of
getting, for the given settings n,m, the outcome x at L. Equations (7.3.1)
express parameter independence, i.e. the requirement that the probability
of getting an outcome at L (R) is independent from the setting chosen at R
(L), while Eq. (7.3.II) (outcome independence) expresses the requirement
that the probability of an outcome at one wing does not depend on the
outcome which is obtained at the other wing.

The above "splitting" of the locality requirement into two
independent conditions is particularly useful to discuss their different
conceptual implications with respect to relativistic requirements. In fact,
as proved by Jarrett himself (Jarrett 1984, 569), when conditions (7.3.I)
are violated, if one had access to the variables A which specify completely
the state of individual physical systems, one could send faster-than-light
signals from R (L) to L (R). On the contrary, if only condition (7.3.II) is
violated, then faster-than light signalling cannot be achieved since the
stochastic outcome at a wing cannot be controlled by the experimenter.
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It is well known that in a deterministic theory (i.e. one for which the
range of any one of the above probability distributions is the set {0,1])
there cannot be outcome dependence, so that violation of the locality
requirement (7.2) implies parameter dependence. This fact by itself shows
that deterministic theories which reproduce quantum predictions meet
more serious difficulties with relativity than do stochastic ones.

Before coming to analyze these matters with reference to the two
theories we are concerned with we recall that SQM violates Locality by
violating only Outcome Independence and that it does not consent faster-
than-light signalling Lbetween distant observers (Eberhard 1978, 392;
Ghirardi, Rimini, andWeber 1980, 293).

7.a. Parameter Dependence and Outcome Dependence in the Two
Theories.

Concerning the pilot wave theory we can strte without further
analysis that it violates parameter independence since, as wz have already
remarked, any deterministic theory reproducing the quantum mechanical
probabilities must do so. Bohmian mechanics is a well defined theory with
a precise formalism and conceptual status. If one takes seriously, as we do,
the fact that the complete specification of the state of an individual
physical system, at a certain time, is given by the positions of its
constituents, one has to accept that the theory implies instantaneous
effects at-a-distance at its fundamental level'10l. Obviously, since one has
not access to the "hidden” positions and, at the ensemble level, the theory
gives the same predictions of SQM, one cannot take advantage of this fact
to actually send superluminal signals.

Coming to CSL we first of all crove that it satisfies the condition of
parameter independence and therefore, since for the expi:riment under
discussion its predictions agree with those of SQM, it must violate the
outcome independence requirement.

Since within CSL the stochastic dynamical reduction takes place
just as a consequence of the fact that macroscopic objects evolve into a
superposition of macroscopically different states, to perform our analysis
we must take into account which apparatuses are present and how the
triggering mechanism describing the micro-macro interactions works. For
simplicity we will assume tkat such interactions taking place at L. and R
are governed by appropriate coupling constants g;, and gg. To investigate
whether there is parameter dependence we will then compare situations
in which one of the coupling constants is made equal to zero
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(corresponding to no measurement being performed) with a situation in
which it is non-zero.

We recall that within the CSL model the initial situation is
completely characterized by the assignment of the initial statevector
| ¥,0>. As stated above, the unfolding of the individual physical processes
is governed by a linear evolution equation depending or the coupling
constants gy, and gg and on a specific realization w(x,t) of the stochastic
process. The probability of occurrence of such processes depends on the
overall physical situation and, in particular, on the coupling constants
being equal to zero or not. This is due to the fact that the evolution of the
statevector |'¥,0> depends on the coupling constants and the statevector
itself enters in determining the cooked probability density of occurrence of
the stochastic processes.

We can now come to the specific discussion of the process we are
interested in. Strictly speaking, one should take inte account the whole
physical situation and in particular one should specify the initial state of
the system plus the apparatuses and study the subsequent evolution.
Nevertheless, it should be clear that, for the analysis we are interested in,
one can simplify the description by limiting his considerations to the spin
Hilbert space only, provided one correspondingly changes the value of the
parameter vy governing the reduction rate in such a way that reduction
takes place within the times which are characteristic for a macroscopic
measurement device.

Taking such a position, one has, in the case in which both
apparatuses are switched on (gg#0 and g1 #0) a linear dynamical equation
analogous to (3.2):

. . 0> _
T—_“(G nmw, () -7Y] (1.4)

+(a® -myw () -V, . (D>

Wi Wy

The probability distribution of the stochastic processes is obtained through
the cooking procedure prescribed by the theory:

Peoon [W & Wy ] =Py (W &w MY, ., (1)>IF (7.5)

Wy &w

Where P, [w, &w,.] is the probability distribution associated to a white

noise with
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<<w(t)>>=0; <<wg(t)>>=0; <<wi(t)wR(t)>>= v, i(t-t'). (7.6)

Obviously the appearance of the two terms at the r.h.s. of (7.4),
corresponds to the fact that both apparatuses are switched on and are
triggered by the microsystems at L and R, respectively. If one wants to
compare this situation with the one in which the obscrver at right, at free
will, switches off the apparatus by making gg=0, one has to consider
another stochastic equation, i.e.

divy, (1)> L
—dll_=((c 'n)w|_(l)_'¥]l\‘y,| (t)>. (7'7)
The solutions of equations (7.4) and (7.7) at time t for the same initial
conditions arel11]

Wy o, ()>=e"m Ve p,0> (1.8
and
Wy, (1)>=e™™1e,6>, (7.9)

respectively. In egs.(7.3) and (7.9) we have put:

Fs, (U=UL'“BL(U"Y‘C FRB.(U=GR'“BR(‘)‘% (7.10)
where
BL(t)=J:dtwL('c), BR(l)=Jl:dtwR(‘c). (7.11)

We come back now to eq. (7.4) and we evaluate the cooked
probability density of occurrence of the Brownian processes Bp(t) and
Bg(t) by multiplying the raw probability density by the square of the norm
of the statevector (7.8). As usual we have:

P [BL(D& B, (1)]= Py, (B (D& By (DI 45, (D> (7.12)

and



Pe [B (D& Bg(1)]= Py, [B, (V]Pg,.[Bg (V)] (7.13)

Taking into account eq.(7.8), one then gets from (7.12):

Poes [BL (D& B (U] = Py [B, ()P, [Be (DI W g5, (U >1=

Fip, () 2 "eFu"l)eF"' mll{"vO)'lz
P...[B, (Ulle 1W¥,0 >l PR,.[BR(l)}“ TSTASTrRT

(7.14)

Let us consider the marginal cooked probability density of By (t):

P*coor[BL (1] = [ A By (VP [BL (D& By (V] =
= P [B (O™ V1,0 517 (7.15)

1'|CF,,.(|)CF.,, g0 >"2
J“ “eF..,l “)N",O I “ .

- [dBR (V1P iBr ()

Since the equation

i"y—‘:';l(ﬁ ={(6" - m)wg () =Yy, (> (7.16)
preserves the stochastic average of the square of the norm of the
statevector, the last integral in eq.(7.15) takes the value 1. This means
that P#¢ook [BL(t)] turns out to equal the probability Pegok[By(t);*], i.e. the
cooked probability density of occurrence of the Brownian process By (t) for
the same initial condition if the process were described by eq.(7.7) or,
equivalently, if the apparatus at R were switched off.

As we have already remarked in Section 3, within CSL it is possible
to establish a one-to-one correspondence between the outcome at left
(right) and the specific value taken by the Brownian process By (t) (Bg(t))
for t = e, Then, the above proof of the equality between P#¢yq,[Bg(t)] and
) Peook[BL(t);*] amounts to having shown that the theory under
consideration exhibits parameter independence. The analysis performed
by Bell (Bell 1987, 41) of the QMSL model by resorting to a multi-time
formalism for two far apart systems shows that also this theory does not
present parameter dependence effects.
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7.b. Parameter dependence and relativistic invariance requirements.

In (Ghirardi, Grassi, Butterfield and Fleming 1993, 341) the
connection between nonlocality and "genuine Lorentz invariance" has been
investigated!12]. In particular it has been proved that it is not possible to
build a "genuinely Lorentz invariant” theory which cxhibits parameter
dependence effects and which, in the nonrelativistic limit, does not give
rise to backward causation. To analyze this point, let us start by
considering, with reference to an EPR-Bohm like situation, the
nonrelativistic limit of the theory in a given reference frame O. In this
frame we assume that the measurement at right takes place at an earlier
time than the one at left, i.e., tg<ty, and that there exist a set of values of
the parameters A which have a non zero probability of occurrence and are
such that:

pal{x;n,m) = pplx;n,*) (7.17.1)
while, the absence of backward causation implies, for all A's:
pAR(y;n,m) = paR(y;*,m). (7.17.10)

In the case of a Galilean theory, there is a residue, or an analogue of
Lorentz invariance which can be taken into acccunt in the case in which
one is dealing with two widely separated systems. In particular, if one
assumes that the two regions R and L are very far apart from each other,
there exist reference frames (say, O') moving even with a very small
velocity with respect to O, but for which the temporal order of the space-
time events (R,tg) and (L,ty) is inverted, i.e., t'g>t'y. Since the probability
of occurrence of an event is an objective fact (i.e. it cannot depend from the
considered reference frame) it must hold also for O' that

palxn',m" 2 palix'n',*) (7.18)

where L' is the parameter which identifies for O' the systems which are
identified by A for O, and the primes on p, x, n and m have an cbvious
meaning. It is important to stress that (7.18) is simply the request that
both observers can look at the same systems and that they agree ¢~ the
objective probabilities. However, as already remarked, for O', t'g>t'.. If the
theory were invariant for the considered transformation, an analogous
situation would occur also for the observer O for some values of A. But this
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contradicts assumption (7.17.II) expressing that for O the past cannot
have a parametric dependence from the future. This argument constitutes
therefore a proof that, under the considered assumptions, there cannot be
a "genuinely relativistic invariant" theory which exhibits parameter
dependence. Here we understand "genuinely relativistic" rather strongly:
it excludes theories (Like Lorentz's classical electromagnetic theory, or the
quantum field theory version of Bohm's theory (Bohm 1952,180) that have
a preferred frame which cannot be discovered by experiments. We favor
genuinely relativistic theories. We recall that Bell, despite his deep
appreciation of Bohm's theory, believed (Bell 1989,1) that to make the
Lorentz group phenomenological in this way is an incredible position to
take - I think it is quite logically consistent, but when one sees the power of
the hypothesis of Lorentz invariance in modern physics, I think you just
can't believe in it.

In a recent preprint (Berndl, Diirr, Goldstein and Zanghi 1995)
attention has been called to the fact that there seems to be the possibility
{Durr, Goldstein and Zanghi 1990, 374) of a Bohmian quantum field
theory in which a foliation of space-time into space-like hypersurfaces is an
additional beable. Due to this fact the considered theory has no preferred
reference frame. It can circumvent our impossibility proof because, in the
nonrelativistic limit, it exhibits backward causation effects. The authors
assume that the hypersurfaces of the foliation do not intersect and this
would be a nice feature of the model since it would guarantee that the
backward causation effects implied by it would not give rise to paradoxical
consequences (see below). However it seems to us that the model is not so
precisely formulated to allow one to be sure that the above assumption is
dynamically consistent.

Another attempt one could think of would be to look, e.g., for a
Tomonaga-Schwinger type equation for the beables f with no particular
foliation {o}]. Obviously one could meet serious difficulties: this equation
could turn out to be non integrable, etc. However, we think that even if a
theory of this type could be formulated, due to the fact that the space-like
hypersurfaces cross each other and there are parameter dependence
effects (which allow faster than light signalling would one have access to
the hidden parameters 1), it would exhibit backward causation effects
which would give rise to paradoxical situations. Tipically, one could
consider three space-time points A, B, C such that B is space-like with
‘ resbect to both A and C, while C is in the absolute past of A. Would one
have access to the hidden variables there might be situations in which A
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could cause an effect at B, and B might correspondingly make C aware of
what A has done. Being C in the absolute past of A, he could forbid A to
perform the original action.

To conclude this Section we remark that, in our opinion, it is not so
obvious that there could be a genuinely Lorentz invariant theory
exhibiting parameter dependence effects.

8. Conclusions.

In this paper we have compared Bohm's theory and the dynamical
reduction theories with reference to the most relevant conceptual issues
about the foundational problems of quantum theory. We have pointed out
the pros and cons of both approaches. Our conclusion is that they both
deserve to be taken seriously as yielding a possible realistic description of
nature.
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Notes.

1. It is useful to point out that at least two different attitudes can be taken
about the interpretation of the theory. They have been focused in a recent
. paper by Bas van Fraassen (van Fraassen 1994, 7) and have been denoted
as the Cartesian and the Newtonian construal, respectively. According to
the first attitude what is real of the theory are only the positions of the
particles. Consequently, since equal positions at a given time can evolve
into different positions at a subsequent time, under this construal the
theory is not deterministic. In the Newtonian construal, besides the
position of the particles, also the wave function is considered as real. The
theory is then strictly deterministic. We will take the Newtonian attitude
in what follows.

2. Recently, some beautiful results about this point (Diirr, Goldstein and
Zanghi 1992, 843) have been derived. The authors show that typical
configurations of the universe as a whole imply that the positions of the
particles of an ensemble associated to a given wavefunction ¥ are
distributed according to I'¥I* with overwhelming probability. We cannot
discuss this important point here, we refer the reader to the above paper.
3. In eq. (3.8) and following we have changed the :.otation for the state
vector from |Ww(t)> used in eq. (3.2) to |¥g(t)> to stress the fact that,
under our assumptions, the state at time t does not depend on the specific
sample function w(1) in the interval (0,t) but only on its integral B(t) of
eq.(3.9).

4. Note that, even though the spread Vyt tends to = for t—e, its ratio to the
distance 2(x-f)yt between the two considered peaks of the distribution
tends to zero.

5. In a previous paper (Ghirardi, Grassi, and Benatti 1995, 5) we have
simply used the expression "objective" to denote what we call here
"objectively possessed or accessible". We had a vague feeling that the term
we were using was not completely pertinent and could give rise to
misunderstandings. Prof. S. Goldstein has appropriately called our
attention on the fact that both usual meanings of that term, i.e., "real" or
“opposite to subjective” do not fit with the sense which emerges for it from
our work and has suggested the expression "accessible". In the search for
an expression which would embody precisely what we had in mind we
have considered also the possibility of resorting to the expression
"empirically adequate". However, this term reminds directly the
“empirical reality" concept introduced by B. d'Espagnat (d'Espagnat 1990,

30

1147). Due to this fact the use of such term could seriously mislead the
reader. In fact, according to the definition of empirical reality, due to the
practical impossibility of distinguishing, at the macroscopic level, 2 pure
state from a statistical mixture, replacing one with the other would be
empirically adequate, which is completely at odds with the meaning we
want to give to the expression objectively possessed or accessible.

6. We point out that here we assume that the measurement can be chosen
at free will. In any case, even if one gives up such an assumption, it turns
out to be impossible to attribute to the system considered by 'itself
objective properties, i.e. properties which do not depend on the overall
experimental set up. Accordingly, property attribution becomes a
relational feature.

7. We note that if the "pointer particle" would be on the negative semiaxis
at t=0, it would be shifted by a negative quantity of the same order,
independently from the sign of ¢. Thus, the outcome of thc¢ measurement of
p, given a complete specification at t=0 of the state of the measured
particle, depends both from the sign of the coupling constant which can be
choosen at free will by the observer and from the initial position of the
"pointer particle" (a parameter which, however, cannot be controlled by
the experimenter).

8. A typical example is represented by an intergalactic cloud with a very
low mass density and wavefunctions for its particles with a large spread.
According to our strict criterion (5.8), the mass density of the cloud is
nonobjective, while, if we adopt the physically meaningful criterion put
forward at the beginning of this Section and to test it we resort to
consider its effects, e.g., on the trajectory of a far asteroid, we would be led
to state that our claims about the mass density are objectively true since
they agree with the "physical outcome". Here, an important distinction is
appropriate. The theory contains a specific dynamical mechanism and
specific parameters which allow a precise mathematical formulation of the
objectivity criterion. Obviously, when one is interested in a particular
class of physical processes the objectivity requirement at the beginning of
this section could be satisfied even though the strict mathematical one is
not. This does not raise any problem. It finds its counterpart in the fact
that to analyze a specific physical situation one can use a coarser graining
than the one corresponding to the fundamental characteristic length of the
theory. Accordingly, if we adapt the graining to the problem of interest, we
can assert that the mass of the cloud is objective. Obviously, while for
practical purposes one can change the graining according to the problem
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he is interested in, adopting a graining which is finer than the
fundamental one of the theory makes no sense because if one takes the
theory seriously as describing the laws governing the evolution of the
universe, then mass density would almost never become objective for such
a graining.

9. For a more precise definition of such a set see (Ghirardi,Grassi and
Benatti 1995, 5).

10. This attitude has the same logical status as the assertion that the
probabilities concerning physical processes have an epistemic character
and are not due to the presence of genuine elements of chance in nature.
11. In eq.(7.8) and following we make, for the same reasons dicussed there,
a change of notation analogous to the one made for (3.8).

12. See below for the precise meaning we attribute to this expression.
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