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1 Smooth geometry

(1) The basic model and ambient space is a real vector space V (of finite dimension).

That is an elementary domain for the differential and integral calculus.

(2) Such calculus is required on more general spaces - the natural one being a smooth

mai.ifold M modeled on V. Thus we are primarily interested in those properties of the

calculus which are invariant under coordinate representation.

Examples: Directional derivatives of maps, integrals of volume forms. By way of con-

trast, convexity does not make sense on M.

(3) A key feature of a manifold is its tangent space TX{M) to M at x 6 M:

That has a natural vector space structure (d\mTT(AI) = diinV). And TX(M) varies

smoothly as x moves smoothly on M.

2 Metric geometry

(1) Euclidean structure on V: A positive definite inner product ( , ). With it we can

define notions of lengths (of vectors and of paths in V) and volumes.

(2) We would like to define Euclidean space structure ( , )x smoothly in every TX(M).

If we have such a metric structure we say that M is a Riemannian manifold.

(3) With paths 7 and functions / on a manifold

M
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we can define velocity vectors 7'(t) 6 T^t)(M) and lengths of paths £(7) = ft \-y'(t)\dt.

And the differential df{x) of / at 1 e M. However, neither the parallel acceleration 7" of

7 nor the second differential d2f{x) makes sense, in general.

In case M is a Riemannian manifold we can indeed formulate such second order con-

cepts. That is the content of the fundamental theorem of Riemannian geometry (— the

existence of the canonical connexion of Levi-Civita).

(4) A characteristic feature of second order differentiation processes is that they do

not generally commute. In fact, the curvature KM of a Riemannian manifold measures

the extent to which differentiation is not commutative.

(5) With that, we have a complete calculus - the Riemannian tensor calculus - on

M. In particular, we haw the tools required to calculate higher order derivatives. The

tensor calculus has a metric - and very geometric - character. As such, it has been

instrumental in mathematical physics (the mathematical framework of relativity and of

quantum physics). And, of course, of great importance in differential topology.

3 First applications of tensor calculus

(1) Geodesic paths. Given 7 : / —> AI, its energy

where

V(OI* = MO. VWU

For a deformation (7S) of 7 = 70 with fixed endpoints,

ds

Here ^f denotes the acceleration of 7.

dt

' ds
)dt.

Say that 7 is a geodesic segment (parametrized proportionally to arc length) if its

acceleration = 0.

(2) Harmonic functions. Given / : M —» R, its energy (- Dirichlet integral)

Here M is supposed compact; and dx denotes the volume element in TX(M).

Again, taking a deformation (/„) of / = f0,

d \ r d it
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= -J{d'df{x), df,(x)\o)dr .

Here rf'rf/ is the Laplacian of f on M. Say that / is harmonic ifd'df = 0.

(3) In both these examples, we have arrived just at the point where curvature is about

to appear - and is often very useful in drawing global geometrical conclusions.

Here is a common generalization:

Let <p : M —» N be a map between Riemannian manifolds; and assume M compact.

There its energy

E{V) = \ j \d<p[x)\*dx .
** J At

Smooth critical points of E are called harmonic maps, [Eells, Sampson].

4 Geometry in geodesic spaces

(1) Although the tensor calculus provides a powerful format for geometric problems, (i)

its infinitesimal aspects are very delicate; (ii) the curvature tensor is too hard for us to

understand.

About 45 years ago H. Busemann and A.D. Alexandrov proposed/developed a syn-

thetic geometry which (a) keep much of the first order theory; and (b) extracts those

aspects of the curvature tensor Km which have constant sign.

That theory has been greatly enriched by M. Gromov, and by Alexandrov's St. Pe-

tersburg school. And recently, many fine applications have been made.

Let us look at some of these now, [Nikolaev].



(2) A metric space (Y > d) is a geodesic space if any two points J/O.J/J can be joined by

a continuous path 7 : I —> V such that

{m-l

i=0
: a < t0

the supremum taken over all finite partitions of / = [a, b]. Say that 7 is a geodesic segment

if rf(7(s), 7(0) = |s - t\ for all s, t e / .

(3) Take a roal number K < 0. Let H2{K) denote the 2-dimensional simply connected

space form with curvature K.

Consider a triangle pqr in (Y,d) with geodesic sides and compare it with the corre-

sponding triangle ;/</;•' in Hl(K):

rf(p.'/) = \P' - <ll d(p,r) = \p' - 7'|, d(q,r) = \q' - r'\ ,

where | | refers to the metric in B12(K),

alt) o'lt)

Say (Y, d) lias runmture < K if every y € Y has a neighbourhood V in which every

geodesic triangle satisfies

d[a{t),p)<\a'[t)-j\

for all a(t) e qr.

(4) Example 1: Any smooth Riemannian manifold M with ciirvature A"M < ft' is a

geodesic space with curvature < K.

Example 2: Any finite dimensional locally finite polyhedron can be metrized as a

geodesic space with curvature < 0.

5 Harmonic maps tp: M -* Y

(1) Roughly speaking, we can define a.e. the integrand \d<p\2 : M —• 2R as the limit (as

E —» 0) of the spherical means

r

JS{xS{x.c)

Then we have the energy

•AS before. And the notion of hannonicity ojtp.

(2) Theorem: Suppose M, Y compact with curve Y < 0. Then any map pa : M —» Y

can be deformed to an E-minimum ip-which is Lipschitz.

([Eells, Sampson in case Y is a Riemannian manifold. [Gromov, Schoenj; [Koreva;ir,

Scliocn]; [Jost] in the present form.)

(3) Application: Lot M be a dosed Rieinannian surface, and T a measured foliation

of M with closed leaves:

M

Y=M/F

The leaf space M/F is a 1-dimensional metric polyhedron Y with curve < 0. The

projection map 7r : M —» Y can be deformed to a harmonic map tp. General principles

assert that, {tp'd)2-0 is a holomorphic quadratic differential whose real part determines a



measured foliation equivalent to T. (Thus [M. Wolf] proved the theorem of Hubbard-

Masur.)
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