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Abstract 

We use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). 
Employing proper termination of the BPM into a coaxial cable, the output signal at 
the BPM is determined. Thus the issues of signal sensitivity and power output can be 
addressed quantitatively, including all transient effects and wakefields. Besides this first 
quantitative analysis of a true BPM 3D structure, we find that internal resonant modes 
are a major source of high value narrow-band impedances. The effects of these resonances 
on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the 
ceramic vacuum seal under high current operation is given. 
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1 Introduction 
There are several issues of concern for the button-type BPMs in the PEP-II [1] vacuum 

chamber. First, the presence of BPMs in the vacuum chamber contributes significant 
impedances, broad-band and narrow-band. For broad-band impedance, the contribution 
of all the BPMs to the total impedance budget can be readily calculated. Narrow-band 
impedances arise from the formation of resonances or trapped modes in the BPM, which 
may have detrimental effects on the beams because of coupled-bunch instabilities, and 
which may produce heating effects above tolerable levels. Second, the power coming out 
of the cable connected to the BPM should not be too high such that it is within the 
handling capability of the diagnostic electronics, but not at the expense of losing the 
.signal sensitivity at the processing frequency of 952 MHz. Third, the power carried by 
the trapped modes and by the signal, especially when the beam is offset, may produce 
considerable heating in the ceramic and metallic walls of the BPM. These issues are closely • 
related to each other, thus increasing the complexity of designing the BPM. In view of 
these electrical and mechanical requirements, BPMs with 1.5-cm diameter buttons have 
been selected for the PEP-II. 

The paper is organized as follows. In the next section, we describe the essential 
features of the MAFIA modeling of the BPM. The calculations are carried out in the 
time domain to obtain the wakefield and other relevant information. In section 3, we 
present the main results of the numerical simulation. The longitudinal broad-band and 
narrow-band impedances, the signal sensitivity and power output at the coaxial cable are 
calculated. We estimate the power dissipation in the ceramic vacuum seal in section 4. A 
summary of the results is given in section 5. In this paper, we are mainly concerned with 
the electrical properties of the BPM. The mechanical design of the BPM can be found in 
Ref. [2]. 

2 MAFIA Modeling 
The detailed layout of the BPM in the arcs of the PEP-II High Energy Ring (HER) 

is shown in Fig. 1. Each BPM consists of four buttons, located symmetrically at the top 
and at the bottom of the vacuum chamber. The HER arc sections have totally 198 BPMs. 
There are 92 BPMs in the straight sections of the HER, and the four buttons are located 
symmetrically at 90° from each other at the circumference of the circular pipe. The BPM 
button is tapered in such a way that the impedance matches that of a 50 Cl coaxial line. 
A ceramic ring for vacuum insulation is located near the button region. It has a dielectric 
constant of about 9.5. The inner radius of the ceramic vacuum seal needs to be adjusted 
for optimum matching. 

The 3D MAFIA model of the BPM is shown in Fig. 2. Because of symmetry, only one 
quarter of the structure is simulated. One button of the BPM is situated on the top of the 
yacuu^chMnber«aad it tapers gradually to a coaxial line above. The simulation is done 

*' in thelttiinJ'dmi^MBvhich consists of two kinds of calculations, namely wakefield and 
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Figure 1: Layout of the 4 buttons of a BPM in the arcs of the HER vacuum chamber. 

port transmission calculations. For wakefield calculation, a rigid beam comes in along the 
^-direction. It excites electromagnetic fields at the BPM, which in turn act back on the 
beam. The boundary conditions at the beam entrance and exit planes are set to waveguide 
boundary conditions so that electromagnetic waves traveling to these boundaries are not 
reflected. At the top boundary of the coaxial line, it is treated as an outgoing waveguide 
port, where the transmission of the signal is determined. A two-dimensional eigenvalue 
problem is first solved to determine the propagating and evanescent modes of the coaxial 
line. These modes are then loaded at the port in the 3D time domain calculation. Since the 
beam excites a broad frequency spectrum, a broad-band boundary has to be implemented 
at the waveguide port. 

The impedance of a BPM can be evaluated from the wakefield or its Fourier trans­
form. From the Fourier transform of the wakefield, we can identify potential resonant 
modes excited by the beam in the BPM. Since the resolution of narrow resonances in the 
impedance spectrum depends on the number of sampling points in the wakefield calcula­
tion, we evaluate the wakefield up to a long distance of s = 5 m, where s is the bunch 
coordinate. The transmission calculation at the port gives us the value of the outgoing 
voltage at the end of the coaxial line as a function of time, which corresponds to the signal 
picked up by the BPM as the beam passes through this region of the vacuum chamber. 
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Figure 2: 1/4 MAFIA geometry of the BPM in the vacuum chamber. The button region 
is cut out for viewing purposes-. 

3 Longitudinal Impedances 
The high beam current in the PEP-II B-Factory poses stringent requirements on 

impedances and power deposition. BPMs can generate considerable broad-band and 
narrow-band impedances. To avoid single-bunch instabilities, the accepted limit of the to­
tal broad-band effective impedance for the prescribed PEP-II current is \Z/n\efj = 0.5 Q, 
[1], where n = w/u>rev is the harmonic number. It is desirable that BPMs contribute a 
small fraction to the total broad-band impedance budget. Narrow-band impedances can 
also be generated as a result of the excitation of trapped modes in the BPMs. Their 
values have to be controlled below some limits so that coupled-bunch instabilities will not 
occur. The most serious higher-order mode excited by the beam is the TEn mode with 
respect to the button axis. Its frequency increases with a decrease in the diameter of the 
button. The acceptable limit of the narrow-band impedance for avoiding coupled-bunch 
instabilities is a function of the frequency / = w/2ir of the resonant mode and is given 
by [3]: 

(£j2l) < 3.0(^i)e<»-/*>', (1) 

where crz is the bunch length. It should be noted that the above limit is a conservative 
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estimate since it takes into account of only radiation damping. Other damping mech­
anisms such as feedback will help suppress the narrow-band resonance. The numerical 
factor is given for the Low Energy Ring (LER) with a current of 3 A, and the limit is 
inversely proportional to the current. The exponential factor indicates the decay of the 
beam spectrum at high frequencies. 

In the following, we present the numerical results from MAFIA simulations. In our 
simulations, a Gaussian bunch with az = 1 cm is used and the total bunch length is 
lOcr's. For the coaxial port, at the range of frequency of interest, only the TEM mode 
propagates. Thus for the output signal at the coaxial line, we only need to consider this 
mode. The MAFIA results shown in the following figures are normalized to a bunch 
charge of 1 pC. The numerical results for impedance, power and other relevant quantities 
for the case with 3 A current (8.3 x 10 1 0 per bunch) are listed in Table 1. 

Energy loss by beam 126 W 
Power out of one cable 9 W (37 W)* 
Transfer impedance at 952 MHz 0.65 ft 
Broad-band impedance, \Z/n\ 0.008 ft (11 nH) 
Narrow-band MAFIA 
impedance: accepted 

6.5 kft at ~ 6.8 GHz 
3.4 kft 

Table 1: Impedance and power of the 1.5-cm BPM. The beam current is 3 A. The 
impedances are for all the BPMs in the ring. T h e power in the parentheses is that 
out of the cable which is closest to the beam when it is 1 cm offset from the axis. 

In Fig. 3, we show the longitudinal wakefield as a function of the beam coordinate s. 
It can be seen that, for 0 & s ^ 10<r, the wakefield is roughly inductive. The inductance 
of each BPM is estimated to be 0.04 nH or \Z/n\ = 3.4 x 10~5ft. The total contribution 
of all the BPMs is 11 nH or \Z/n\ = 0.008 ft. The total broad-band impedance budget 
for all the ring elements is estimated to be 0.31ft [4], and therefore the BPMs contribute 
a quite small fraction of it. By integrating the wakefield, the loss parameter of a BPM 
is found to be 2.7 X 10~3 V/pC. For N = 8.3 x 10 1 0 and a bunch spacing of 1.2 m, this 
gives a power loss of 126 W by the beam. In Fig. 4, we show the impedance spectrum as 
a function of frequency. A sharp peak of 25 ft is seen at around 6.8 GHz, which should 
be compared with the TEn cutoff frequency of 6.4 GHz of an ideal coaxial waveguide 
with the button dimensions. The frequency and impedance of the TEn mode are in 
satisfactory agreement with measurements [5]. The total impedance of all BPMs due to 
this resonant mode is 6.5 kft, which is about twice the accepted value calculated by Eq. 1. 
This resonance can be suppressed to a small value by introducing asymmetry [6, 7] at the 
button at the cost of increased mechanical complexity. Since the narrow-band impedance 
is small compared with the feedback power (~ 100 kft) used for damping the RF cavity 
higher-order modes, we rely on the feedback system to suppress this resonance. 
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Figure 3: Longitudinal wakefield of the 1.5-cm BPM as a function of the particle position 
for a Gaussian bunch with <rz = 1 cm. 
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Figure 4: Longitudinal impedance spectrum of the 1.5-cm BPM as a function of the 
inverse wavelength for a Gaussian bunch with az = 1 cm. 
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Figure 5: Voltage output of the 1.5-cm BPM at the coaxial line as a function of time. 
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Figure 6: Beam-to-signal transfer function of the 1.5-cm BPM at the coaxial line as a 
function of frequency. 



4 Signal and Power Output 
In Fig. 5, we show the output signal of the TEM mode at the coaxial line as a function 

of time. The signal dies off rapidly after the transient excitation during the passage of the 
beam. The power output can be evaluated by integrating the signal voltage over time. 
When the beam is ojffset from the center of the chamber, the monitor closest to the beam 
will transmit the highest power. The power carried by the signal for this monitor for an 
1 cm offset beam is 37 W, which can be handled by the diagnostic electronics. Fig. 6 
shows the Fourier transform of the output signal divided by the beam current spectrum. 
The frequency content of the signal is quite broad-band and there is no evidence of high 
narrow peaks up to 10 GHz. In particular, at 952 MHz, the transfer impedance is 0.65 ft, 
which is above our minimum requirement of 0.5 ft. 

The sensitivity of a BPM is generally determined by the signals picked up by the 
different monitors when the beam is off center. We define the sensitivity function as: 

(2) drA + B 
where i can be either x or y. For Sx, dx is the offset in the s-direction, and A and B axe 
the signals picked up by the top right and top left monitors respectively. For Sy, dy is 
the offset in the y-direction, and A and B are the signals picked up by the right top and 
right bottom monitors respectively. Fig. 7 shows the sensitivity functions Sx and Sy as 
functions of frequency. It can be seen that the frequency dependences of Sx and Sy axe 
similar and are extremely flat up to about 5 GHz. Their values at 952 MHz satisfy our 
position resolution requirements. 
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Figure 7: Sensitivity functions of the 1.5-cm BPM as functions of frequency. 
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5 Power Dissipation 
The high power throughput of the signal and the presence of HOMs in the BPM may 

generate considerable heating effects. Due to the transient behavior of the problem, the 
calculations of the power loss in the ceramic and in the metallic walls are carried out by 
fourier-transforming the time evolutions of the electromagnetic fields in the BPM. The 
energy dissipation in the ceramic during a single bunch crossing is given by: 

ri M M 2 < ^ ^ 

where 

P = J uei(u)\Eu(x)\2^dx, 

Sw(x) = JE{x,t)eiwtdt, 

(3) 

(4) 

Time [no] 

Frequency [GHz] 

Figure 8: (a) The time history of the electric field and (b) its Fourier transform for a 
typical location in the ceramic vacuum seal. 
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and e,- is the imaginary part of the dielectric constant. The time dependence of the 
electric field and its Fourier transform at a typical location in the ceramic vacuum seal is 
shown in Fig. 8. A resonant peak appears in the Fourier spectrum, corresponding to the 
trapped TE mode in the BPM. Since the Q value of the resonance is about 100, we do 
not expect heating enhancement due to multi-bunch effects. Therefore it is sufficient to 
use the above formulas to determine the power dissipation. Assuming the ceramic has a 
dielectric constant of 9.5 and a loss tangent of 0.0007, we find that the ceramic loss is ~ 
0.35 W when the beam is offset by 1 cm at 3 A. At the junction of the ceramic and inner 
molybdenum center pin where heating effects are of more concern than the outer wall, 
the power loss is found to be ~ 0.007 W, assuming copper conductivity. The introduction 
of other material such as nickel on the surface of the center pin will increase the power 
dissipation roughly by an order of magnitude. ANSYS were used to estimate the thermal 
and structural stabilities of the BPM under these conditions with an additional heat 
source of 0.25 W/cm 2 from scattered synchrotron radiation. A maximum temperature 
of 110°C was found on the button and a temperature gradient of about 30° C in the 
ceramic. ANSYS simulations showed that the temperature and stress distributions are 
acceptable [2]. 

6 Summary 
We simulated the PEP-II BPM using MAFIA and showed that the 1.5-cm button 

type BPM has the required transfer impedance and signal sensitivity. The broad-band 
impedance is a small fraction of the ring impedance, and the narrow-band impedance can 
be suppressed by the feedback system. The power dissipated in the ceramic vacuum seal 
was estimated, and temperature and stress distributions were found to be acceptable from 
ANSYS simulations. 
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