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Abstract 

We formulate a method for incorporating quantum fluctuations into molecular-
dynamics simulations of many-body systems, such as those employed for energetic 
nuclear collision processes. Based on Fermi's Golden Rule, we allow spontaneous 
transitions to occur between the wave packets which are not energy eigenstates. The 
ensuing diffusive evolution in the space of the wave packet parameters exhibits appeal-
ing physical properties, including relaxation towards quantum-statistical equilibrium. 

Molecular dynamics simulations are useful for understanding both statistical and dy-
namical properties of many-body systems in a variety of physical contexts [1]. Whi le 
quantitative insight can be obtained in many cases, the foundation and interpretation of 
such approaches are problematic when quantum systems are addressed. In these approaches 
the many-body system is usually represented as a (possibly antisyminetrized) product of 
parametrized single-particle wave packets, and equations of motion for the parameters are 
then derived from a suitable variational principle. This corresponds to a mean-field treat-
ment of the quantal problem and the ensuing parameter dynamics is then effectively clas-
sical. Consequently, the statistical properties of the system will be classical rather than 
quantal, thus casting doubt on the quantitative ut i l i ty of results obtained in complicated 
scenarious where quantal statistics plays a major role. 

This generic shortcoming of molecular dynamics originates in the neglect of the spectral 
distribution of energy eigenvalues associated with the wave packets which are not energy 
eigenstates [2]. In the present note we suggest a possible method by which this inherent 
problem can be largely alleviated. This novel method consists of introducing a stochas-
tic term in the dynamics so that a given wave packet may make spontaneous transitions 
to neighboring wave packets in accordance with its spectral distribution, and i t is found 
that the ensuing diffusive evolution with this term exhibits relaxation towards quantum-
statistical equil ibrium. The method is rather general and so it should be of correspondingly 
broad interest. 

This issue is especially relevant in nuclear dynamics where the system consists of nucleons 
at such densities and excitations that quantum statistics plays a major role. Indeed, the 
interpretation of current heavy-ion collision experiments depends on detailed dynamical 
simulations, and so the problem is an urgent one. In recent years, significant effort has been 
devoted to the development of microscopic simulation models for nuclear collisions, of both 
one-body [3] and A-body nature. We shall address the situation in which a product of 
gaussian wave packets are employed for the /1-body system, as has been done extensively 
in nuclear dynamics [4, 5, 6, 7], but the proposed method is not restricted to this special 
case. 

For notational convenience, we shall make our presentation within the framework de-
veloped for the Antisymmetrized Molecular Dynamics model [7], and so the basic single-
particle wave packets are gaussians of fixed width, < r\z > , where the real and imaginary 
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parts of the parameter z specify the ccntroid in position and momentum, respectively. The 
normalized >l-body product wave function, < r i , • • * 〉，is then characterized by the 
parameter vcctor Z —(之い…，：バ）.The inclusion of antisymmetrization modifies the mea-
sure, dr = det(C1)f/ZJ where the matrix じ has the elements Cnn' — d 2 \ogJ\f/dzndznt, with 
AT being the associated normalization constant; the resolution of unity is then / dT\Z X 

Wi th this convenient formalism, the equations of motion for the wave packet parameters 
can tlicn be wri t ten on a compact form, 

i h c . “ 裝 , ⑴ 

where H =< Z\II\Z > is the expectation value of the >l-body Hamiltonian operator II 

with respect to the particular state Z . Though generally not of I laini l tonian form, this 
system of equations produces a fully classical evolution. 

The start ing point for our present developments is the quantum-mcchanical feature 
that a given wave packet is generally not an eigenstatc of the many-body Hamiltonian. T I e 
probabil i ty for the wave packet Z to contain cigenstatcs of energy E is given 
strength function, 

Pe{Z) = < Z\6{II-E)\Z > ’ 

which is spread around the expectation value H with a variance given by 

4 ニく 割(片 一 nf\z〉ニ J f / r ' i < z l \ n c ~ l  

The equation of motion (1)determines the evolution of the wave packct parameter 
vcctor, Z{t)^ in an entirely deterministic manner and without any physical effect of the 
spcctral structure of the wave packct. In order to provide the system with an opportuni ty 
for exploring and exploiting the various eigcncomponents contributing to its wave packet, 
we wish to augment the equation of motion by a stochastic term that may cause occasional 
transitions between different wave packets. Guided by Fermi's Golden Rule, we then adopt 
the following form for the differential rate of transitions from a given wave packet Z to 
others near 

w(Z — ニ を < Z'jVjZ > | 2 pE{Z l) . (4) 

Here the operator V represents a suitable "residual" interaction and E is a specified energy 
which is usually taken as the expectation value of the originally specified init ial state. 

When the above stochastic transitions are included in the dynamics, the object of study 
is the distr ibution of the wave packet parameter vector, <f>(Z^t). For a closed (and sufficiently 
complex) system this distribution wil l approach the associated equilibrium distr ibut ion. In-
voking the principle of detailed balance for a stationary distribution, we readily see that 
the equil ibrium distr ibution is proportional to the spectral function Consequently, 
the ensuing stochastic molecular dynamics populates the parameter space in a microcanon-
ical manner, as is physically reasonable sincc the ensemble is characterized by the specified 
energy E . This feature is most easily recognized by considering the microcanonical phase-
space volume, 

n(E) = Tr {6(fl - J 3 ) ) = J dT< Z\8(fl - E)\Z > f dr pE{Z) • (5) 
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Figure 1 :Exc i ta t ion energy versus temperature. 
A system of 20 protons and 20 neutrons is confined within a sphere of radius 4 0 " 3 r o and 
a Metropolis sampling is then performed of the corresponding anti-symmetrized gaussian 
wave packets, based on the modified statistical weight W(Z; /?) given in eq. (7). The abscissa 
is the imposed temperature T = 1 / / ? and the ordinate is the calculated mean excitation 
energy -< E y= —d\ogZ(P)/d(3 (using the partit ion function (6) and with the ground-state 
energy subtracted), and divided by the corresponding energy of a system of free nucleons, 
•Sfrec = 40 X | T (dashed line). The solid line has been obtained wi th the nuclear Fermi-gas 
formula, E* = aT 2 , using the level density parameter a = 40/(8 MeV) . 

For the discussion of statistical properties, i t is convenient to consider the associated 
canonical part i t ion function which is given by 

Z{/3)三 dE n{E) c~ p E ニ dE [dr pE{Z) o~ p E ニ dT W{Z]/3) (6) 

The the statistical weight of a given state can thus be calculated once the form of the 
spectral density is known, 

W(Z-P) = / dE pB{Z) e~ p E « exp ⑴ 

The last relation holds exactly when the spectral strength distr ibution is of Poisson form, 
as is the case for a harmonic oscillator [8]. 

1 his latter result is very encouraging, because the expression (7) for the statistical weight 
W ( Z ; P ) leads to physically appealing statistical properties, as already shown in ref. [2] and 
further discussed in ref. [8]. In order to illustrate this central point, we show in fig.1 the 
temperature dependence of the mean excitation energy for a system of confined nucleons, 
when a sampling of the wave packet space is performed with the statistical weight (7). A t 

O A B AMDfor4 0Ca 
Fermi gas 

5
 

1

5
 

1
 o
 X

S
j
a
i
r
q
;
 U
O
I
l
s
I
O
X
w
 



JAERI-Conf 95-012 

low temperatures the system exhibits a typical quantal behavior, wi th tho energy rising as 
the square of the temperature. As the temperature is increased the growth turns linear, 
as is characteristic of classical systems. This hohnvior should bo contrasted wi th what 
would happen without the spectral transitions, i.e. with the standard molecular dynamics. 
Since the dynamics is then entirely classical, the system wil l relax in accord an cc w i th the 
standard Boltzmann weight, ^ ^ ( Z ; / ? ) 〜 e x p ( - / 3 7 Y ) , and its behavior would be classical 
throughout the entire temperature range [2]. Thus, the addition of the stochastic term (4) 
leads to dynamical evolutions that populate the parameter space in better accordance wi th 
quantum statistics. Wc therefore cxpect that the incorporation of such stochastic transitions 
into molecular-dynamics simulations may significantly improve the description of features 
sensitive to the quantal fluctuations in the many-body system, such as the specific heat at 
low temperatures. 

In order to perform a practical implementation of the proposed stochastic dynamics, i t 
is helpful to employ techniques from transport theory. The introduction of the transitions 
governed by (4) leads to a dilTusive transport process in the space of the wave packet 
parameter vectors Z. The evolution of the associated distr ibution, <f>[Z、t)、can then be 
described by a Fokker-Planck equation, 

J i ^ ’ … … 和 - E 忐 w + g . ( 8 ) 

where the transport cocfTicicnts Vn and Dnn' can be calculatcd approximately as functions 
of Z 1 as wc shall sketch below. 

We first note that the residual interaction V in the expression (4) for the stochastic 
transit ion rate should not have any diagonal matrix elements (since such transitions would 
be spurious). This can be accomplished by subtracting its expectation value V = < Z\V\Z > 

before squaring. I t is then possible to show that the transition rate (4) can be wri t ten on 
the fol lowing convenient approximate form, 

w(Z^Z + 6Z) ^ 竽 ( | | . ぬ ) ( ほ . 

x exp ^SZ^C-SZ- (3z(SZ . | | + | | . ^ Z ) , (9) 

where /3z = 一5 In pE/d'H may be interpreted as a state-dependent temperature. 
The total rate of transitions from a given state Z into any other state Z l can then 

readily be calculated, 

W0{Z) = J dV W(Z 一 Z / 〕
た 警 7 | PE{Z) O ^ l ， (10) 

where we have introduced the quantity 

7 l s < Z\(V - Vf\Z > 。 益 . • I I ’ (11) 

which can be regarded as a typical value of the square of the transition matr ix clement in 
⑷ . T h e expected number of transitions taking placc during a small t ime interval At is 
then no = which may also be interpreted as the probabil ity for any transition to 
occur dur ing At. 
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The transport coefficients entering in the Fokker-Planck equation (8) characterize the 
first and second moments of the stochastic changes 6zn that have accumulated over the short 
time interval At, when an average is taken over the entire ensemble of possible transitions 
Z — Z', 

<Szny = Vn{Z) At ’ (12) 

ベ 6zn6znl y = 2Dnn>{Z) At . (13) 

Using the above simple expression (9) for the basic transition rate, we obtain the following 
results, 

Vn{Z) = J dr' 6zn w w、D 

2Dnnl(Z) = J dT' 6zn6znl w 

d\npE、 

dZ , 
ニ-パz [D 

V
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(14) 

(15) 

I h e expression in the square bracket holds to the leading order in I t is easy to see 
that both the center-of-mass position and the total momentum remain unchanged on the 
average, Vn = 0，whereas the individual histories wil l exhibit diffusive Brownian-type 
excursions from the init ial values, due to the composite nature of the wave packets. This 
behavior is to be expected, since the the energy 7t is no longer a constant of motion but 
wil l fluctuate around its init ial value E. 

The existence of the above approximate expressions (10), (14), and (15) makes i t a 
relatively easy task to pick the stochastic changes 6zn at each time step in the course of the 
dynamical evolution, requiring only the diagonalization of the coeflicicnt matr ix し'.Thus, 
i t is iair ly easy to implement the proposed stochastic extension and i t may therefore be of 
practical ut i l i ty. 

Up to this point, the presentation has been kept on a general level, since the method 
is broadly applicable and may be of interest in a variety of physical scenarios. However, 
since we were motivated by heavy-ion physics, we wish to finally discuss how the proposed 
method may be of ut i l i ty in this particular siibfield. Generally, the complexity of nuclear 
collisions necessitate microscopic simulations for an informative interpretation of the (lata. 
Currently, considerable interest is focussed on socallcd multifragmentation events, in which 
the collision leads to the production of several massive nuclear fragments. I t has proven 
diff icult to reproduce this phenomenon by ordinary molecular dynamics, apparently because 
any massive fragments formed tend to be too excited and, consequently, wi l l quickly break 
up. However, if the presently proposed stochastic transitions are incorporated, an excited 
massive fragment wi l l explore its spectrum of cigcnstates and may thereby become trapped 
into more bound configurations, thus leading to an enhanced survival probability. In order to 
appreciate this mechanism, i t is important to recognize that the overall transition rate, and 
the spectral spread of the transitions, are proportional to the variance and so i t generally 
increases wi th the intrinsic excitation energy .1 he chance for escaping from a well-bound 
configuration is then smaller than the chance for deexciting into i t , as is consistent with 
detailed balance, since the well-bound state has a higher statistical weight. I t thus appears 
very possible that the proposed model may account better for the fragment yields. We are 
presently exploring this central issue by means of dynamical simulations [9]. 
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In this note, we have proposed a novel method for taking account of the inherent energy 
spread associated with the wave packcts propagated in molecular-dynamics simulations of 
quantum many-body systems. This simple physical idea is realized by augmenting the 
standard dctcrniinistic equations of motion for the wave packct parameter? by a stochastic 
term that causes continual transitions between wave packets. The resulting model is thus 
akin to the transport treatment of Brownian motion, but it employs a Langevin force 
that originates in the quantal fluctuations of the system. The emerging dynamics exhiDits 
appealing quantum-statistical features and is therefore cxpectcd to present a significant 
advance when complicated processes are addressed. In particular, application to nuclear 
multifragmentation processes may yield dynamical evolutions that are in qualitatively better 
agreement with the observations. 
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