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Abstract. We study the quantum mechanical Liouville model with attractive
potential which is obtained by Hamiltonian symmetry reduction from the system
of a free particle on SL(2, Bt). The classical reduced system consists of a pair of
LiouviUe subsystems which are 'glued together' in such a way that the singularity
of the Hamiltonian flow is regularized. It is shown that the quantum theory of this
reduced system is labelled by an angle parameter 6 e [0, 2TT) characterizing the
self-adjoint extensions of the Hamiltonian and hence the energy spectrum. There
exists a probability flow between the two Liouville subsystems, demonstrating that
the two subsystems are also 'connected' quantum mechanically, even though all the
wave functions in the Hilbert space vanish at the junction.
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1. Introduction

The Liouville model has been under intense scrutiny in recent years, due to its relation to

two dimensional quantum gravity, which is important in the theory of the world sheet of

string theories. The model, which is solvable classically, has proved to be a rich source for

developing techniques as well ;»s for probing the universal features of quantum gravity in

higher dimensions. However, the problem is that despite many fruitful achievements the

model still resists a full understanding as a quantum theory. It is therefore heartening to

observe that its toy model version obtained by ignoring the space dimension governed by

the Hamiltonian,

H(*,x)=*2 + ne2*, (1.1)

can be solved completely for fi > 0 even quantum mechanically. The quantum mechanical

Liouville model possesses a continuous energy spectrum and its eigenstates axe given by

modified Bessel functions [lj. A somewhat peculiar aspect of the quantum theory is that it

has no vacuum state even though the energy is bounded from below, an aspect that stems

from the repulsive exponential potential, which has no minimum. Now one might ask what

happens if we replace the potential 'wall' with a 'well' by putting n < 0. This attractive

exponential potential will undoubtedly give rise to difficulty in quantization because the

energy would then be unbounded from below without any bound states, indicating the

quantum instability of the system. This is a reflection of the classical instability whereby

the particle sinks indefinitely fast into the well, as the classical solution develops a sin-

gularity and blows up at some finite time if ft < 0. This is perhaps the reason why the

quantum theory of the Liouville model with attractive potential has not been considered

seriously so far.

Meanwhile, we have found in the study of W-algebras and the generalized KdV sys-

tems that the Toda field theory, obtained by Hamiltonian symmetry reduction [2] from the

Wess-Zumino-Novikov-Witten model based on a Lie group G, has a certain global struc-

tns« [3]. More precisely, the reduced theory is not merely a Toda theory but consists of

a multiple of Toda theories as subsystems having both repulsive and attractive potentials

in general. In particular, for G = SL(2, R) we have a pair of Liouville models as subsys-

tems in the reduced system, both of which have an either repulsive or attractive potential

depending on the reduction performed. The interesting observation made there [3, 4] (see

also [5]) was that, in the toy model version where the Toda field theories become the Toda

lattices, the singular classical solutions that arise in the Toda lattices are regularized au-

tomatically by the Hamiltonian reduction. An intuitive picture of the regularization may
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Figure 1. A schematic picture of the potential in the regularized Liouville system.

be gained by considering the simple case G = SL{2, K) where we get two Liouville (toy)

models which are 'glued together' by identifying the limits x —• oo of the two models (see

Fig. 1). The singular solution in one Liouville model is regularized by continuing it in time

to the solution in the other Liouville model, causing the particle to oscillate between the

two subsystems. This observation motivated us to investigate more closely the Liouville

model with attractive potential, now regularized in the above sense, to see if any sensible

quantization is possible.

A first step in this direction was made in a paper by Fulop [6], where, like the for-

mer repulsive potential case, the theory is solved completely at the quantum level yielding

Bessel functions as energy eigenstates. The salient result of [6] is that the spectrum is dis-

crete, which is perhaps a natural consequence of the regularized classical solutions being

oscillations, and that there are ineqvivalent quantizations characterized by certain param-

eters specifying the self-adjoint quantum Hamiltonian and hence the spectrum. However,

the argument in {6] appears to be unnecessarily complicated at a few crucial points, espe-

cially when the self-adjoint Hamiltonians are constructed over the entire reduced system.

The aim of this paper is to present a quantization approach which is much simpler and

more direct in these points, and to furnish a complete version of the (regularized) quantum

mechanical Liouville model with attractive potential. We shall find that, as in [6], there

arise inequivalent quantizations but they can be characterized just by an angle parame-

ter 6 e (0,2ir), and that the discrete energy spectrum obtained turns out to be different

from that of [6]. We also see more naturally a probability flow between the two Liou-

ville subsystems, a fact demonstrating that these subsystems are also connected quantum

mechanically.

The plan of the paper is as follows: To make the paper self-contained, in section 2

we provide a necessary background for the classical reduced system. Then in section 3

we present a quantum theory of the reduced system, which is a combined system of two

Liouville models with attractive potential. The final section is devoted to discussion. We

provide two appendices; Appendix A for a brief review of the general theory of self-adjoint

extensions of symmetric operators, and Appendix B for a collection of formulae involving

Bessel functions used in the text.

2. Hamiltonian reduction and the global structure

In order to set the scene for the system for which we discuss the quantization, we here

recall the Hamiltonian symmetry reduction [2] which leads to the system of regularized

Liouville models, together with the global description of the system developed recently [3].

The reduction is the special case n = 2 of the Hamiltonian reduction that yields a

multiple (2 n - 1 ) of open, finite Toda lattices bom the free particle system on the group

G = SL(n, Ht). In the reduced system these Toda lattices, which have in general both

repulsive and attractive potentials, are 'glued together' in such a way that no singularity

arises. In this sense the reduction provides a natural means to regularize the singularities

which exist in those Toda lattices that have attractive potentials. (This regularization is

an example of a more general idea put forwarded originally in [5].)

2.1. Classical Hamiltonian redaction

The free particle on a semisimple Lie group G is described by the Hamiltonian system

(M, il, H) in the following way. The phase space M is the cotangent bundle of the group,

M =T'Goi G x g = {{g, J)\ g e G, J € G} , (2-1)

where Q is the Lie algebra of G (in our case Q = sl(2, R)), which is identified with its dual

Q* using the scalar product. The fundamental Poisson brackets are

{9ij ,9ki} = 0, {gij MTaJ)} = (T°5)y, {tr(T°J) , t r(T6J)} = tr([Ta,T*lJ)> (2.2)

where {T°} is a basis of Q. For Q — sl{2, R) we may take
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The Poisson brackets (2.2) derive from the symplectic form,

fi = dtr (Jdgp"1) .

The Hamiltonian is given by

which leads to the dynamics

(2.4)

(2.5)

(2.6)

and hence yields the geodesic equation 37(3? g~1) = 0 on the group manifold G. We note

that J is the infinitesimal generator for the action of G on M defined by left translations,

while the action of G defined by right translations is generated by J : Af —» G where

J(g,J)-=-g-1Jg. (2.7)

Let us now decompose the Lie algebra Q = sl(2, R) into the subalgebras of strictly

upper triangular, diagonal, and strictly lower triangular traceless matrices, that is, those

subalgebras spanned by the basis (2.3),

G = G+ + Go + G- (2.8)

Then we consider symmetry reduction based on the subgroup TV := N+ x TV_ C G, where

N± = exp(5±), which acts on the phase space M according to

(n+,n-):(g,J)^(n+gnZ\n+Jn+1), V(n+,n_) € TV, (g,J)eM. (2.9)

The symmetry reduction is performed by decomposing the generators, J = J+ + Jo + J—

and J = J+ + Jo + J-, according to (2.8) and then fixing the value of the momentum map

*(g,J) :=(J_,J+)as

*(g, / ) = ( /_,- /+) , (2.10)

where /_ := i/~T_ and I+ :— u+T+ are nonvanishing constant matrices (v± ^ 0) belonging

to G- and G+, respectively. The reduced phase space is obtained as the factor space

M r e d ( / _ , / + ) = Mc(/_,J+)/TV, where MC(I-,I+) := S" 1 (I-.-I+). (2.11)

In Dirac's terminology, this Hamiltonian reduction amounts to imposing the first class con-

straints, J_ = /_ and J+ = —1+, defining Mc C M, and getting the reduced phase space

by fixing the gauge associated with the symmetry group N generated by the constraints;

hence (2.11).

Now the Bruhat (Gelfand-Naimark) decomposition for semisimple Lie groups [7] allows

us to write G = SL(2, R) as

G = Gc U G_e U Glow (disjoint union), (2.12)

where

<7±e := ±N+AN- with A := exp (Go) • (2.13)

The two 'cells', Gc and G-e, are open submanifolds in G containing e and — e (e e G is the

identity element), respectively (and their union is dense in G), while G\ow is the union of

'borders', i.e., certain lower dimensional submanifolds of G. Correspondingly, any element

g €GeU G-e C SL(2, R) admits the unique decomposition in the form,

— * ( } ? ) ( ' A ) 0 1 ) •
where we put q = xT0 and a, c, x 6 R. The two cells G±e are in fact the open submanifolds

of determinant one matrices with sign(522) = ±, whereas G\ovl consists of those matrices

with 522 = 0.

The Bruhat decomposition naturally induces the decomposition of the phase space

M = T'G as M = Mc U M_e U Afiow. Since this decomposition is invariant under the

action of the symmetry group TV, we have the corresponding decomposition of Me =

Ml U Afie U M£ow as well, which in turn induces the decomposition of the reduced phase

space,

MTcd = Me
red U NT* U Af£5 (disjoint union). (2.15)

We note that M±£ are open submanifolds in Tt/red and JWJjJ is a union oflower dimensional

submanifolds. In other words, the Bruhat decomposition introduces the cell-structure in

the reduced phase space. We now show that each of the subsystems associated with the

two cells M±jf is a Liouville model. Indeed, since the submanifolds Af£e are

ML = {(9,J)\9 = ±n+e"n-, n± e TV±, g e Go< J- = I-, [g~1Jg)+ = 1+ } , (2.16)

we see that Mg? = Af±e/(JV+ x TV_) are given by the local gauge section,

£ d = { (±e", J) 19 e Go, J- = J-, (e-" Je")+ = I+ } . (2.17)



The condition in (2.17) can easily be solved for J:

J = J±M,V) — I-+P + e«/+e-»,

where q, p £ Go- Thus we may write

M'±%d = { (±e«, J±c{q,p)) | (q,p) € So * £o } ,

(2.18)

(2.19)

or simply M±£ ~ 5o x Go = R2- By evaluating the symplectic form (2.4) on the reduced

phase space (2.19), we find

ft±2 = dtr {J±e d(eq) e~q) =dtt(pdq) = 2dirdx, (2.20)

where we put p = TtTo with TT 6 R. Similarly, from (2.5) the reduced Hamiltonian turns

out to be

H±tV±<) = | t r ( 4 . ) = ^tr(p2) + ,x t r (T_e ' r + e - ' ) = TT2 + /.e21 , (2.21)

where fi = v+v~. Since the triples ( M ^ , £!!£?, H±e) aj:e n o otter than that of the Liou-

vile model, we conclude that the reduced system obtained by the Hamiltonian reduction

possesses two, identical Liouville models as subsystems.

2.2. Global s t ruc ture of the reduced system

The Hamiltoniaii flow on the manifold M±* is governed by the reduced Hamiltonian (2.21),

which yields the equation of motion,

~ + fie2x = 0. (2.22)

The flow is incomplete (singular) if fi < 0, as is intuitively clear from the rapidly decreasing

potential well in which the particle sinks. For instance, the solution, x(t) = —ln(cosi)

which satisfies the initial condition z(0) = 0 and ̂ f(O) = 0 and corresponds to fi = —1,

blows up at t = j . But since there is no singularity in the full reduced system, the

incompleteness of the Hamiltonian flow that arises in the reduced system when fi < 0 is

just a manifestation of the fact that the particle may leave the submanifold M±£ C M'ed

at finite time. More concretely, the trajectory of the free particle on G determined by

an initial value (±eq,J±c) at t = 0 as g{t) = ±etJ±'eq may leave the open submanifold

G±e, because the flow of the reduced system is obtained by projecting the original flow

on Mc C M to Afred. Thus the singularity occurs when 322 vanishes, which corresponds

to q (or 1) reaching infinity. In this respect, one can say that the embedding of M±£

into Afred provides a reguiarization of the LiouviUe model with fi < 0 where the singular

(blowing up) trajectories are glued together smoothly at x infinity. If, on the other hand,

H > 0, then the Hamiltonian flow is complete, and the two Liouville models are completely

disconnected from each other. Hereafter we confine ourselves to the case /J < 0 where the

two Liouville models are connected, and put ft = — 1 for simplicity since fi can be freely

rescaled by shifting x in (2.21). We also choose v+ = —v~ — 1 for definiteness.

So far, we have analyzed the structure of the reduced system only locally, using the

gauge fixing to identify the reduced system (Afred,fired, HTed) as one containing a pair of

Liouville models glued together along lower dimensional submanifolds. To furnish a tool

to gain information on the global structure, we wish to have a global cross section (gauge

fixing) of the gauge orbits in Mc. Such a cross section is furnished by the Drinfeld-Sokolov

gauge, which is used in the context of generalized KdV equations [8] and W-algebras (see,

e.g., [2]). In our context we need to use it doubly for J and J, and for this reason we call

our global gauge fixing 'double DS gauge' here.

A double DS gauge is defined by requiring that the two generators J and J of the

symmetry be of the dual form,

0 0
(2.23)

Note that by definition J and J are not quite independent (see (2.7)). It is readily seen

that the condition for J in (2.23) is fulfilled if J is of the form in (2.23) and

These parameters (u2,"3,'U4) G R3 are subject to the condition,

F(u) := det g(u) = u\ - u2u\ = 1,

(2-24)

(2.25)

which defines the hypersurface 5 in Hi3 as a model of M r e d . It is straightforward to check

that dF(u)|f (u)_j / 0, which implies that (2.25) gives a regular hypersurface diffeomorphic

to Afred. Regarding the Uj as gauge invariant functions on the constrained manifold Mc,

we find the Poisson brackets

*iu3) = TT, {«4t"2} = U3t = u4u2. (2.26)
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S is not simply connected. In fact, the loop given by, say, the ellipse in (2.28) for some

E < 0 cannot be contracted to a point on the surface <S.

Figure 2. Two typical trajectories on the reduced phase space. The ellipse (E < 0)
corresponds to a periodic motion whereas the hyperbola (E > 0) corresponds to a
motion passing once for all from one cell to another.

The dynamics of the reduced system is determined by the Hamiltonian

Hted(u) = i t = u2. (2.27)

The relationship to the local description of the reduced system given earlier is established

by noting that, since 522 («) = —«4, the cells M^ and Ml^1 are represented by the domains

U4 < 0 and u4 > 0, respectively.

Having obtained a global picture of the reduced system, we now see how the singularity

of the Liouville model gets regularized when the two models are glued together. Consider

the classical solution with a constant energy E, whose trajectory is the curve obtained by

intersecting the hypersurface S in (2.25) with U2 = E. The curve is a hyperbola or ellipse

depending on the sign of the energy E (see Fig. 2),

u\ - Eu\ = 1. (2.28)

It is now clear that, for E < 0, the motion of the particle is periodic, which implies that

the particle does pass the border ti4 = 0 along the curve, and when it does so it gives rise

to a singularity in the solution when viewed as a local subsystem, although the solution is

perfectly regular when viewed as a global system. It is worth noting that the hypersurface

3. Quantization of the reduced system

We have learned that the classical reduced system consists of two Liouville subsystems

glued together between which the point particle oscillates if the energy is negative. In this

section we wish to define a quantum mechanics of the reduced system and examine if this

global feature appears at the quantum level as well. In quantum mechanics observables

are represented by self-adjoint operators. Here we consider the self-adjoint Hamiltonian

of our reduced system, which is perhaps the most fundamental observable, as a crucial

ingredient to set up the quantum theory. The standard procedure [9] for finding self-adjoint

Hamiltonians is to choose a suitable domain where the quantum Hamiltonian, now takes

some operator form, becomes a symmetric operator, and then find an extended domain

where it becomes a self-adjoint operator. (For a brief review of the general procedure,

see Appendix A.) After this procedure, we shall find that there exists a probability flow

between the two subsystems even though all the wave functions vanish at the junction

of the two Liouville subsystems, a fact that illustrates that the two subsystems are also

connected at the quantum level.

3.1. Hamiltonian as a symmetric operator

The basic problem for quantizing our reduced system is that the reduced phase space Mred

is not quite a cotangent bundle of some configuration space, but a system of two cotangent

bundles nontrivially combined. To take this feature into account, we wish to formulate the

quantum theory dealing with the two subsystems simultaneously, in such a way that the

classical connectedness of the two subsystems will also be realized quantum mechanically.

In section 2 we have seen that there exists a global description of the reduced system

using the hypersurface S as a model for the reduced phase space. Among the three

parameters used we choose the variable

Q •= S22(«) = - (3.1)

and regard it as 'coordinate' of the particle. The variable is chosen on the ground that the

component 522 is gauge invariant under the symmetry action (2.9) and hence from (2.14)

we have the direct relation Q = ±e~z with the local Liouville coordinate x. The variable Q

- 1 0 -



is convenient for our purpose since Q > 0 corresponds to the subsystem (AfJ*1, ft^, H"A)

and Q < 0 to (M'jf , filfj!,Hl^), respectively. The canonical momentum conjugate to Q

is then given by P := —2u$lu\ which satisfies

[Q,P) = \, (3.2)

under the reduced Poisson brackets (2.26). In terms of these variables the classical reduced

Hamiltonian (2.27) reads
H~\&p2-<5*- <3-3)

Upon the identification P = 2ex7r the Hamiltonian (3.3) agrees with the local expression

(2.21). Now the trouble is that the Hamiltonian is ill-defined at Q = 0, i.e., at the

junction between the two subsystems. We exclude this point from the domain where Q

is defined: Q € R* -= R\{0} = R+ U R~. As we shall see soon, despite this exclusion

and the apparent trivialization of the reduced system into two decoupled subsystems, it

is possible to construct a quantum theory such that the two Liouville subsystems are

connected nonetheless.

In quantization we elevate these canonical variables to linear operators on a Hilbert

space with the Poisson bracket (3.2) replaced by the commutation relation,

lQ,P)=i. (3-4)

Working with the coordinate representation, we define the Hilbert space by the space of

square integrable functions,

«:={*|H*ll<oo}, (3.5)

where ||<£|| = i/{<t>, <j>) is the norm of the state <f>. We furnish the innerproduct by

where

_ r° dQ
J-00 \Q\

/
+0

(3.6)

(3-7)

The measure dQ/\Q\ used in the innerproduct (3.7) can be derived, for instance, by the

path-integral reduction, where the original measure \[t ft
3(<) for the free particle system on

SL(2, R) reduces to the form Ylt dQ/\Q\(t) after we integrate out the momentum variables

J taking into account the constraints and the gauge fixing conditions [10]. A more direct

way to see this is to consider the phase space path-integral for the reduced system with the

Hamiltonian (3.3) and then integrate on P to get the configuration space path-integral,

which results precisely in the measure dQf\Q\. Note that the measure dQ/\Q\ is just the

standard Toda measure dx in terms of the local coordinate x, as expected. Note also that,

because of the measure, all the wave functions 4>{Q) € "H must vanish at the junction of

the two subsystems: <f>(Q) —» 0 as Q —• ±0.

In order to find a self-adjoint Hamiltonian operator, let us consider the differential

operator H of the form,

H:=-\Q±Q±-^, (3.8)

which is a naive choice for the operator which corresponds to the classical Hamiltonian

(3.3). We can find a domain where the Hamiltonian operator is symmetric,

D(H):={t/>\tl>6H,Htl,(EH,n lim = Q^(Q) = 0}.

In fact, it can be readily confirmed that on D(H) we have

Life 6 D{H).

(3.9)

(3.10)

It is also easy to see that the domain of the adjoint operator H', which as a differential

operator takes the same form as H, is just D(H') := {<l> | ̂  € H, Hip g H}. This shows

that the symmetric operator H is not self-adjoint; D(H') D D(H).

Before discussing the self-adjoint extensions of the symmetric operator, let us consider

the eigenvalue problem of the differential operator H,

> = E<f>.

Using the variable

we find that eq.(3.11) becomes

where

k2 = -4B.

(3.11)

(3.12)

(3.13)

(3.14)
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The linearly independent eigenstatcs of eq.(3.11) are given by the Bessel functions JL(Z)

and Yk(z) with indices k € G. However, only those Bessel functions of the type Jk(z) with

Rek > 0 have finite norms and belong to the Hilbert space H. In particular, for E < 0

there exists a unique k for which the corresponding eigenstate belongs to H while there

is no such eigenstate belonging to 7i for E > 0, and for this reason we henceforth restrict

ourselves to the negative energy states. Note however that none of these negative energy

eigenstates belongs to the domain D(H) where the Hamiltonian is symmetric, as can be

seen from their asymptotic forms (see Appendix B),

(3.15)

Clearly, as Q tends to zero the first term QJk(2/Q) goes to zero while the second term

Q ^ J t ( 2 / ( ? ) blows up to infinity, showing that Jk(z) f D(H) for Refc > 0.

3.2. Self-adjoint extensions

In order to find an extended domain where the symmetric operator H becomes a self-

adjoint operator H. for which D(H.) = D(H*), we first examine, according to the general

theory (see Appendix A), the deficiency indices (d+,d_) of the symmetric operator H.

The index d+ (d_) is given by the dimension of the eigenspace of the adjoint operator H*

with eigenvalue i (—i),

d+ := dimKer(.ff* - i), * + i). (3.16)

We recall that the eigenfunctions of the differential operator H in (3.8) with eigenvalue

i (—t) are given by the Bessel functions J±ko (J±k-) with index ko := 2exp(—Ji). But

since for these eigenfunctions to be in the Hilbert space "H the real part of the indices ±fco

(±fcg) must be positive, the only eigenstate allowed is Jk0 (•/*;), which actually belongs to

the domain of the adjoint operator D(H'). We therefore observe that (d+, d-) = (1,1), a

result ensuring that H admits self-adjoint extensions.

The general theory of self-adjoint extension then asserts that the extended domain

where the symmetric operator becomes self-adjoint consists of three spaces, i.e., the domain,

of the symmetric operator D{H), the eigenspace of the adjoint operator H' with eigenvalue

;, and the eigenspace of H' with eigenvalue — i, with the latter two spaces being related

unitarily. Concretely, it is given by

where
- - Jk- | CJQ

\\Jk-J
The point to be noted is that the domain is parametrized by the angle,

0 6(0,2*-).

(3.17)

(3.18)

(3.19)

The angle parameter 6 therefore characterizes the quantum theory we construct, whose

existence is just a reflection of the ambiguity in quantizing a classical system.

Having achieved the self-adjoint extensions of the Hamiltonian, we now investigate

which eigenstates •/* of the adjoint operator belong to D(H,) in (3.17) for a specific 8. A

necessary and sufficient condition for Jk £ D(H.) is [11]

which takes the form

i = (Jk, H.tf>) Vtfi 6 D(H.). (3.20)

(3.21)

where W((j>\,<f>2) = ^?f$2 — 0i^z? ^ ' f l e Wronskian. An equivalent condition is obtained

if we replace V" with &„ in (3.21), and by using the asymptotic forms (3.15) we arrive at

the relation

(3.22)2*i(fc-Refc0) _ c o s f cosh (vim ko) — tsin
cos | cosh (Trim Jko) + » sin f sinh (Trim fco)

Solving this relation in favour of k, we get

1 F 6 1
k = k{n, 6) := Re fc0 - - tan"1 tan - tanh (Trim fco) + n, (3.23)

where n are integers for which k > 0. We therefore see that the eigenstates allowed by

the self-adjoint Hamiltonian labelled by 8 are characterized by the indices fc(n, 8) whose

energy eigenvalues are discrete, and that from (3.14) the intervals of adjacent discrete

energy levels depend on the angle parameter. Note that as we vary the parameter from

6 = 0 the spectrum changes accordingly and returns to the original spectrum only when
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6 approaches to 2n. Since any two Bessel functions whose indices differ by an integer are

orthogonal to each other with respect to the innerproduct on R*, so are any of the two

eigenstates in the domain D(H,), as required.

3.3. Probability flow between the two Liouville subsystems

We have seen in section 2 that the reduced classical system admits solutions Q(t) oscillating

between the two subsystems given by Q > 0 and Q < 0. We now analyze how this global

aspect manifests itself in the quantum theory. More specifically, we are interested in the

question if there exists a probability flow between the two subsystems. We shall find that

the answer is positive, signaling the fact that the reduced system is a connected system

also quantum mechanically.

For this, consider the state %l>(t) given by a linear combination of two energy eigenstates

(3.24)

where J*,, Jk, € D{H.) for some fixed 6 and Ek. = ~kf/4 for i = 1, 2. We take the two

indices k\ and £2 which are different by some odd integer,

- k2 = 2n + 1, n e Z, (3.25)

and choose the constants c\,C2 € € so that the state be normalized ||V>|| = 1 at t — 0. Then

the orthogonality condition {Jk,, Jk2) = 0 implies that the norm, i.e., the total probability

on the full line R*, remains constant,

!<*,i»-=0. (3.26)

However, the probability on a half line, say Bt+, does not remain constant. Indeed, a similar

computation for the half line reveals that

fc,f Jk,)+{Ek, - 0 (3.27)

because the two Bessel functions with (3.25) are not orthogonal to each other (Jit,, Jk3)+ #

0 on the half line (R+. This shows that there exists a probability flow between the two

subsystems where Q € Bt+ and Q 6 R~, even though the wavefunctions vanish at the

junction. The reason why such a flow can exist is that the Hamiltonian operator is not

self-adjoint with respect to the innerproduct on the half line R+ (or R~), although it

becomes so if we cut the domain 'in half so that it consists only of those eigenstates with

indices given by even (or odd) integers n in (3.23).

4. Discussion

We have seen in this paper that the quantum mechanical Liouville model with attractive

potential obtained by the Hamiltonian reduction (which regularizes the Liouville model

classically) can be solved completely. Although the energy spectrum is unbounded from

below, the fact that only discrete levels are allowed suggests that the system is 'quasi-

stable' at the quantum level. The connectedness of the two subsystems can be observed

by a probability flow, which we have shown to exist. The quantum theory is labelled by

the angle parameter 6 which arises in constructing self-adjoint Hamiltonian operators. In

this respect, it is worth noting that the reduced phase space is topologically R \{0}, that

is, the two dimensional Euclidean plane with a hole, which is homeomorphic to T'S1 =

Sl x Bt. The appearance of the angle parameter may perhaps be understood as a common

phenomenon observed in quantizing on a configuration space with a hole, as in the case

of the quantum theory on S1 or of the Yang-Mills theory, whose quantization yields the

0-vacua by an analogous mechanism.

Our procedure of quantization is similar to that of Fulop [6] but differs in some impor-

tant points. First, unlike our measure dQ/\Q\ for the innerproduct (3.7), the measure used

for the innerproduct in [6] is \Q\dQ, which is obtained from the Haar measure of the group

SL(2, R) by eliminating the degrees of freedom that correspond to the symmetry. However,

in Hamiltonian reduction one has to use the phase space volume element on T'SL{2, R)

to derive the correct reduced measure [10], which is the measure dQ/\Q\ we used. This

causes a certain alteration in the energy spectrum. Second, and more importantly, the

self-adjoint extensions of the Hamiltonian operator are achieved in [6] by considering a

domain such that the eigenstates on the full line R* are formed out of linear combinations

of two eigenstates, each defined on the half lines R+ and R~, respectively. Since one can

take distinct angle parameters to specify the self-adjoint extensions on the two half lines,

one needs two angle parameters in general to specify the self-adjoint extensions on the full

line R* (plus an extra parameter to render the eigenstates mutually orthogonal). This we

find an unnecessary complication, given that the self-adjoint extensions can be achieved on

the full line without referring to those on the half lines. Our simpler quantization yields

the energy spectrum given by a single class of discrete levels with indices (3.23) specified
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by the angle 8, a result which we feel is natural to associate with the classical periodic

motions on the smooth phase space. In contrast, the spectrum in [6] consists of two classes

of discrete levels similar to (3.23) but with even integers n £ 27L.

Finally, we wish to stress that the quantization discussed in this paper is not the

unique one available to the Liouville system. Indeed, from the way the classical system is

defined, it is perhaps more natural to quantize first the system of a free particle on G and

then carry out quantum Hamiltonian reduction. This will provide a way to confirm what

we have learned in the quantum mechanical Liouville model given in this paper.
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Appendix A. Symmetric operator and self-adjoint extension

Here we briefly summarize the general theory of self-adjoint extensions of symmetric op-

erators [9]. Let A be a linear operator on a dense domain D(A) in a Hilbert space 7i.

Consider ip £ H for which

is satisfied for some ip' £ "H. Define the domain D(A') by the set consisting of those ip.

It is then easily confirmed that ip t-* ip' gives a linear map. The adjoint operator A* is

defined by this linear map A*: ip' = A'ip. If the operator A fulfills the condition

D(A') D D(A), A' = A on D{A), (A.2)

then A is a symmetric operator. A symmetric operator is called a self-adjoint operator

when the two domains coincide, D(A') — D(A). If A, B arc two operators such that

D(B) D D(A), B = A on D{A), (A.3)

then the operator B is an extension of the operator A. A symmetric operator A can be

extended to be a self-adjoint operator A. if there exists a domain D(A.) such that

When a certain condition is fulfilled (which we discuss shortly), such self-adjoint ex-

tensions of a symmetric operator A are possible in the following way. We begin by decom-

posing the domain D(A') of the adjoint operator A' as

D(A') = D(A) + K-(A') + K+(A'), where K±(A') := Ker(i* ±«). (A.5)

To see that this decomposition is possible, we first decompose any state ip £ D(A*) as

ip = £ + a where ( £ D[A) and a g D{A). Applying (A* — i) to ip we find

Note that on account of the property \\{A ± i)4>\\2 = \\A(j>\\2 + \\<p\\2 for V0 £ D(A) the

spaces (A±i)D(A) are closed subspaces in H, and that they are orthogonal to K^{A'),

respectively. Thus we can write (A' - i)a = (A - i)/3 - 2:£, where /3 £ D(A) and £ €

K+(A'). But since -2if = (A* - i)£, we have

(A* — i)(ip — <f> — (,) = 0 , (A.7)

where <}> := £ +/3 £ D[A). It then follows that 77 := ip-(f>-£ £ K-(A'), that is, any state

ip € D(A*) can be decomposed as

, <t>eD(A), • K-(A'), i) £ K+(A'), (A.8)

which proves our claim (A.5).

It can be shown that a necessary and sufficient condition for satisfying the relation

lip. A*w} ̂  (A*ip. ip/ (A.9)

for ip € D(A*) in the form (A.8) is ||£|| = ||7?||, i.e., the latter two components must be

related by a unitary transformation v = Ut,. Such a unitary transformation exists if and

only if the two deficiency indices (d+,d..) defined by

d+ = dimK-(A'), <f_ = dimK+(A'), (A.10)

are equal d+ = d Hence, if this is the case, the symmetric operator A can be extended

to a self-adjoint operator A. with the domain

D(A') D D{Al) = D(A.) 3 D(A). (A.4)
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Appendix B. Orthogonality and the asymptotic forms of Bessel functions

Bessel functions Jk(z) are defined by the series,

(-IP
Jk{z) = ( ! ) arg|z|<7r, k€<L. (B.I)

The other type of Bessel functions are Vfc(z) := (cos(Jkx)Jfc(z) - J-k(z))/sin(fcir). The

Bessel functions (B.I) have the following asymptotic forms for z approaching infinity and

zero:

— cos[z- - (* + !)],
z\k

(B.2)

We define the Bessel functions on R by analytically continuing them from the upper half

plane lmz > 0, that is, we give the values on R~ by rotating the functions on R+ by IT,

Jklz) = Jk(e"(-z)) = ek*%(-z), argz = TT. (B.3)

Note that Jk{z) = Jk-(z) for z € R+ whereas J£(z) = e-2ik~*Jk.(z) for z 6 R~.

Due to the formula (B.3), integrals of the Bessel functions on the full line R\{0} read

{J*,Ji) = (1 + e -^ - - ' ) ' ) ( J f c , J , ) + . (B.4)

The integrals (Jk, J j ) + on the half line R+ can be evaluated by means of Lommel's integral

[12],

If Re (fc +1) > 0 then the above integral converges, and from Q = 2/z we obtain

s in[ | ( f c - -0] , (B.6)
6-.+00

where we used the asymptotic forms (B.2). If k, I 6 R and Jk - / = n S TL then the integral

on the full line vanishes, (Jk, Ji) = 0. This occurs for two different reasons depending on

whether n is even or odd; for even n, the integral on the half line vanishes {Ju, Ji)+ = 0,

whereas for odd n the integral is not zero but the factor (1 + e"*'*""')) vanishes.
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