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Preface

The aim of these lectures is to give a self-contained introduction to
nonrelativistic potential models, to their formulation as well as to their
possible applications. At the price of some lack of (in a mathematical
sense) rigorous derivations, we try to give a feeling and understanding
for the simplest conceivable method to extract the explicit form of the
forces acting betwcen quarks from the interplay between experimental
observations and thecretical considerations. According to this spirit,
we demonstrate, in detail, how to obtain the underlying Hamiltonian
and how to determine the Loréntz structure of the quark—(anti-)quark
interaction potential from well-established experimental facts.

Vienna, December 1995
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Einleitung

Die — theoretische — Elementarteilchenphysik verfiigt in Gestalt der
sogenannten ,Standard-Theorie” iber eine mathematisch konsistente
Quantenfeldtheorie der nicht-gravitativen Wechselwirkungen. Im Rah-
men dieser Standard-Theorie werden die starke Wechsclwirkung durch
die Quantenchromodynamik und die elektroschwache Wechselwirkung
durch das Abdus Salam-Glashow~Weinberg-Modell beschrieben.

Die Quantenchromodynamik (QCD) stellt eine Theorie der starken
Wechselwirkung auf dem Niveau der Quarks dar: die starke Wechsel-
wirkung wird durch den Austausch von an die Farbladung koppelnden
Gluonen zwischen den Quarks vermittelt. Die zwischen den Hadronen
wirkende Kernkraft a8t sich in diesem Bild als ;, Van der Waals-Kraft“

der starken Wechselwirkung verstehen. _

' Die Quantenchromodynamik besitzt zwei besonders fundamentale
Eigenschaften: 1. ,Asymptotische Freiheit® — die Theorie verhilt sich
‘im Hochenergielimes wie eine Theorie ohne Wechselwirkungenr ~ und
2. “Confinement” — alle physikalisch beobachtbaren Zustinde tragen
genau Farbladung Null. Als Konsequenz des Confinements kdnnen die
Quarks nur in farbreutralen Bindungszustanden, nicht jedoch als freie
Teilchen existieren.

Das Confinement beruht auf dem Umstand, daBl — im Gegensatz zur
Quantenelektrodynamik, wo die Trager-Teilchen der Krifte, die Pho-
tonen, selbst elektrisch neatral sind - in der Quantenchromodynamik
die Austausch-Teilchen, die Gluonen, eine nichtverschwindende Farb-
ladung tragen und daher zusitzlich Selbstwechselwirkungen eingehen.
Bedauerlicherweise stellt das Confinement jedoch ein nicht mehr im
Rahmen der Stérungstheorie erfaBbares Phinomen dar. Aus diesem
Grund ist es bis jetzt nicht moglich, die detaillierte Form der zwischen
den Quarks herrschenden Krafte aus der Quantenchromodynamik ab-
zuleiten.

Als Ausweg bietet sich hier die Beschreibung dieser starken Krafte
durch - nichtrelativistische — Potentialmodelle an. Einer der Haupt-
vorziige dieser Potentialmodelle besteht in ihrer relativen Einfachheit.
Thnen liegt aber die fundamentale Annahme zugrunde, da8 fiir gebun-
dene Zustinde von Quarks eine nichtrelativistische Betrachtungsweise
zulassig ist. Die Rechtfertigung dieser Vorgangsweise besteht letztend-
lich in der erfolgreichen Konfrontation mit dem Experiment. Im Rah-
men dieses Zugangs tritt an die Stelle der Ableitung des Quark-Quark-
Potentials aus der zugrundeliegenden Quantenfeldtheorie die Bestim-



mung der Gestalt des Potentials aus dem Wechselspiel von theoreti-
schen Modellen, die natiirlich mit den Forderungen der Quantenchro-
modynamik in Binklang stehen miissen, und experimentellen Befun-
den, wie etwa Massenspektra und Zerfallsbreiten der Hadronen. Das
so ermittelte Potential findet dann bei der (nichtrelativistischen) Be-
handlung von Quark-Bindungszustinden in der Schrodingergleichung
Verwendung.

Dieses Potential mufi demnach auf Jeden Fall zwei charakteristische
Komponenten enthalten: :

1. Der kurzreichweitige Anteil ist theoret,lsch gut verstanden, da. er

.im Rahmen der Storungstheorie aus der Quantenchromodynamik

ableitbar ist. Der , Ein-Gluon-Austausch® zwischen Quarks fiihrt
auf einen Coulomb-artigen Beitrag zum Potential.

2. Der langreichweitige Anteil mifite wohl fiir die Beschreibung des
Confinements verantwortlich sein. Uber diesen Anteil lassen sich,
wie bereits erwahnt, storungsiheoretisch keine Aussagen machen.
Einige Hinweise zum Verhalten des Potentials in diesem Bercich
konnen eventuell aus den Gittereichtheorien gewonnen werden.

Historisch gesehen wurden Potentialmodelle zunachst fir das Stu-
dium schwerer Quark-Antiquark-Systeme herangezogen. Dem liegt die
Uberlegung zugrunde, daB das Verhaltnis von kinetischer Energie zu
Gesamtenergie — und damit auch der Relativabstand ~ der Quarks sich
mit steigender Quarkmasse verringert, soda man dort eher Giiltigkeit
der nichtrelativistischen Naherung erwarten darf. Im skizzierten Bild
eines Quark-Potentials mit kurzreichweitigem Coulomb-Beitrag und
langreichweitigem Confinement-Anteil werden fiir Systeme schwerer
Quarks die Eigenschaften ihres Bindungszustandes primar durch den
Coulormb-Teil bestimmt. Dadurch besteht eine gewisse Analogie zum
Elektron-Positron-Bindungszustand, dem Positronium, und man kann
sich auch bei der Behandlung von Quarkonia von der in der Quanten-
elektrodynamik erworberen Intuition leiten lassen.

Die Bezeichnung ,,Quarkonium* wurde zunachst nur {iir Bindungs-
zustande (g7) von schweren Quark—-Antiquark-Paaren geprigt, im ein-
zelnen ,,Charmonium* fiir (cc), ,Bottcmonium® fiir (bb), ,, Toponium*
fiir (tt). Spater wurde dieser Begriff wenigez restriktiv verstanden, um
auch Bindungszustande von leichten Quapks und gemischte Systerme,
bestehend aus einein leichten und einem schweren (Anti-) Quark, mit-
einzubeziehen.



Brenenne

Ouauka 27eMeHTapHHX YaCTHL, B paMKaX TaKk Ha3mBbaeMol
,CTanapTHoft Teopun® npelicrabider coboll MaTeMaTHheckM coria-
COBaHKY0 KBaHTOBYIO TEOPHIO [OJIA BCeX HEIPAaBHTAIMOHHEIX B3aH-
Mogneltcreait. C Toyxn 3peHHA CTannapTHON TeOPHH, CHJIBHOE B3aH-
MozellcTBHe OIMHCHBAETCA KBAaHTOBOH XpomoAuHaMuKofi, a ciafoe u
2JIeKTpOMarHKTHOe B3anMouelicrBue — Monensio Iismoy-Baiin6epra-
Canama.

KsanaToBas XxpoMoARHEaMuKa IPeAcTaBiisieT coboll Teopiio CHibHO-
ro B3auMOOEHCTBHA Ha ypoBHEe KBApKOB — CHJIBHOE B3auMoledcTphe
MEeXKJy KBapKaMH OCYUICCTBASeTCs NOCPeACcTBOM oOMeHa IUooHaMHu,
CBSI3AaHHEIME C UBeTHmMH 3apagamu. CunbHoe p3auMonelicTBme Me-
Oy alpOHaMH MoXKeT OWTh NpPEeACTaB/IeHo B 3ToH TeopHH KakK ,CHia
Bau-gep-Baansca® casneHoro paaumopeltcTus.

Kpanropas xpomomunamuka obnanaer mpyma QyHAaMesTIIbHEL-
MH CBOHCTBaMH: ,aCHMITOTHYIECKOR c3060AB“ ~ B Ipelese BHCOKHX
aHepruil Teopus Beger cebs kak Teopust Ge3 psamMogeHcTBHA — M
sKondalinmenta® (confinement, yaepxannue) — Bee pusnieckn nabmo-
AaeMble COCTOAHHA aApnAloTcA Becupertnimu. Hs-sa xondaitnmenta
KBapPKH MOTYT CYMECTBOBaTb TOJBKO BHYTPH Gecnpernbix COA3aHHBIX
cocTostHui, a He KaK cBOGOAHBIE YacTHINH .

Kondailamenr asnserca ciencrsneM Toro o0cToATeIBCIBS, YTO, B
OTJIHYHME OT KBAHTOBOH dJEeKTpOINHAMUKH, B KOTOPOX HOCHTENH CHJI,
$OTOHDBI, CaMA ABJIAIICA 2IEKTPHYecKn HeliTpansHbIMH, a 0OMeHHbBIE
YJacTHIH! B KBARHETOBOR XpOMOIMHAMHEKE, [JIIOOHK, 06J1a1a10T HeHyJlie-
BBIM LBETHBIM 3apHAOM H HO3TOMY JOHOJHHTEJILHO B3aHMOUEHCTBY~
10T Mexny coboft. K coxxaneanio, kondattumMenT npeacrasnser cobolt
ABJIEHKE, KOTOpoe HeBO3MOXKHO OXBATHTh B paMKaX TeODHH BO3MYIUe-
nuft. Ilo a7oil mprYNHe B HacTOAlee BpeMs H3 IPHHIMIOB KBAaHTOBOHR
XPOMOIMEAMHKH HEBO3MOXHO JETAJILHO ONPEACTHTL CTPYKTYPY MeX-
KBapKOBBIX CHJI.

Brixonom w3 9TOre nosoXeHAN SBIAETCS ONMCAHME PTAX CUII HO-
CPEOCTBOM HEPEJIATHBACTCKHX NOTEHnManbAnX moleneh. Onmo a3
IJIRBHBIX OPEUMYINeCTB DOTERIBAJbENX MOAeiell COCTOHT B HX OTHO-
cuTessHOM mpoctoTe. ONHAKO B HX OCHOBE JIEKHT (YyHIaMERTabHOE
OpennoJIOKEeHRe O TOM, ITO JJIA CBA3aHHLIX COCIOSHUM KBapKoB Jo-
nycTiiM JRmb HepeiusTRsHCIckni nopxon. OBocmoBakmne 9Toro mox-
XOI@& COCTOMT, B XOHIEe KOHIOB, B YCHEIIHOM COLOCTRBNEHHH € BKC~
NepHMEHTAJILHNMA JaHHHMH. B paMkax 3Toro nmoaxoia BMECTo BhI-



BOLA MEXKBAPKOBOIO NOTCHUHAJIA H3 HCXOoAHON KBAaHTOBOK TeopHH
TI0JIA MBI HMeECM JIeJ10 C HaxoxaenueM GopMal NOTEHIHANIA U3 B3aHM-
HBIX npe,uqxasgn_xiﬁ_ Pa3JIHIHBIX , TEOPETHICCKHX Mo,ueneii,_.xoropue:,
€CTCCTDCHIIO, nqsbxﬂu' OLTH corylacoBaHK ¢ TPeOOBAHHAMH  KBaHTC-
Bolf XpOMOIMHAMAKH M C pe3yJibTaTaMH 3KCOEPHMEHTOB, IO H3Mepe-
HHIO CHEKTPOB Macc K UIHpHH pacnazos aaponos. Haltmeudsiit Taxmm
obpa3omM MoTeHNuaN MoxeT OBTL HCNOIb30Ball NIPH PelleHHH ypaBHe-
nus [{Ipenunrepa Ha ClEKTp MacC CBA3AHHBIX COCTOAHAM KBApKOB.

TloTenunan B ar0boM cirydae NOJDKEH COAEPHKaTh ABE COCTABIIAIC-
uue:

1. KopoTkozneticTBytomyio 4acTh, KOTopas X0pouo NOHATA TeOPEeTH-
4ecKH, TaK KaK B PAaMKaX TEOPHH BO3MyINEHHit OHA BRIBOAMMA H3
kpanToBoli xpomomunaMuku. OnHormoonnbtit 06MeH MeX Iy KBap-
KaMM NMPHBOMUT K KYJIOHOMONOGHOMY DKJIally B MOTeHuMall.

2. InunHoneficTBylOLyl0 YacTh, KOTOpas OTBeYaeT 3a KoHdaliH-
MenT xsapkos. Ilo nopony »Toro Bks1ana, KakK y»Ke yoMHHAJIOCh,
B paMKaX TEOpMHM BO3MYLICHU{l HEBO3MOXHBI KakHe-J14bo BHICKa-
3pipanusn. Hekoropsle yka3anusa 1a nopeleliie DOTEHUHANa B 9Tol
0671aCTH MOXXHO M3BJie¥b M3 PEUIeTOYHHX KaJmbpoBoYHbBIX Teo-
pHii.

HcTopnuecku BuepBble HOTEHUMANLHBIE MOINEJIN MCHOJIL30BAJIMCh
OpH HM3y4eHHHM TIKeJblX KBAapK-aBTHKBapKoBHX cHcTeM. B ocuose
3TOro JeXxuT coobpaxennme O TOM, YTO OTHOWIEHHE KHHETHUECKON
SHEPTHM K TOJIHOM HEPrHH, & TeM CaMbIM U OTHOCHTEJIhHOE PAacCTo-
AHME MEXJy KBapkaMH yMeHbIIaeICd ¢ POCTOM MacChl KBapKa, TaK
YTO HAJ1A TSOKEJIHX KBAapK-aHTHKBaApKOBbIX CACTEM MOXHO OXHIATbL
BRINOJIHHMOCTH HepeJIATHBHCICKOrO NpHOMDKeH .

B onucannolt kaprHHe, Korja IOTeHUMaJl KBapKa HpeNCTaBliger
cololt cyMMy KoporkoaeHcTBylowelt KyJioHOBCKOK wacTH M JJIHKHO-
AeficTByromeft yacTy, obecneunBawimell kondailiMeHT, A cHCTeM
TAKEIIbIX KBAPKOB CBOHCTBA MX CBA3aHHOIO COCTOARMA olpcaels-
I0TCA TJIABHKIM 00pa3soM KYJIOHOBCKOH 4acToio. TeM cambiM HMmees:
MecTo oupeleJIeHHaA aHaJIOTHA CO CBA3RHHKIM COCTOAHHEM CHCTEMbI
»2JIEKTPOH-NIO3UTPON", MO3UTPOLHEM, U IIPX PACCMOTPEHHH KBApKO-
HHA MOXHO PYKOBOACTBOBAThCH HATYHUMeHd, pa3puroift B KBAHTOBOK
3JIeKTpof¥HAMHKe,

Tepmun ,kpapxonuil ymorpebisiacA cHayalla MIA CBASARHMX
coctosnult (gf) Twatciofl HapW KBapK-aHTEKBApK, B YACTHOCTH



»9apMOHKH“ 1na (c€), ,60rroMomnit” mnst (bb), ,Tonmoruf mna (tt).
Iloapnee 5To momsTHe CTajl0 TPAKTOBATHLCH INMpe, ZJIA TOrO, ITO-
65! OXBATHTL TAKIKe CBA3AHHBIE COCTOSHMSA JIETKMX KBapKOB M CMe-

IIAHAKIX CHCTEM, COCTOANIMX M3 OFHOIO JIETKOTO M OXHOIO TDKEJIOro
(amTe-) xBapka. :

Bonsdraar Jlroxa
@paur O. HI&6epn
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Chapter 1

Nonrelativistic Potential
AN

In principle, the appropriate framework for the description of bound
states within relativistic quantum field theories is the Bethe-Salpeter
formalism. There are, however, some circumstances which are opposed
to this. The Bethe-Salpeter equation cannot be solved in general. The
interaction kernel entering in this equation is not derivable from QCD
either. The propagators of the constituents have to be approximated
by their free form, the involved masses, however, being interpreted as
effective (“constituent”) ones. So, even if one is willing to put up with
the complexity of the Bethe-Salpeter formalism, it is hard to obtain
information from this approach.

The alternative which comes closest to one’s physical intuition is the
description of bound states with the help of the Schrodinger equation
{1, 2, 3]

Hy=Evy,
where the nonrelativistic Hamiltonian for a quantum system consisting
of two particles with masses m; and mg, respectively, which interact
via some potential ¥ (x) is given in the center-of-momentum frame by

2
H=m1+m2+-21-,;+V(x);

here i denoles the reduced mass,
= _um2
H=E—,
my -+ my
Our main task is sinipiy to find that potentiai ¥'(x) which describes
the interaction of the two particles constituting the bound state under
consideration. By investigating the corresponding scattering problera
of the involved bound-state constituents, the perfurbatively accessible
part of this potential may be derived according to the following recipe

(for details see, for instance, Refs. [4, 5)):

1



2 CHAPTER 1. NONRELATIVISTIC POTENTIAL

1. Compute the scattering amplitude T, which is defined in terms
of the S-matrix element Sg; introduced in Appendix A,
S5 = {f, outli,in) ,
by the decomposition
S = 6 +i (2n)* 6(F - R) T,

for the elastic scattering process i— f in lowest non-trivial order
of perturbation theory, the so-called “first Born approximation.”

2

. Perform the nonrelativistic limit, realized by the vanishing of the
momenta p of the involved bound-state constituents; we indicate
this limit rather symbolically by

p—0.

3. Obtaiﬂ the configuration-space interaction potential sought after,
. V(x), as the Fouricr transform of the above scattering amplitude
T . :
- V(x) = —(2#)? [ d®kexp(—ik - x) Tu(k) -

For the sake of simplicity, we éplit off all the normalization factors
of the ‘one-particle wave functions, given for a fermion of mass m and

- kinetic energy
E, = yp?4+m?

- f
G E,

we thereby define a quantity ¢ according to
_. 1 ‘m? " '
C(2m) VEn Ep By B,

In the framework of this nonrelativistic treatment, the short-range
part of the quark-antiquark potential (which is of perturbative origin!)
will be determined from quantum-chromodynamics (QCD) according
to the above prescription. The shape of the long-range, confining part
of the quark—antiquark potential (which is of nonperturbative origin!)
will be obtained from the analysis of the possible Lorentz structures of
the potential, its coordinate dependence from the comparison of some
of the resulting predictions with experiment. ‘

by

Ty



1.1. NONRELATIVISTIC LIMIT

1.1 Nonrelativistic limit

In the nonrelativistic limit, our whole formalism, so to say, collapses
to an extremely simple one: - .

e The relativistically correct expression for the one-particle kinetic
energy,
By = p?+m?,
reduces to ‘
E,=m

e The Dirac spinors u(p, &) and v(p, o) describing fermions of mass
m, four-momentum p, and spin polarization o,

Ep + m 1

2m

u(p, ‘7) = Xo 5

Ep+m

o-p .

lE-f-m —\ .

v(p,o’) = "%;;—(Ep"‘m')x;, X§E—10‘2Xa;
1 ) .

where o = {0;,i = 1,2, 3} are the three Pauli matrices

01 0 —i 1 0
1=l10) 2TV\i o) BTlo-1)

reduce to the nonrelativistic spinors
X
o) = (%),

o The normalization of the Dirac spinors adopted by ué, '

Il

v(o)

-

E,
w!(p, o) ulp, 7) = V'(p, o) o(p, T = 2 v
reduces to the nonrelativistic normalization =~
7['(0’) u(r) = x'fy J('r:=’5a'r' :
‘U'(a’) t’(‘r) = X:' Xﬁ = 610 .



4 CHAPTER 1. NONRELATIVISTIC POTENTIAL

1.2 Static potential in quantum electrodynamics

Let us illustrate the very simple procedure outlined above by applying
it first Lo eleciron-positron scattering:

e~ (p1,01) + e¥(p2,02) = e~ (g1, 1) + e¥ (g2, ™) -

e_('lhrl) E+(q1)72)
EVpgm e e e =2 EY
v
e~ (p1,01) e¥*(p2, 02)

Figure 1.1: Electron-positron scattering, one-photon exchange graph.

e (@, 1) e*(g2, )
e
I
|
1 Y
1
e
e (p1,01) et(p2, 03)

Figure 1.2: Electron~positron scattering, pair annihilation graph.



1.2. STATIC POTENTIAL IN QUANTUM ELECTRODYNAMICS 5

The interaction term in the Lagrangian'of ﬁu'ax.ltilm electrodynamics
(QED) for the coupling of a fermion with electric charge e, described
by the Dirac spinor field (z), to the photon field A#(z) is well known:

L8 () = e(z) 7, ¥(z) A*(x) .

In lowest non-trivial order of the perturbative loop expansicn, just
two Feynman diagrams contribute to the scattering amplitude T}; for
_clastic electron—positron scattering:

e the exchange of a single photon, v, between electron and positron,
as depicted in Fig. 1.1; and

¢ the annihilation of the electron—positron pair into a single photon,
7, followed by a subsequent creation of an electron-positron pair
by this single photon, as depicted in Fig. 1.2.

With the help of the Feynman rules given for an arbitrary, that is, in
general, non-Abelian, gauge theory in Appendix B, it’s straightforward
to find the corresponding scattering amplitude Tt

o The contribution of the one-photon exchange graph in Fig. 1.1 to
our scattering amplitude ¢ reads
tach = =S 0, m) 1y o1, 00) om0 P ol ) s (L)
where k denotes the in;/olved momentum transfer,
kéPl - <.114= 92— D2 .
The square of this momentum transfer,
B o=m-a)?
= (Bp ~ qu)z -k*,

which enters in the denominator, of the scattering amplitude #.,q,,
reduces in the nonrelativistic limit to

k= k2.
The spinor factors 4" u and 4 4* v may be evaluated very easily:

— For our particular choice for the normalization of the Dirac
spinors u and v, we have, in the nonrelativistic limit,

i(r) vou(r) = ul(n)u(e) =60, ,

3(o2) Yor(m) = vN(02) v(r2) = b1y, -



CHAPTER 1. NONRELATIVISTIC POTENTIAL

- - In the Dirac representation, the Dirac matnces 7" {77}
are explicitly given by

m= (o)
(<)

Inserting these explicit representations of the Dirac matrices,
we obtain, in the nonrelativistic limit,

~

#(r)yuler) = ul(r) 107 (o)

or(} ) (L2 7)o

W) (5§ )uten

wa(23)(%)

=0

it

and, similarly,
9(02) v v(72) =
Accordingly, the scatfering amplitude fexh of Eq. (1.1) reduces to

e2
ic;ch = i(-z.érldl 67702 .

¢ The contribution of the pair annihilation graph in Fig. 1.2 to our
scattering amplitude ¢ reads
2
[4 _ . -
tann = mu(ql, 71) Y v{g2, 72) ¥(p2, 02) 7* ul(pr, 01) -

Here, the total momentumn P of the systein under consideration,
Peptmp=aqt+an,

enters in the denominator of the scattering amplitude ¢py. In that
case, however, the square of this total momentum,

P? = (p+p)* _
(EPI + EP))Z - (pl + p?)? ’



1.2. STATIC POTENTIAL IN QUANTUM ELECTRODYNAMICS R

reduces in the nonrelativistic limit to
P’=(p+p)’ =(2m)>.

Thus, compared with the contribution to the scattering amplitude
t arising from one-photon exchange, {exch, the contribution to the
scattering amplitude ¢ arising from pair annihilation, ¢ann, will be
of the order of

K2

F .
This observation indicates that the annihilation contribution tapy,
represents, in any case, already some relativistic correction to the
exchange contribution #.., for which there will be no room at all
within a purely nonrelativistic investigation and which, therefore,
has to be neglected for the present discussion.

We are unambiguously led to the conclusion that, in the nonrelativistic
limit, only the one-photon exchange graph contributes to the T-matrix
element for elastic electron—positron scattering:

T —--(Q—W)Et —-W}—(—i&—,g,&r,a, .

According to step 3 of our procedure, the interaction potential V(x)
is obtained as the Fourier transform of the T-matrix element Ty;. Since,
at present, we are exclusively interested in the nonrelativistic limit, we
shall obtain in this way only the nonrelativistic (or static) part Vir(x)
of the potential:

Var(x) = —(2r)3 / d3kexp(—ik - x) Tu(k)
= —Z2_}r5§/d3k exp(—ik-x)t

3, exp(—ik - x)
grec=l

(27')‘
The result of the rcquxred integration may immediately be written
dowa:

1. The integral is obviously invariant under rotations. Consequently,

it has to be some functior ¢ of the radial coordinate r = |x[ only:

JreRlen) g



8 . CHAPTER 1. NONRELATIVISTIC POTENTIAL

2. For dimensional reasons, this function ®(r) has to be proportional
to the inverse of r: . 1
i =,

These considerations justify the ansatz

5, exp(—ik- x)
(21r)3 -/d k k2 r

with some dimensionless constant A. We determine the constant A by
applying the Laplacian A = V - V to both sides of this ansatz:

o Tor the left-hand side, we find

A/dsk EXP(—kizk'x) = (2 )B/dakexp(-lk x)

~80)(x) .

’

(2 )

o For the right-hand side, upon remembering the relation
A’% = 47 6O(x) ,

we find 1
A A—; = —4r A6¥(x) .

By comparison, the dimensionless proportionality factor, A, is pinned

down to the value 1

A=—.
4r

With due satisfaction, we realize that, by following step by step our
general prescription given in our introductory remarks to this chapter,
one is indeed able to recover, from the nonrelativistic limit of the Born
approximation to the T-matrix element for (elastic) electron—positron
scattering, the static Coulomb potential of quantum electrodynamics:

() = -

irr’

or, with the usually employed definition

e?

4r
of the electromagnetic fine structure constant,

VR () = =2

Cen =




1.3. STATIC POTENTIAL IN QUANTUM CHROMODYNAMICS S

1.3 Static potential in quantum chromodynamics

The overwhelming success in the case of quantum electrodynamics has
contributed to enhance our confidence in our prescription of extracting
the (perturbatively accessible part of an) effective interaction potential
from the relevant elastic-scattering problem. Hence, we do not hesitate
to apply this procedure also to the case of quantum chromodynamics.

The relevant situation for the determination of the potential which
describes the quark forces acting within mesons is the quark-antiquark
scattering

gi(p1, 01) + G;(p2, 02) = gy, 71) + Ge(q2, 1)

where the indices 1, j,... = 1,2, 3 denote the colour degrees of freedom
of the involved quarks.

According to our brief but nevertheless comprchensive—not to say,
exhaustive—sketch of quantum chromodynamics given in Appendix C,
the coupling, with the interaction strength gs, of a quark g, represented
by the Dirac spinor field ¢;(z), to the gluon fields G%(z), ¢ = 1,2,...,8,
is described by the interaction Lagrangian

£0(z) = 02 1(z) 7. 22 5(2) GA(e) ,

where Ay, 2 = 1,2,...,8, are the eight Gell-Mann matrices; an explicit
representation of these matrices may be found in Appendix D.2. They
serve to construct a fundamental (three-dimensional) representation of
the generators of the gauge group SU(3) of quantum chromodynamics:

Aa
5

Because of the (structural) similarity of the interaction Lagrangians
L of quantum electrodynamics, ﬁ?ED, and quantum chromodynamics,
,C?CD, again only two Feynman graphs potentially contribute, in lowest
non-trivial order of the perturbative loop expansion, to the scatiering
amplitude Ty for elastic quark-antiquark scattering:

a
Tfund -

o the exchange of a single gluon, G,, between quark and antiquark,
as depicted in Fig. 1.3; and

o the “annihilation” of the quark-antiquark pair into a single gluon,
G, followed by the subsequent creation of a quark—antiquark pair
by this single gluon, as depicted in Fig. 1.4.
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meson
g, n) (g2, 72)
A 2,
y.’rﬂ-zg-“ __—G——- y.'rv—;_
%i(p1,01) 3i(p2,02)
h meson

Figure 1.3: Quark-antiquark scattering, one-gluon exchange graph.

meson
wlan) §e(g2,m2)
Ab
% “5“
|
{
i G
! a,
92 Tn —:,L'
gilpr, 1) i(p2,01)
meson

Figure 1.4: Quark-antiquark scattering, pair annihilation graph.
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There is absolutely no need to calculate the corresponding T-matrix
elements Tt; once more. Comparing the above interaction Lagrangians
Ly of quantum electrodynamics, ,C?ED, and quantum chromodynamics,
CQ , we realize that—loosely speakmg—we may obtain the transition
amplitudes required in the present case from the ones computed in the
previous section by simply replacing in the latter the electric charge e
by the expression

Ad
B Are 7

However, we have to take into account that, a,ccordmg to the famous
confinement hypothesis, all the quarks inside a hadron form necessarily
a colour-singlet state. Consequently, we feel obliged to amend—which,
as there is no danger of confusion, we do without change of notations—
the transition amplitudes Tj; for the scattering of free particles by the
(normalized) meson colour wave functions

71'—5 6:']' ’
which means, in fact, nothing else but an appropriate average over the
colour degrees of freedom.

With this proviso, the T-matrix element Ty; in question is found as
follows:

o The contribution of the one-gluon exchange graph in Fig. 1.3 to

our scattering amplitude ¢ reads

AL Al
lexch = — i‘z 2k 5 U(ql,Tl)‘r'pu(Pha'l)v(Pz,Uz)'l v(gz, T2)

where k denotes again the involved momentum transfer,
k=pi—-q1=q@-p2,
or, after the announced multiplication by those meson colour wave
functions,
2 1 a \a
lexeh = I bij —= Thi Tt
Lz \/— ] \/— 2 2
X u(qlr Tl) Yu u(pla 0'1) a(PZ, 0'2) 7” '.U((Iz,'Tg) .

With one of the relations given in Appendix D.3, the colour factor

stemmmg from the exchauge graph ylelds
8 )3, \e

i A
E -'SIJ L 6):! X 2*25"_21_

l,J—-l 3 k=1 a=1

; om § 2
meson colour wave functions  “(colour charge)?” /g
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Hence, the one-gluon exchange contribution {exc to the scaltering
amplitude ¢ is given by the expression

4
lexeh = — 7% U(‘h y11) Yat(p1,01) 9(p2, 03) 7" vlaz, 2) ,
which rcduces in t.hc nonrelativistic limit to
4 g2
lexch = 5’1‘(;57,01 51'2[77 .

The contribution of the pair annihilation graph in Fig. 1.4 to our
scattering amplitude ¢ reads

2 24,
tamn = oy T S 801 1) 000, 72) 802, 02) 7 11, 1)

or, after the announced muitiplication by those meson colour wave
functions,
tagn = gl ! ' ! 5kt /\a '\u
i +pP V3 V3 2 2
x (g1, 1) 7u (g2, 2) 3(p2, 72) v* ulpy, o1)
However, this annihilation contribution tanp vanishes identically:

7.3__;15. = 9\/_'.&(,\“)
=0.

From the physical point of view, the interpretation of this, at first
sight slightly surprising, phenomenon is rather evident: the gluon,
as a colour octet, that is, as a particle which transforms according
to the eight-dimensional adjoint representation of SU(3)¢, has no
means to couple to a colour singlet, like any bound state of quarks,
without violating thereby the conservation of colour demanded by
the exact invariance of quantum chromodynamics with respect to
the colour gauge group SU(3)c.
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Collecting all our above findings, we may state that, in lowest order
of the perturbative loop expansion, the T-matrix element Tj; for elastic
quark-antiquark scattering within mesons receives only a contribution
from the one-gluon exchange graph:

1 1 4 g2
I = (?r)—st = @e3 %57,01' brp0, -

Consequently, the quintessence of the present consideration is: we may
recover the (perturbatively accessible part of the) effective interaction
potential operative in quantum chromodynamics from its counterpart
in the case of quantum electrodynamics by simply replacing the square
e? of the electric charge e by the factor

4 5

3%
Hence, the short-distance part of the static quark—antiquark potential,
arising from one-gluon exchange within mesons, is of Coulombic shape:

QCD 4 4 gt
(r ) T34xr’
or, with the usually employed definition
g?
8
o = LS

of the strong fine structure constant,

cD
P?ll (7‘)

1.4 Lorentz structure of an interqua:;'k interaction

At this stage, in order to seize hold of the nonperturbative contribution
to any cffective potential, we embark on a rather general investigation.
Quite genecrally, the T-matrix element 1 for the elastic scattermg
of some generic fermion F and the corresponding antifermion F, both
of them of mass m,
]:(plx“l) +j'-(})2,0'2) - ]:(ql,rl) +j-(qé172) ’
is, apart from the overall normalization factors of the one-particls wave
functions, which we always split off by the definition
1 2 :
Thi =: 55— = =1
(27)5 /By, Ep, Eq, E

of our scattering amplitude ¢, the product of
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o two bilinears of Dirac spinors of the form i@(g;, 71) Ty u(py, 01) and
9(p2,02) T2 v(g2, 2), where I’y and I's represent some (unspecified)
Dirac matrices, and

« some interaction kernel K which, a priori, may depend on all four
external momenta py, p2, q1, g2,

K= K(.phpZ) qan) 1

only subject to the momentum conservation
ntp=q+a,

as expressed by that overall § function multiplying this T-matrix
element T%; in the standard decomposition of the S-matrix element
St

Consequently, the most general ansatz for our scattering amplitude ¢
reads W .
t = (g1, n) T ulpy, 01) 9(p2, 02) T2 v(q2, 72) K,
with X depending on any three independent linear combinations built
from the external momenta out of the set {p;, pz, q1, g2}-
We shall constrain the T-matrix element Tf; under consideration by
the following two, very reasonable assumptions:

1. The T-matrix element Ty is invariant with respect to the full set of
transformations forming the (homogeneous) Lorentz group, that
s, invariant under
« proper orthochronous Lorentz transformations,
~« space reflection (“parity operation”), and
e time reversal.
2. The interaction kernel K entering in the T-matrix element T is a
function of only the square k2 of the involved momentum transfer
k=Ep-q=q@-p;
that is,
K=K(®F#),

which reduces in the nonrelativistic limit to

K = K(-k?) .
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The most general form of the scattering amplitude ¢ consistent with
the requirements of the above assumptions is (see, e.g., Refs. [2, 6, 7])

t= ¥ tg, (1.2)
=$,P,V,A,T

where any particular contribution 2y is of the form
ts = ii(g1, ) [z u(p1, 1) 9p2, 02) Tz (g2, 72) Kz(kz)
and the sum extends over the five possible Lorentz qtructures

o scalar (S), -
I's®leg=1®1,

¢ pseudoscalar ('P),
5@ =1s07",

* vector (V), ‘
I‘E ®I‘x = 7#@7"

e axial vector (A),
Fe@Ts=77:97"7°,
and
e tensor (T),
fy, ®Tg = -;—O',m®o"’" .
Here, we had to introduce the Dirac matrices

s = 75 = 4, pro')' Y 7p

= —iq0qly2qd

= i70M7273,
with the totally antisymmetric Levi-Civita Syiﬁboj in four dimensions

— _gbvpo.
€pvps = —€

unambiguously fixed by demanding
€3 =1,

as well as . '
R
Cuy = 5[’)’#1 ')'u] -
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In the Dirac representation, these Dirac matrices are explicitly given
by
_ 01
B="V10

o = i(“ ""), i=1,2,3,
o; 0

and

i

s 0 L.
o' e,',-k(‘;" ak), L, k=1,23.

In the two preceding sections, that fermion-antifermion interaction
was basically mediated by the excliange of some vector boson, namely,

« the photon in the case of quantum electrodynamics or
o the gluon in the case of quantum chromodynamics.

As a consequence of this, in both of these cases Lhe effective interaction
was solely of vector Lorentz structure,

Nel=7.01",
or, in other words, in the decomposition (1.2) the scallering amplitude
t received exclusively a vector contribution. The interaction kernel K
was given by
oy K
K(k*) = @
reducing to
r 2y K
where the effective coupling strength « stands
e in the case of quantum electrodynamics for
k=¢e?,
e in the case of quantum chromodynamics for
4
K= Egaz .
Fourier transformation then resulted in the static Coulomb polential
&

VNn(r) = -:1—; .
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Needless to say, in general the various contributions entering in the
decomposition (1.2) of our scattering amplitude ¢ will not arise from
the exchange of a single particle representing some fundamental degree
of freedom of the underlying quantum field theory. Rather, these terms
have to be interpreted as due to only an effective exchange of a particle
of the appropriate behaviour under Lorentz transformations.

We should be prepared to the fact that—in the course of evaluating
below the various terms ty contributing to the T-matrix element Tt;—
we shall ercounter expectation values of the Pauli matrices of the form
X! 0 X0, and szt o x5, We shall cast the second of these expressions,
which involves two-component spinors x¢ representing the spin degrees
of freedom of antifermions, defined by

c = _ ¢ .
Xa:: —lﬂ’zxa N

with the help of the identity

0002 = —0O
= -0

into an equivalent form which involves only the two-component spinors
Xo pertaining to fermions:

Kloxs = (toxs)
= (L o2y’
= —(Zo"x)"
= —xrloXo -

We shall find it convenicent to abbreviate the expectation values of the
Pauli matrices o by introducing the shorthand notation

o = Xfli ”)éa; V)
o2 = -x5,'ox;, (1.3)
= Xfat O-XU;.' -

Now, what we really have {0 do when trying to {ollow the sieps given
in our prescription for the derivation of that (perturbatively accessible -
part of an) effective interaciivn potential from the underlying quantum
field theory by considering the relevant elastic-scattering problem: may
be phrased in thic following way:
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1. Calculate the expectation values of the considered S operator, Sg,
or T operator, T, with respect to those Fock-space states usually
employed in quantum field theory.

" 2. Look upon these matrix elements as the expectation values of that
interaction potential you are searching for, V(x), with respect to
‘the quantum-theoretical bound states and extract this interaction
potential by “factorizing off” all remnants of these bound states.

In this and only this (!) sense one may adhere, when switching from the
" scattering amplitude to the interaction potential, to the identifications
of the spin operators S; and S; of fermion and antifermion with half of
" the expectation values o and o5 of the Pauli matrices o, respectively:

[{9 dll
Sl =" '-2— '
k2 62
S, “= : ~2— ,
and therefore .
o) 09 =" 451 'Sz -

Adopting an admittedly rather symbolical notation, we suppress in
the following any reference to both the momenta and the spin degrees
of freedom of the involved particles. Nevertheless, at every moment it
should be ! :~r what'’s gom% on. With the above at one’s disposal, the
nonrelativistic potentials ¥ (x) 2=8§,P,V,A,T, are easily found:

Scalar: For the scalar Lorentz structure, i.c.,
I's®ls=1Q1,
we find for our scattering amplitude ¢ in the nonrelativistic limit
audvKs(k?)
. = —-Ks(~- ~x%).
Upon Fourler transformation, the correspondmg static interaction
potential VNn (x) reads

ts

WRX) = Vs(r)
where Vs(r) is defined by
Vs(r) = (?1—)—3 / &k exp(—ik - x) Ks(=k?) .

Accordmgly, the scalar Lorentz structure y)elds a “pure potential”
term.
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Pseudoscalar: For the pseudoscalar Lorentz structure, i.e'.,A
Fs@ls=7107",
we find for our scattering amplitude ¢ in the nonrelativistic limit

tp =- ﬁ75u575va(k2)

= ulprsuvtyy® v Kp(F?)
- om (£ 3) ({3 1) (2 e
=0. |

Consequently, in the nonrelativistic limit, the contribution of this
pseudoscalar Lorentz structure vanishes:

ViE(x)=0.
Vector: For the vector Lorentz structure, i.e.,

Fe@®@Te=v 09", - -

the nonrelativistic limit of our scati‘.eriné amplitude t has, in fact,
already been calculated in Section 1.2:

ty = Gy,udy*vKy(k?)
= Ky(-k?). -

Upon Fourier transformation, the corresponding static interaction
potential V}(I‘Q(x) reads

ViR(x) = W(r)

where Vy(r) is defined by

Vo(r) = -(_2_1? [ Pkexp(—ik - x) Ky(-K?) .

Accordingly, the vector Lorentz structure yields, very similarly to
its scalar counterpart, a “pure potential”.term.

Axial vector: For the axial vector Lorentz structure, i.e.,
Ty@Te=77®1"7°,

we find
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o foru=>0

Gygrsudy®yP v = ulysuvlySy

o 273)(3)
o272 (1)

= 0
and
e forp=i

Gypsu-5v7°y = ulypypsu-vlPyte

= @075 ) (3)
0x9(75 0) (¥)

= xox-xtox

= —01+02,
and therefore for our scattering amplitude ¢ in the nonrelativistic
limit

ta Gy, s u vy’ 7% v KA(K?)

i

[Erorsusr®rPv—ayysu-9v7° o] Ka(¥)
o102 Ka(—-k?) .

I

Upon Fourler tra.nsformatlon, the corresponding sta.hc interaction
potential VNR {x) reads

Vil (x) =485, - S, Va(r)
‘where Va(r) is defined by

Va(r) = [ dkexp(~ik-x) Ka(~k?) .

(2 >
Accordingly, the axial vector Lorentz structure entails an effective
spin—spin interaction.
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Tensor: For the tensor Lorentz structure, i.e.,

r3®rz=%au,®a"",

we find

e forpu=90,r=1

0i

o 0i

‘uvo”

and
eforp=tvr=j

g% uvoVv

v

I

t,YO O'U'U

)(
)

ulyo0%uv
i(x',o)(
(0.

0

0 ai
-o; 0
0

—_— a".

X'
0

0
x°

ai

0

)

ul o uvty%a v
(o[ oF O
€ijk (X ’0) ( 0 —os

0
eije (0, x°") (

o
-2x ok x x° ok x°

ot

0

=2xtex-xlox

20‘1'0'21

and therefore for our scattering amplitude ¢ i the nonrelativistic

limit

1
tTEE

oy, udot v Kv(k?)
. 1 ..
Goguvo® v+ ;z—ﬁcr;,-uﬁa" v| Kr(k?)

Ty~ 02 I{T("}(2

Upon Fourler transformatlon the correspondmg static interaction

potential VNR (x) reads

V,fm) (x

=4 Sl . Sz VT(‘I‘) s
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where Vr(r) is defined by
— 1 3 . 2
Va(r) = ~ Gy / d*kexp(~ik - x) Kp(~k?) .

Accordingly, the tensor Lorentz structure entails also an effective

spin-spin interaction.
Table 1.1 summarizes our findings for the contributions of the various
possible Lorentz structures to the effective interaction potential in the
nonrelativistic limit.

Table 1.1: Nonrelativistic interaction potential V,sﬁ) arising effectively from the various
conceivable Lorentz structures [y @I of an arbitrary fermion-antifermion interaction

Lorentz structure I's®Ty static potential
scalar 1®1 Vs(r)
pseudoscalar 7 Q70 0

vector Yu ® 7 Va(r)
axial vector TuYs @YY 4S8y - S, Vi(r)
tensor low®oH 4S; - S; Vp(r)

The total spin 8 of the respective bound state under consideration
is clearly given by the sum of the spins S; and S, of its constituents:

S=8;+85,.
Upon squaring this relation,
. 52

(SL+SZ)2
= S§+S§+ZSI'SZ,

we may express the product S, - S; of the two spins S; and S, in terms
of the squares of S;, S;, and S,

sl-sg=%(sz—s§—s§) ,

and, therefore, its expectation values by the corresponding expectation
values of 52, SZ, and S%

(51-82) = 3 (159 - (61 - (53)
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Accordingly, expressed in terms of the quantum numbers S, Sy, and S»
of the spins S, S, and S5, respectively, the expectatlon values (S;-S3)
of the product of the spins S;, S of the bound-state constituents read

(51-52):5[5(54—1)—51(514'1)-—Sz(Sz-l‘l)] .

For fermionic constituents with spin
' 1
51 =82 = '2' '
we have

3
51(51+1)=52(52+1)=Z

and therefore 1 3
(S:-S2) =-2-S(S+1)—-4— .
Moreové_r; for fermionic constituents with spin

51=8= % ’
the quantum number S of the total spin S may accept precisely either
of two values:

e S = 0, which corresponds to some spin singlet, like the pion or the
7 meson in the case of light quarks, or the 7 in the charmonium
system.

e S =1, which corresponds to some spin triplet, like the p, w, and ¢
mesons in the case of light quarks, or the J/1 in the charmonium
system, or the T in the bottomonium system.

This implies for the eigenvalues S (S + 1) of the square S? of the total
spin S:
' 0 for spin singlets, i.e., S =0,

SE+1)= o .
: 2 for spin triplets, i.c., S=1.

Accordingly, the expectation values (S;-Sa) of the product of the spins
81, S; of the bound-state constituents are finally given by

3 for spin singlets, 1.e., S=0,
(S:-82)=1 , . (1.4)
' +Z for spin triplets, i.e., S =1.
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The first and simultaneously most important lesson to be learned from
the above is that, for these two possible values of the quantum number
S of the total spin'S of the bound state, the spin-spin interaction term
will contribute necessarily with opposite signs.

Collecting all previous resulis, the following picture emerges for the
nonrelativisiic limil of the most general effective fermion--antifermion
interaction potential Vyr(x):

¢ Both scalar and vector Lorentz structures lead to “pure potential”

terms:
Vlgi)(x) =Vu(r) for E=8S,V.

o The contribution of the pseudoscalar Lorentz structure vanishes:!
vi®(x) =0.

This circumstance provides, for instance, a very compelling reason
for the (relatively) weak binding of deuterium in nuclear physics:
The interaction between nucleons, that is, protons and neutrons,
is generally accepted to be dominated by one-pion exchange. Since
the = meson is a pseudoscalar meson, the Lorentz structure of its
coupling to the nucleons has to be also of pscudoscalar nature in
order to form an interaction Lagrangian which is a Lorentz scalar.
This fact implies that only the relativistic corrections arising from
one-pion exchange can be responsible for the binding of a proton
and a neutron to the deuterium.

Both axial vector and tensor Lorentz structures contribute merely
to the spin-spin interaction term:

WR(X) =4S, -S2Va(r) for S=A,T.

As a consequence of Eq. (1.4), in this casc we will obtain a binding
force between fermion and antifermion only for either of the above
two possible values, § = 0 and § = 1, of the quantum number S
of the total spin S of the bound state.

Hoping that the empirically observed hadron spectrum will provide
some restrictions on the allowed effective quark—antiquark interaction,
we now confront the above picture of general findings with experiment:

 In the next—i.e., first non-trivial—order of the present nonrelativistic expansion,
this psendoscalar Lorentz structure contributes to the spin—spin and tensor interaction
terms.
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¢ Already the mere existence of strongly bound mesons forbids the
pseudoscalar Lorentz structure to play any significant réle within
some phenomenologically acceptable quark-antiquark interaction
potential. :

¢ The existence of both pseudoscalar mesons (like 7, 5, and y') and
vector mesons (like p, w, and @), all of which are bound states of a
quark-antiquark pair with vanishing orbital angular momentum,
implies that the actual quark-antiquark forces must be described
by an interaction potential which yields binding for S = 0 as well
as S = 1. Obviously, this fact rules out both the axial vector and
tensor Lorentz structures as the predominant contribution to any
realistic quark—antiquark interaction potential.

In other words, the theoretically predicted particle spectra would look
very different from the experimentally measured ones if the dominant
terms in the effective quark—antiquark interaction potential would not
be just some linear combination of vector and scalar Lorentz structure.
Therefore, our conclusion has to be:

The Lorentz structure of the quark—antiquark interaction
is dominated by the vector v, ® 4# and/or the scalar 1®1,
both of which lead in the nonrelativistic limit to so-called
pure potential terms. Thus the static interaction potential

Ar(r) must be the sum of merely the contributions of the
vector—Vy(r)—and the scalar—Vs(r)—Lorentz structures:

VNR(T') = Vv(f‘) + Vs(r) .




Chapter 2

Relativistic Corrections

Beyond doubt, the next logical step must be to improve the up-to-now
entirely nonrelativistic formalism by taking into account all relativistic
corrections. In principle, one encounters no particular difficultics when
trying to take into account (at least, at some formal level) the complete
set of relativistic corrections to the effective interaction potential [4, 5).

For the moment, however, we intend to be somewhat more modest,
and this even in two respects:

. 1 We shall calculate these relativistic corrections only up to second
" orderin the absolute value v = |v|of the g generic relative velocities

p
v=-=
E,
7 of the bound-state constituents, that is, only up to order
' 2
v = L )
£

which, since up to this order the relativistic kinetic energy

By = o

may be approximated at this place by

Ey=m,
is equivalent to
2
2 S
v = i

2. We shall consider only the spin-dependent contributions to these
relativistic corrections. These spin-dependent interactions control
the fine and hyperfine level splittings of the bound-state spectra.
The spin-independent interactions may be obtained, with slightly
more effort, along similar lines [6].

26
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2.1 Spin-dependent corrections

We shall be interested in all the spin-dependent relativistic corrections
to the static interaction potential Var(x).up to order.-- -

P

m? .
Therefore, we must focus our attention to those termsin the transition
amplitude Ti; which involve expectation values of the Pauli matrices a.
One may simplify this task considerably by the following observation:
we are entitled to approximate the relativistic kinetic energy

E, =/p?+m?
by the lowest-order term
Eyo:m

of its nonrelativistic expansion in two places, namely,

1. in the Dirac spinors u(p, ¢) and v(p, o),

E,+m .
u(p, o) = ;m P X,
Ey,+m
o-p .
E,+m | 7 A . R
v(p,cr) = _22_"_1_(Ep+m)xg, xgE'—laZXGx
1

which then (only for the purpose of the present analysis!) becomne

i | (2.1)
v(p,0) = ( 2m Jxﬁ;

-1
u(P;a) = (U'D)Xﬂx

1

2. in that general relationship between the T-matrix element 1y and
our scattering amplitude ¢,

.1 m? ;
' @rF VB, B By By,

which then becomes

Ts

1
T = Wi .



28 CHAPTER 2. RELATIVISTIC CORRECTIONS

~ In the course of calculating the scattering amplitude ¢, we may take
advantage of two trivial simplifications:

1. In order to get the intéraction potential V(x), we have to consider
the scattering amplitude ¢ only in the center-of-momentum frame,
defined by the vanishing of the total momenta P; and Py of initial
state 1 and final state [, respectively:

Pizspi+p=qu+@=P=10.

Conscquently, this scattering amplitude ¢ will depend only on the
involved momentum transfer

k=p-q=q—Dp2
and on the relative momentum
P=Ep1=-pz2.
2. The Pauli matrices ¢ = {¢;,7 = 1, 2, 3} satisly both
¢ the commutation relations
) [oi,05) = 2iespon .
and¢ - : :
¢ the anticommutation relations

{oi,0;} =26; .

Adding up these two relations, the product o; o; of any two Pauli
matrices is given by '

]

oi0;j %([0'1‘, 7j]+{‘7l':a'i})

= bij +icnok -
By application of this relation, any product of (two or more) Pauli
matrices may be reduced to an expression which involves no more

than at most one Pauli matrix.

Performing the Fourier transformation as demanded by that general
prescription briefly sketched in our introductory remarks to Chapter 1,
the effective interaction potential V(x) is derived from ¢ according to

V(x) = —(27) [ dk exp(—ik - x) Tii(k)
_ 1
(2x)

[ dkexp(—ik-x)t.



2.1, SPIN-DEPENDENT CORRECTIONS 29

As the central result of the intended inclusion of all spin-dependent

relativistic corrections up to order
| i

m2’

we shall finally end up with the géneralization to arbitrary interaction

potentials of the well-known Breit—Fermt Hamiltonian, of the standard

form

2
H==m1+mz+—22I—+V(x),

with p the reduced mass of the particular two-particle quant.um system

under conslderatlon,
mymp

my +.n12 )

Here, the interaction potential V(x) will encompass, in addition to the
nonrelativistic contribution Vyr(x), also all spin-dependent relativistic
corrections Vypin(x):

1=

V(x) = Vanr(x) + Vapin(x) .
The set of spin-dependent relativistic corrections Vepin(x) wiil turn out
to consist, in general, of some-
¢ spin-orbit interactiqn term Hys,
e spin-spin interaction term Hsg, and
* tensor interaction term Hr;

that is, this spin-dependent part Vi, of the interaction potential V(x)
will read
Vapin = Hys + Hss + Hr .

Bearing in mind the outcome of our analysis of the possible Lorentz
structure of the effective interaction in a quark-antiquark bound state
as performed in Section 1.4, we will treat below only the case of vector
and scalar Lorentz structure of the statlc mteractlon potential Vyr(r):

Var(r) = Wy(r) + Vo(r)

Furthermore, for the sake of simplicity, wé will present ir the followir:g
all the necessary derivations in detail only for the special case of equal
masses of the bound-state constituents:

m=ma=m.
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2.2 Interaction w1th vector Lorentz structure

In the case of an interaction thh vector Lorentz structure, that is, for
Fe@ls =70,
.. the scattering amplitude (1.2) assumes the form

ty = (g1, 11) 7o u(p1, 1) #(p2, 02) 7* v(qz, 2) Kv (K?) .
Upon inserting the Dirac spinors in Dirac representation, Eq. (2.1),
and suppressing, for the sake of notational simplicity, any reference to
the spin dcgrees of freedom, we find for this scattering amplitude

(1) 7 w(p) 8(p2) 7* v(gz) Kv(k?)
[U'(th) u(p1) v}(p2) v(g2)
- ul(@) v vulp) - vi(p2) Yo v v(_Q:’)]'KV(kz) ’

woan [ 1 7@
— |yt G . et "‘PZ) 2m | 4¢
[x (1. 2m)[" pl)XX (Zm,l( X
2m 1
v._ t{1 24 0 o 1
X\Mom o 0 o-p|X
2m /

(521 (2 ¢) ( 2; ) x°} Kv(-1)

= {[x'x+z—1—2x’(a-q1)(a-p1)x]

il

ty

]

x [ X+ x°'(¢7 -p2)(o- %)X}

4m2 oo p)x+x'(o-a)ox]
X' (o -p)ox +x'o(o-qr) x‘]} Ky(-k?)
= {1+ gzl @ @) @ Pox+xt (o ) (@)

~ xo(o-p)+ (o -q)olx

X1 (o p2) o + 0 (7 @)X} Kv(-K?) .
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Dropping all contributions to spin-independent relativistic corrections
at the very instant they show up, and recalling the abbreviations (1.3),
this scattering amplitude simplifies, in the center-of-momentum frame,
to -

v = {1+m{‘€ijkpikjo'1k+ze,’jkpikja'zk

+ [(217 — k)i + i€ k; 0'11}] ((2p — k)i + i €itm ke Uzm]}} Kv(-k?)

1
{1 + —— [Bieiji pi kj (o1 + a'gk)

= (o1- 02) I+ (01 1) (02 - WL} Ku(-1?)

Fourier transformation appears to be the appropriate tool to obtain
the resulting effective interaction potential:
¢ Already from the very beginning, all interaction kernels Ky have
been (implicitly) assumed to depend, in the nonrelativistic limit,
only on the modulus [k| of the momentum transfer k. Therefore,
all the corresponding static interaction potentials V{Z)(x) have to
be spherically symmetriC'

W(r) = /d’kexp(—zk x) Kv(—Kk?) .

(2 ?
® Denoting the first and second derivatives of any static interaction
potential with respect to the radial coordinate r = |x| by primes,

one finds
(21)3/d3kk exp(—ik-x) Kv(-k?) = ~iV;W(r)
= _I-VV('.) ’
(21 )3/d3L k?exp(—ik - x) Ky(~ k2) =AW(r),

and, w1th the help of an identity proven in Appendix E,

(2 E [ Pk ki kjexp(—ik - x)Iiv(—kz)

= V;VjV\'(r)

= (2;2-, - %5.',') [ V() - —V",(r)] + 36 AW(r) .




32 CHAPTER 2. RELATIVISTIC CORRECTIONS

Consequently, the spin-dependent relativistic corrections Voii'™* for the
case of a vector Lorentz structure of the effective fermion—antifermion
interaction become

Vvector =
Bpin 2 mz

{(xxp)-SV(r)

2
+ msl Sy AW(r)

1 [(Sy-%)(S2-x) 1 1_, »
_l_;_n_i (—-l——rz(—z—l—gsl'SQ] {;Vv(r)—Vv(,-)

Herein, 1t is straightforward to identify, in full accordance with the
previously announced decomposition of the spin-dependent relativistic
corrections Vapin, when specified to the case of vector Lorentz structure,

‘/a;el:lnr — IIveclor + Ilvec(or + II’}ector ,

¢ the spin~orbit term
A 3 !
B = o —(xxp)- SV(r)

= 5 3 L SW(n),
with the rclatwe orbital angular momentum
L=xxp
of the bound-state constituents;
© the spin—spin term

vector ___
HE o =

3 mz Sl . Sz AVv(r) 3

and

o the tensor term

e = [(S_lﬂ(_sil‘l L8] [y - o

re
1 1 1
= En-gslz [; Vi(r) - V\ff'(")] )
with the shorthand notation
Sip =12 [@_‘_X)gifl - lsl .52}
r 3

for the spin-dependent factor.
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2.3 Interaction with scalar Lorentz structure

In the case of an interaction with scalar Lorentz structure, that is, for
I;®lp=101,

the scattering amplitude (1.2) assumes the form

ts = @(gy, 1) u(p1, 1) 8(pa, 02) v(g2, 72) Ks(k?) .

Upon inserting the Dirac spinors in Dirac rcpréséhﬁ'ation, Eq. (2.1),
and suppressing, for the sake of notational simplicity, any reference to
the spin degrees of freedom, we find for this scattering amplitude

ts = a(q)u(p) 5(p2) v(g2) Ks(k?)
= ul(q) v ulpy) v!(p2) 10 v(g2) K§(k2)

- X '_2'— 0 —1/{ 2 PLiX
2m
o-q2 ’ -
ct (O P2 10 2 c 2
o) 1 )3 s
o »2m 9-—1 1
=_[xr

1
x {xc‘ X~ 4———)c°t (o-p3) (0 qz) Xc} KS(‘kz)

- X! (7 @) (o p)x]

= 1= s (o a) (B X+ 2 (0 -pa) (0 a2 ¢

X Ks(*kz) .

Dropping all contributions to spin-independent relativistic corrections
at the very instant they show up, and recalling the abbreviations (1.3),
this scattering amplitude simplifies, in the center-of-momentum frame,
to

is = [1 - (1 €% Di k 1k + !E.Jkp‘ k; rrzk)] Ks(-'kz)

1, 3
= - [1- ek (o + o) Ks(-10)

Once more, Fourier transformation appears te be the adequate tool
to obtain the resulting effective interaction poiential:
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o For the same reason as before, the static interaction potential has
to be again spherically symmetric: °

=1 3 : 2
Vs(r) = g [ d*kexp(—ik - x) Ks(~k?) .
s The corresponding spin-dependent relat.1v1st.lc corrections may be
found w1th the help of

o=z [ Pk exp(~ik - x) Ks(=1?) = iV;V(r)

(2 >

131“‘,5,(7') .

Consequently, the spin-dependent relativistic corrections V“"" for the
case of a scalar Lorentz structure of the effective fermlon—tlntlfermmn

interaction become

Vﬁcular H:calur
spin

with the spin-orbit term

Hicsalar = _E;];,-i—r.L -8 ‘/Sl(r) 4

where L denotes, as before, the relative orbital angular momentum of
the bound-state constituents,
L=xxp.

Accordingly, an interaction with scalar spin structure contributes only
to the spin—orbit term Hyg. However, apart from possible differences of
the two nonrelativistic potentials V(r) and V5(r) of vector and scalar
spin structure, respectively, the spin-dependent relativistic corrections
for scalar spin structure, H2'™, contribute with a sign opposite to that
of the corresponding spin-dependent relativistic corrections for vector
spin structure, HE'or, Hence, assuming identical static potentials, i.e.,

. W(r) =Vs(r) ,
the spin—orbit term HY{'" resulting from a vector spin structure, may

be partially compensated by the spin-orbit term Hj$'*", resulting from
a scalar spin structure:

Hicsdu - _%Higclor for Vv(r) = Vs(l‘) .

Before trying, in Chapter 3, to write down a (physically meaningful)
quark-antiquark interaction potential, it is advisable to “condense” all
these results on the effective fermion—antifermion interaction potential
to what we would like to call a “generalized Breit-Fermi Hamiltonian.”
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2.4 Generalized Breit—Fermi Hamiltonian

The Hamiltonian containing all spm-dependent re]atlvxstlc corrections
up to order

2B B
E2 ™ m? '
is called the generalized Breit~Fermi Hamiltonian:
2 . I
H=m+my+ % +Var() + His+ Hes+ Hr |, (22)
where
. my ma
r= my + mo

m
= — for mp=my=m

2

is the reduced mass and—according to the analysis of Section 1.4—the
static potential Vygr(r) consists of a vector and a scalar contribution,

[ Vam(r) = W(r) + Vs(r) |. (2.3)

The corresponding spin-dependent relativistic corrections read (for the
case of equal masses my = my = mh

o spin—orbil term:

1

Hyg = ———
= omer

L-S[B%Vv(r)—%Vs(r)} . (24)

where
S=8,+8S,

is the total spin of the bound state and
L=xxp
is the relatlve orbital angular momentum of its consiituents;

e spin-spin lerm:

2
IISS = 3—,-,-;5 Sl . S2 AVV(T) ; (2.5)
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e lensor term:

1 [(81-%)(S2-x) 1 1d pe
Hr = ﬁ [—1‘2—'— - ES; -7 ;EV\/(I‘) - E—ZV\/(T) ’

or, with the abbreviation

S - Sy - 1
Si2 =12 [g‘—x)-z(—z—i) -8, - Sz] (2.6)
r 3
of the spin-dependent factor, which is sometimes called the tensor
operator,
. 1 1d., &£
HT = mslz [;— EVV(T) - EﬁVv(r)} . (2.7)

The corresponding expressions for the general case of unequal masscs
of the bound-state constituents m; # m may be obtained in a similar
manner; they are collected in Appendix F.
The total angular momentum J of the respective bound state under
consideration—which constitutes, of course, nothing else but the spin
_of the corresponding composite particle—is clearly given by the sum
of

o the relative orbital angular momentum

L=xxp
and
» the total spin
S5=5+85;
of its constituents:
J=L+S.
Upon squaring this relation,
¥ = (L+8)?
= L2+8%+2L-8S,

we may express the product L-S of relative orbital angular momentum
L and total spin S in terms of the squares of I, S, and J,

- . _l 2_712_Q2
LS_2(J L’ -s?) ,
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and, therefore, its expectation values by the corresponding expectation
valnes of L2, §2, and J%
(L-85)= ((32) ~ (L%~ (%) .

Accordingly, expressed in terms of the quantum numbers Z S, and j
of the relative orbital angular momentum L, the total spin S, and the
total angular momentum J, respectively, denoting the bound state, the
expectation values (L-S) of the product of orbital angular momentum
L and total spin S, originating from the spin-orbit term s, Eq. (2.4),

read
(L-S) [J(J+1)—£(e+1) S(5+1)] .
Evidently, the cxpectatlon values of the spin—orbit tern;l s, Eq. (2.4),
vanish for either £ =0,
(L-S)=0 for £=0,

or § =0,

(L-S)y=0 for S=0,
contributing thus only for £ # 0 and S = 1. The above relation yields
the explicit nonvanishing matrix elements (L - S) listed in Table 2.1.

Table 2.1: Nonvanishing spin-orbit couplings for £ # 0 and § =1

j (L-8)-
{+1 £

¢ -1
(-1 ~(t+1)-

For fermionic bound-state constituents of spin
1
S1=8=

the expectation valucs (S1-87) of the product of their spins S, and S,
in the spin-spin term Hss, Eq. (2.5), have been determined already in
Section 1.4:

3 . . a_ .
y for spin singlets, 1.c., 5 =10,
(S1-82) =

+-1- for spin trinlets, ie.,, $=1.
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Likewise, for fermionic bound-state constituents of spin
1
Si=5=5,
the spin-dependent factor Syz in the tensor term Hr, Eq. (2.7), may
be rewritten as

Siz=2 [3 (—S—r—:‘)—z - sz] i (2.8)

Accordingly, the expectation values of the tensor term Hry, Eq. (2.7),
also vanish for either S =0,

{S12) =0 for §=0,
~orf=0,
(S12) =0 for £=0,
the (more or less obvious) reason for the latter being the fact that the
rotational symmetry realized in the case of £ = 0 leads to
zizy\ _ 1
SYRELE
which, in turn, results in a mutual cancellation of the two termson the
right-hand side of Eq. (2.8). After a lengthy calculation, the following
expression for the diagonal matrix elements of S;2 may be found:
4 3
e [(S%) (L?) — = (L-§) — 3 ({L.- S 2] \
TR @ (5 @ — 5 (6-8) =3 (T8
which, again only for £ # 0 and S = 1, yields the explicit nonvanishing
expectation values listed in Table 2.2.

(S12) =

Table 2.2: Nonvanishing diagonal matrix elements of S;; for £ #£0and S=1

J (512)
AT

¢ 2
(1 20D

YIS




Chapter 3

The Prototype

We are now in a position where weé may start to think seriously about
the question of how a realistic, that is, phenomenologically acceptable,
potential describing the forces acting between quarks might look like.

3.1 Funnel potential

To begin with, let’s summarize our knowledge gained so far. According
to the analysis of Section 1.4, the quark-antiquark potential Vyr(r) is
of vector and/or scalar type,

Wr(r) = W(r) + Ws(r) .
For short distances, the potential—arising from one-gluon exchange—
is (essentially) Coulomb-like,

4 o

chch(r) = _'3"7“" .

For large distances, there has to exist a contribution Vionr(r) in order
to describe colour confinement,

Veont(r) = ar® with n>0,
implying that for large r the binding force K must not decrease faster
than 1/r: ‘

a’
rl—n

d E e
K= —-E_-Vcon((r) =-nar"l=—-n

From the mesonic mass specirum, the exponent n is in the vicinity of
n~].

39
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For instance, n = 2 corresponds to the harmonic oscillator and would
lead to equidistant level spacings. Moreover, lattice gauge theories also
find that Vyr(r) is roughly proportional to r for large r. Consequently,
a linear potential,
‘ Veont (7') =ar,

is beyond doubt a sensible choice for Veone(r)-
The funnel (or “Coulomb~plus-linear”) potential (Fig. 3.1)

4 a,

VNn_(T) = —E'—r— -+ ar (3.1)
—— confinement,

one-gluon exchange

fixed in this way has been the first proposed model {8], which in spite of
its simplicity is able to reproduce quite well the charmonium spectrum.
In a strict sense, the momentum (-transfer) dependence

Oy = aa(QZ)

of the strong ﬁne_ structure constant o, has to be taken into account,
modifying thereby the Coulomb-like behaviour of the first term on the
right-hand side of Eq. (3.1).

v(r)

V(r) ~r

— 1
V(T) ~ ;‘

Figure 3.1: Funnel potential.
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3.2 .Lorentz structure of the funne! potential

In order to decide whether the Lorentz structure of the funnel potential
(3.1) is a pure vector, or a pure scalar, or a mixing of both, we consider
the P-wave spin splittings of charmonium and bottomonium, that is,
the ratio of mass differences [9]

_ M(P) ~ M(Py)
P = MEP) — M(Py)

(3.2)

(Recall the usual spectroscopic notation, which designates a state with
orbital angular momentum £, spin S, and total angular momentum j
by 25+11;, where the capital L =§,P,D,F,... represents the orbital
angular momentum £ =90,1,2,3,... , respeciively.)

"Table 3.1: Masses (in GeV) and the ratio p [Eq. (3.2)} for the ({ = 1,5 = 1) states of
charmonium and bottomonium {10]

Level  (c§) (bb) (bb)

3p, 3.4151  9.8598 10.2321
3p, 3.5105 9.8919 10.2552
3p, 3.5562 9.9132 10.2685

P 0.478 0.664 0,576

From Table 3.1, the experimental average for p {10],

p=048 for (ce) ,
p=0.66 for (bb),
p=0.58 for (bbY,

Pexp 2 0.6 .

With the helg of the generalized Breit-Fermi Hamiltonian (2.2),
we calculate this ratio p for the potential (3.1) periurbativaly. Since
the spin-spin interaction, Hss, does net depend on the iotal angular
momentum, its centribution cancels in-a perturbative cvaluaticn of p.
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Accordingly, p is determined by thé contributions of spin-orbit term,
Hys, and tensor term, Hy, only

= (P2|Hys + HT|3P2) ~ (3P11HLS + Hy[*Py)
(3P1|HyLs + Hy[3Py) — (*PofHys + Hr{*Po}

From Tables 2.1 and 2.2, we find for the expectatxon values (L-S) and
(S1a):

. [ -2 for %P,
(L-Sy=4{ -1 for %P,
1 for 3P,
and
—4  for 3P,
(S2) = 2 for 3P,
—% for 3P;.

« For a pure vector, i.e.,

VV:VNR.y VS=01

one obtains .
180, (r %) +Ta{r )
P O (r=3Y4a(rl) '

which 1mphes the bounds

-3

b

U\|VP
0!

corresponding to a = 0 and ¢, = 0, respectively, in clear conflict
with the experimental finding pe.p = 0.6.
e A pure scalar, l.e., ‘
IIS = VNR » VV =0 1
leads to
=2,
which also is not tolerable from an experimental point of view.

¢ A vector/scalar mixing, i.e.,

’ 4 a
VV—'Vexch—"""'—", Vs =Vt =ar,
3Ir .
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results in : 5' o
1 8a, {(r~3) — 26 (r‘.l).

5 2 oy (r73) - %a(r"’) ,

y

which implies
.4
P < -5' )
if the. Coulomb part dominates, and
P22,
if the linear part dominates.

Consequently, we arrive at the conclusion that the funnel potential
Vir in Eq. (3.1) must be a linear combination of a vector and a scalar
part,

A_ Vim(r) = Ve(r) + VA(r) ,
where the Coulomb part V:a is of vector type,
4 a

W(r) = Vaal(r) = 35

and the linear part Viour is of scalar type,
Vs(r) = Vene(r) = ar .

In summary, from the analysis of the most general conceivable spin
structures and the experimentally observed quarkonjium mass spectra,
we have been able to determine unambiguously the basic shape of the
potential acting between quarks:

The interquark potential Vyr(r) = W(r) + Vs(r) essentially
consists of a Coulomb part V.a, which is of vector type,
4 o

W(r) = Vesan(r) = 37

as well as of a linear part V.o, which is of scalar type,
Vs(r) = Vent(r) = ar .

In this form, the funnel potential represents the genuine prototype
of all “QCD-inspired” potential models proposed for the description of
hadrons as bound states of (“constituent”) quarks {1, 2, 3]. A selection
of more sophisticated potential models may be found in Appendix G.



Appendix A

S Matrix, Cross-section, and
Decay Width

The normalization of creation and annihilation operators is reflected
by the (anti-) commutation relations of these operators:

» Por the case of bosons, the nonvanishing commutators are
[a(p), a'(@)] = 6"¥(p - q) -

« For the case of fermions, the nonvanishing anticommutators are

o), (a7} = (d(e, o), dia,n)} = 6 ~ )i
Normalizing the vacuum state l()) according to

(o) =1,

the normalizations of the one-particle states read

« for bosons, generically denoted by B,

~ (B(®)iB(a)) = 6*)(p - q)
and _
e for fermioxvls, generically denoted by F,

(F(pl U)IF(q) T)) = 6(3)(1) - q) 601' .

Let us define, for any transition i — f from some initial state 1 to
some final state f, like, for instance, a scattering or decay process, the
S-mairiz element Sg by

Su = {f, out]i,in) = (f|S]i)

44
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and the reduced T-mairiz element T by
8= b +i(2n) 6P - B) Ty, .

where P and F; denote the total momenta of initial and final state,
respectively. The corresponding fransition probabslity Wy; is the square
of the modulus of the transition amplitude Sg; — &g

“Vﬁ = lSﬁ - 6ﬁ|2 .

For a finite spatial volume V and a finite time interval T, the obscure
square of the 6 function may be replaced by

[(2n)* 89 — R)” = (2m)* 6(F - B) [ 'z exoli (P~ )]
= )P -RVT, .
which leads to . - o
L Wa= @) R - RV TIT
The transition rale Ry is the transition probability per unit time:

R = % =

The cross-section oy is the above transition rate Ky divided by the
product of the observed flux of the incoming particles, 7 = n v, times
the number of target particles, n V; here, v, is the relative velocity of
the scattered particles and n denotes generically the particle densities.
If necessary, one has to sum over the final states and to average over
the initial states, which will be indicated below by a primed sum over
the possible spin polarizations o:

— 1 3 iIn.
o = _—vm (Mim12m) V ,/ (I/Id P]) %: Ry .

With the particle density

(2x)* 6P - B)V |Tuf? |

o1
~ (em)

corresponding to a normalization volume of size {2x)? the resulting
cross-section o(i — f) for the scattering process i — f reads

o0 = CL [ () 60— ) S
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The product of the energies Ey and E; of the two scattered particles
and of their relative velocity v, forms a Lorentz invariant:

By B> =V(_P1p2)2"m¥m§ .

The decay width Ty is the transition rate Ry; divided by the number
of decaying particles n V. If necessary, one again has to sum over the
final states and to average over the initial states:

=1 3 "Re;
.I‘f,_nivj(]_;]:dp]);Rh.

The partial decay width T'(i — {) for the decay of the particle i into a
particular final state f is therefore given by

Ti—0= @) [ ([!1 dBp,) 80P - ) Z\Tul?

The tolal decay width T'(i) of the particle i, which is, of course, nothing
else but the inverse of the average lifetime 7; of this particle, is obtained
by summing over all possible, kinematically allowed decay channels {:

I‘(i)E%:E{jI‘(i—»f).



Appendix B

Feynman Rules for a General
Gauge Theory

First of all, a little warning: The correct application of Feynman rules
requires some experience. In particular, one clearly should be careful

¢ when identifying all Feynman diagrams regarded as relevant for
the specific process under consideration and

e when computing the combinatorial factors (cf. rule # 3 below).

In order to remain on the safe side, it is advisable to evaluate n-point
Green’s functions with the help of “Wick’s theorem.” Wick’s theorem
allows Lo convert time-ordered products of field operators, like those
appearing in the S operator

S =Texp [i/d“ﬂ: El("’)} )

into 2 sum of products of propagators and normal-ordered products of
field operators. A particular Feynman graph is then nothing else but
the symbolical representation of a particular operator in the series of
the Wick decamposition. S-matrix elements may be obtained from the
Green’s functions along the course of the “LSZ reduction technique.”

A general unbroken non-Abelian gauge theory for Dirac fermions v
but without scalar bosons is described in R gauge by the Lagrangian

1 o ‘
—ZF;U F 4+ 9 (2 @ - m) ¢ —g. (.a“nﬂ)z + (aﬂc—) D¥¢
Fa=08,Ve - Ve +gfu VP VS, '

Dy=0,-igVeTe.
The fermions ¢ transform according to an arbitrary representation of
the gauge group.

L=

47
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The modification of the original theory brought about by the gauge
- fixing must be compensated—in order to maintain the unitarity of the
S matrix—by adding a further (in general, not Hermitean) term to the
Lagrangian, which involves anticommuting, scalar “ghost” fields (s, Ca.

For this theory, the complete list of Feynman rules in momentum
space for the computation of i Ty;, where Tj; is the reduced T-matrix
element defined (in Appendix A) in terms of the S-matrix element S

by

Si = {f,outli,in) =: 65+ i (2x) 6P — P) T ,

1. Propagators:

Table B.1: Feynman rules for the propagators in a general'gaugc theory

Vector-boson propagator

1 - ¢
Lo= = (V2 - 8,V) ~ 5 (@)’

e ———~— b

=i Dp(k)i ,

1

DF(k);ﬁ = m [—gpu

+(1—l) b by ]5ab

&/ kK +ie
Fermion propagator Lo=9(ip-m)d
i 1 = ktm
Se(k) = F-miic kK_miiyie
Ghost propagator Lo = (8,a) 0Ca
=i Ap(k)as
A —e—v—e— b
AF(k)ab = Oab

k241i¢
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2. Vertices:

Ta.b.le B.2: Feyrmar rules for the vertices in a general gauge theory

Three—vector-boson vertex Ly=—g faVF V,," V¢ l‘
!
nec
) =-g fabc[g;w(p" ‘I)p
I ,
Py + 90 (g — 1) §
7~ + gpu (r = p)) j
nma” \q,u,b ” § :
3
1 2 byce R yv 1
Four-vector-boson vertex Ly = 39 fabe fade V, Vi Vg Ve !
HaN Zub .
\ / “ =-1 gz [f abe fede (gpp Gvo — Jpo ng)
>c< + face foae (g;w o0 — Gpo gpll)
/ \ ~ + fade ftee (gyu Gop — Gup ga.v)]
o d/ \p ¢
Vector-boson—-fermion vertex Li=gdVy
©,a
i
I .
/\ T
i . J .
Vector-boson—ghost vertex L1 = —g fare (8ula) G V¥
K,c
|
i
= g fabePy -
/'/- .\'\
pa b
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3. Symmelry faclors: For Feynman graphs involving identical particles
in internal lines there arise certain combinatorial factors, which have
- to be introduced in order to avoid “double counting.” Some examples
for this are presented in Table B.3.

Table B.3: Combinatorial factors for Feynman diagrams involving identical particles
in internal lines

Feynman graph Statistical factor
//—\\
| | 7
\ /
S N S
TN
/ \
— _— L
4 F 7
\ /
~_~-
TN
/ \ 1
T :
\ /
~_~-

4. For each closed loop of anticommuting fields, i.e., fermions or ghosts,
a factor
(-1).

5. Loop inlegration: At every vertex, energy-momentum conservation

has to be taken into account. For every internal and independent four-

momentum £, i.e., one which is not constrained by energy-momentum
conservation at the vertices, an integration

/‘”_k

2x)4
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6. Erternal particles: Let the polari‘z‘atio‘n vectors €u(p, A) describing
(massless) vector bosons Vj, of four-momentum p and spin polarization
A be normalized accordmg to

pr(P: ’\) € (P '\) "’gpu

Let the Dirac spinors u(p or) and v(p,7) dwcrlbmg fermxons 1 of mass
m, four-momentum p, and spin polarization o be normalized according

to i(p,0)ulp,7) = 6or,
3(p, @) v(p, 7) —bor

which is equivalent to

w(p, o) u(p, ) = 0(p, o) v(p, 7) = 2 b ,

il

where
E,=p?+m?.
The above normalization implies for the energy projection operators
_ _ftm
Tulp,0)ulp,o) = H—,
F—m

Sulp ) ipo) = F.

2m

With the above conventions, the expansions of the corresponding field
operators in terms of plane waves read '

o for Hermitean vector bosons
Vi(z) = (2—7‘_1)—3/—2-/777—_ Y [a(p, A) €u(p, A) exp(—ipz)
: +al(p, ) €,(p, ) exp(zp::)]
and '
e for Dirac fermions
#e) = Gy /¢ p\[; 5 [b(p, ) u(p, @) exp(i p)
+ d’(p: o) v(p,0) -cxp(ip:)J ’

) = oy | 9| . T )50, expl i)
+8(p,0) lp,0) exp(ip)]
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Table B.4: Feynman rules for the external particles in a general gauge theory

Particle incoming outgoing

1 1 .
Vector boson (27{)3/2 5 Ep Eu(Ps ’\) (27!')3/2 9 Ep Cy(l),/\)

o 1 ,m - 1 m
Fermion ‘(é;)—m' BTP“U(p,O') W E—pu(p,a')

. N 1 l m _. 1 lT_
Antlfermlon (21{_)3/2 Ep U(P; 0’) V (27‘,)3/2 Ep U(p, 0‘)

7. For each change of the relative order of external {ermions, a factor
(-1).

For illustrative purposes, let’s consider electron-positron scattering
in lowest non-trivial order of the perturbative, that is, loop, expansion
(cf. Fig. B.1):

e~ (p1,01) + €t (p2, 02) = e (g1, 1) + (g2, 1) .

Applying the above Feynman rules, we may immediately write down
the corresponding scattering amplitude 7%; (in the so-called Feynman
gauge, defined by fixing the gauge parameter £ to the value £ = 1):

2

1 m
Th= — e e 2
(27)° \/E,, E;, By E,

x (p—I:IWﬁ(ql.nm wl(pr, 01) 92, 02) 7% v(g2r 72)

- (m—-:pz_)i'ﬁ(Q1’T’)7“ v(gz, 72) B(p2, 02) 7* u(p1, 01)| .



e~ (g1, M)

e,

e~(p1,01)

e~ (g1,71)

e_‘(pl r 01)

$3

e*(g2, )
————— —s e,
LA
e+(p3| 02)
()
el’(q:, 72)
€Yy
1
8|
I v
l
! s
e+(P2.‘72)
(b)

Figure B.1: Electron~positron ucatteringli.n lowest order of the perturbation expansion:
(2) one-photon exchange, (b) pair annihilaiion.



Appendix C

Quantum Chromodynamics

Quantum chromodynamics (QCD) is that quantum field theory which
is generally believed to describe the strong interactions. It is the special
case of a general gauge theory, characterized by the following features:

o The gauge group is SU(3)c (where C stands for colour), describing
the (unbroken) symmetry acting on the colour degrees of freedom.
The order or dimension of the Lie group SU(#) is N2 — 1, which
equals 8 in the case of SU(3). Hence, SU(3) has eight generators
7 a=1,2,...,8. Of course, the totally antisymmetric structure
constants fa, a,b,c=1,2,...,8, are those of SU(3); their values
may be found in Appendix D.1.

» The particle content of QCD comprises the following vector-boson
and fermion fields:

— Vector bosons: There are eight, of course, massless, gluons G},
transforming according to the adjoint, i.e., eight-dimensional,
representation of SU(3).

—~ Fermions: Therc are at least six quarks gy = u,d,s,¢,b,t, ...,
each of them transforming according to the fundamental, i.e.,
three-dimensional, representation of SU(3). The generators of
SU(3) in the fundamental representation are given by

A
Tina = 70 ,

where A4, 2 =1,2,...,8, label the eight Gell-Mann matrices;
an explicit representation of the latter matrices may he found
in Appendix D.2. The total number of quark flavours will be
denoted by np: f =1,2,...,np.
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Conscquently, the Lagrangian defining QCD reads

1 il 4 .
L£QCD —ZF;"F:W-{- 121 as (1 .ID- m,)q/

+ gauge-fixing terms
+ ghost terms,

with the gluon ficld strength
Fy, = 0,G5, ~ 8,6}, + g fachz Gf,
and thé gauge-covariant derivative acting on the quark ficlds
. Aa
D,,:('?”—zg,Gz? .

The parameters of this theory are the strong coupling constant g, and
the (current) quark masses my.



Appendix D
SU(3)

D.1 Structure constants

The Lie group. SU(3) is defined by the following commutation relations
for its eight generators T%, a=1,...,8:
[T 7Y =i fae T¢,

where the nonvanishing elements among the structure constants fape
are listed in Table D.1.

Table D.1: Nonvanishing structure constants fasc of SU(3)

abc Sabe

123 1
147 1/2
156 -1/2
246 1/2
257 1/2
345 1/2
367 -—1/2
458 V3
678 32

In addition, the generators T satisfy the anticommutation relations
1
{T°,T%) = 3 ban+ dase T°

where the nonvanishing elements among the coeflicients dgp are listed
in Table D.2.
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Table D.2: Nonvanishing coefficients das. of SU(3)

abec dobe a bec date
118 1/v3 355 1/2
146 1/2 366 ~1/2
157 1/2 377 -1/2
228 1/V3 448 ~1/(2V3)
247 -1/2 558 ~1/(2vV3)
256 1/2 668 ~1/(2v3)
338 1/V3 778 ~-1/(2V/3)
344 1/2 888 ~1//3

The structure constants fy are totally antisymmetric whereas the
cocfficients d,p. are totally symmetric under permutations of indices.

D.2 Gell-Mann matrices

In the fundamental, i.e., three-dimensional, representation of SU(3),
the eight generators %, a =1, ..., 8, are explicitly given by

Aa
Tf?md=_2"1
where A; are the eight Gell-Mann matrices
610 0-—10 1 00
/\1= 100 , A2= 3 /\3-— 0 -10 )
000 O 0 00
001 00 —1
AM=[000 00 01,
100 10 O
600 00 ¢
d=1]001 00 -3 |,
010 0 1 0
10 0
/\s-——— 01 0].
V3 00 -2
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D.3 Traces

The traces of the simplest products of Gell-Mann matrices read
Tr(Xa) =0,
Tr(AaXs) = 264 , ;TI(I\Z) =16,
Tr(Xa [As, Ad) = 47 fabe
Tr(As {As, Ac}) = 4 dabe
Te(Aa Ao Ae) = 21 faso+ 2 dase -
Some further useful relations are:

2 (ft:lb«:)2 =2,

a,be
S lda =2,
a,be 3
X A8, 2
e Lk = iy

ik 2 2 3



Appendix E

v, V,;0(r)

We would like to express the second derivatives V;V;®(r) with respect
to Cartesian coordinates x = {z;, 2,23} of an arbitrary function ®(r)
which depends merely on the radial coordinate r = |x| in terms of the
“spherically symmetric” derivatives coming into question, that is, the
first and second derivatives of ® with respect to r—which we indicate
by prime(s)—as well as the Laplacian A = V-V of ®. In other words,
we would like to rewrite these second derivatives V;V;®(r) in terms of
@'(r), @"(r), and A®(r). To this end, we start from the most general
ansatz for the expression we are looking for, viz., from

;o\ 1
ViV;0(r) = (a 5 + b?’-) Lo/t

2

+4- (c bi; + d'z—;.fi) @"(r)

T; T;

+ (ety+ r5E) A0,

where, for every term, the powers of the radial coordinate r have been
chosen in such a way that the coefficients a, b, . . ., f are dimensionless.
It is a simple and straightforward task to determine the coefficients

ab,.... [:

e On the one hand, we contract the above ansatz by multiplying it
by #i; and by summing over ¢ and ;. Using

85 035 = 6ij b5 = Tr(izxs) =3,
we obiain

Ad(r) = (3a+b) % )+ B + ) ®"(r) + (3e + f)‘A‘P(r) .
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APPENDIX E. V.9;%(r)

By comparing both sides of this equation, we may conclude that

the coefficients a, b, ..., f have to satisfy the relationships
da+b =0,
3e+d =0,
Je+f =1,

which, in turn, imply

a'—-—é.
= -3,
¢ = -8
= £,
_1_f
©T 373

Consequently, taking into account these relations and combining
corresponding terms, our ansatz simplifies to
ziz; 1

-z 5;;) {b-'l:d)’(r) +d®"(r) + f AR(r)

Viv;e(r) = (
+ -}3-6.'_,' A‘I’(r) .

On the other hand, for the case i # 7, we may easily calculate any
second derivative V;V;®(r) explicitly. The first derivative V;@(r)
of ®(r) with respect to any of the Cartesian coordinates z; reads

Vid(r) = % &'(r) .

Consequently, for 1 # j, the sccond derivatives V;V;$(r) of ®(r)
are given by

i T 1 s
Viv;a() = 52 [(P”(r) - -r-<1>'(r)] for i#j,
whereas, by gaining advantage from the fact that §;; = 0fori # j,
the above, already simplified expression for V;V;®(r) reduces to

z; Tj

ViV;®(r) = 3 [b-’ljd)'(r) +do"(r) + fA(I'(r)] for i#j.
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The comparison of these two expressions allows us to fix the three,
until now indeterminate coefficients b, d, and f:

b = -1,
d = +1,
f=20.

In summary, upon collecting all our findings, the second derivatives
V:iV;®(r) may be expressed as the following linear combinations of the
“spherically symmetric” derivatives ¢'(r), ®"(r), and A®(r):

ziz; 1

r2 3

viv2() = ( ) [2'0) - 2] + 38 Ae()




Appendix F

Some Further Formulae for
Spectroscopy '

For unequal masses m; # my, the various spin-dependent relativistic
corrections to a nonrelativistic potential

Vir(r) = W(r) + V(r)
of vector—plus-scalar Lorentz structure read

o for the spin-orbit term

1 1
;{[((ml +mz)?+2mymy)L - Sy

22
4mim;3

Hys =

2 d
+ <m§ -mi)L-8_] E;VV(r)

f

[(m? + m%) L Sy + (m% - mf) L. S_’] %%(r)} ,

with
5,=5+82

and
S_.ES[ "'Sz H

¢ for the spin-spin term

2
HSS = —————Sl . SQAVV(T) H

3myma
and
e for the tensor term
1 1d d?
Hy= m&z ;E;Vv(f‘) ~ E_-Z-VV(") .
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The signatures—parity P, charge conjugation.C, and G parity—for a
quark—antiquark bound state with relative orbital angular momentum

£, spin S, and isospin I are given by
Plag) = (-
Clqq) = (-
G(qd) = (—

1)l+1 ,
I)H-S' ,

1)[+S+I .

For instance, for the pion we have £ = (, S'= 0, I =1 and therefore

P(r) =
C(x) =
G(r) =

-1,
+1,
-1.



Appendix G

Various Potential Models

Eichten et al. [8] Vir = —% % +ar
Quigg~Rosner [11) Vir = Aln(r/ry)
. _ 4 48«7 1 s expl{iq-x)
Richardson [12] Vi = 3@ (27)1 /d q T T FjAY
i
—=—=+d fo <R
Ono-Schéber! {13] Vur = —bexp(—r/c) + 3r roramm
ar for r2 Ry
Ry= 4o sy o L e(cr/re)
3a LY 2 r T
Vs=ar, W=Wa-V
Martin [14] Vip = A+ B!
Buchmiller et al. [15] Vi = [ Paexpiia-x) m_)
- NR 3 (2”, gexpliq-
Falkensteiner e al. {16] Vip = —% %_—'erf(ﬁA r)+ar

64
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4
~——erf(Ar)+d f <R
Schoberl [17] Vin = ~bexp(—r/c) +{ 37 ¢ (Ar) or r=d

ar for r2 My

VS'=a; , Vv =>VN1.1"VS

Flamm et al. [18] W= _% '(’.'.T:'ofw (1-c)+a 29 (1 - d)
VS o= 4 bl c+ aro.ﬂl d

T30+ ro)or
VwR=W+Vs
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B

Breit-Fermi Hamiltonian, 29, 35-38, 62

C

charge conjugation, 63
closed loop, 50
combinatorial factor, 50
commutator, 56
corrections

—, relativistic, 26-38, 62

-, spin-dependent, 27-38, 62
cross-section, 44—46

D

decay rate, 44-46
—, partial, 46
—, total, 46
decay width, 14-46
—, partial, 46
—-, total, 46
deuterium, 24
Dirac matrix, 15
—, Dirac representation, 6, 16
Dirac spinor, 3, 27
—, normalization, 3, §, 51

E

electromagnetic fine structure constant,
8

electron-positron scattering, 4-8, 52 -

energy projection operator, 51

external particle, 51, 52

P

fermion propagzior, 48
Feynman rules, 47-52

67

field operator

-—, plane-wave expansion, 51
fine structure constant

—, electromagnetic, 8

—, strong, 13
Fock space, 18
four-vector-boson vertex, 49
funnel potential, 33-43

—, Lorentz structure, 41-43

—-, spin structure, 41-43

G

G parity, 63

gauge fixing, 48

gauge theory, 47-52

Gell-Mann matrices, 57-58
—, traces, 58

generator, 56

ghost, 48

ghost propagator, 48

L

Lagrangian
—, general gauge-invariant, 47
lifetime, 46
loop
-—, closed, 50
loop integration, 50
Lorentz structure, 13-25

N

nonrelativistic limit, 3-25
o

one-gluon exchange, 9-11, 13

one-particle state
—, normalization, 44
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one-photon exchange, 4, 5, 7, 53
one-pion exchange, 24

P

pair annihilation, 4-6, 9, 10, 12, 53
parity, 63
partial decay rate, 46
partial decay widih, 46
particle

—, external, 51, 52
Pauli matrices, 3, 27, 28
polarization vector

~—, normalization, 51
potential, 1
potential model, 64-65
propagator, 48

Q

QCD, 9-13, 54-55

QED, 4-8

quantum chromodynamics, 9-13, 54-55
qnantum electrodynamics, 4-8
quark—quark potential, 1

R

relativistic corrections, 26-38, 62

S

S matrix, 44-46, 48

—, unitarity, 48
S operator, 18, 47
S-matrix element, 44-46
spin structure, 13-25
spin-orbit coupling, 37
spin-orbit term, 32, 35, 37, 62
spin-spin term, 32, 35, 37, 62
spin-dependent corrections, 27-38, 62
statistical factor, 50
strong fine structure constant, 13
structnre constants, 56
SU(3), 56-58
symmetry factor, 50
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T

T operator, 18

T-matrix element, 45

{ensor operator, 36

tensor term, 32, 3€, 38, 62
three—vector-boson vertex, 49
total decay rate, 46

total decay width, 46

traczs, 58

transition probability, 45
transition rate, 45

A\

vector-boson propagator, 48
vector-boson-fermion vertex, 49
vector-boson—ghost vertex, 49
vertex, 49



