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Discrete effects of the plasma irradiated by an ultrashort, intense 
laser pulse are investigated. Although, for most plasmas of interest, 
the damping of the laser pulse is due to collective plasma effects, in 
certain regimes the energy absorbed in the plasma microfields can 
be important. A scattering matrix is derived for an electron 
scattering off an ion in the presence of an intense laser field. 
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Abst rac t 

Discrete effects of the plasma irradiated by an ultrashort, intense 

laser pulse are investigated. Although, for most plasmas of interest, 

the damping of the laser pulse is due to collective plasma effects, in 

certain regimes the energy absorbed in the plasma microfields can be 

important. A scattering matrix is derived for an electron scattering 

off an ion in the presence of an intense laser field. 
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I. I N T R O D U C T I O N 

The increasing degree of interest in high intensity lasers motivates a the­

oretical examination of the behavior of plasma in the fields of such lasers. 

Many recent studies are devoted to analysis of collective behaviour1; however, 

there is a need, addressed here, to examine discrete particle effects inside a 

very short electromagnetic pulse of linear polarization and of arbitrary am­

plitude. 

The problem of collisional absorption2 has been studied extensively for 

low intensity fields, where the electron velocity is not relativistic, and for 

time scales longer than collisional time. Now, very high intensity fields (10 1 8 

W/cm 2 and above) can be achieved in very short pulses3. For underdense 

plasma, the duration of such pulses is less than an inverse plasma frequency, 

and, hence, for ideal plasmas, even less than a collision time. Therefore, to 

find the amount of energy deposited into the plasma due to its discreteness, a 

standard approach, such as by using the Fokker-Planck collisional operator, 

may not be valid. Neither is one allowed to assume that the electron motion 

is nonrelativistic4. 

In this paper, we address collisional effects in just this ultraintense, ul­

trashort laser regime, and we find the change in the energy of plasma mi-
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crofields (usually refered to as a correlational energy) due to the interaction 

of electrons with the laser pulse. Although, for plasma with an electron tem­

perature Te > 1 eV and a very intense, rj ~ 1, short 0.1 ps laser pulse, the 

damping of the pulse is due to collective effects, and the collective energy 

sets up a plasma wake. Here the nonlinearity paramter r) is rf — ea/mc2, 

where a is a wave vector potential, c is the velocity of light, —e the elec­

tron charge, and m the electron mass. On the other hand, for a plasma at 

Te ~ 0.01 eV and for a very short, moderately intense pulse, we find that 

the correlational energy can be greater than the energy stored in the plasma 

oscillations. Interestingly, in this regime, in which a plasma is irradiated by 

the laser waves, discrete (collisional) effects dominate collective effects. In 

contrast, in an ideal plasma , in the absence of any external fields, collisional 

effects are always down in magnitude by a factor of neA^, where n e is an 

electron density and A<* is a Debye length. 

The problem of two particle collisions in the presence of an intense laser 

pulse remains unexplored for flux densities, so intense that the particle mo­

tion becomes relativistic. It corresponds to the nonlinearity paramter 77 = 

ea/mc being of the order unity. For visible light 77 ~ 1 for a flux density 

~ 10 1 8 W/cm 2 . We analyze here the case of the scattering of an electron by 
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the ion in the laser field at such intense flux densities. The final answer is 

presented in terms of a scattering matrix, which describes interaction of two 

particles both inside and outside the laser pulse. 

Suppose a wave packet propagates in the x direction, with vector potential 

a(< - x /c) . Suppose further that a( i - xjc < 0) = a( i - xfc > T) = 0. The 

pulse is then characterized by two time scales: its mean frequency a) and its 

total phase duration T. The frequency width of the wave packet is 5w, such 

that TSOJ ~ 1. We assume that the pulse travels at the velocity of light, 

which is a good approximation for waves in an underdense plasma. This 

approximation becomes even better for very intense waves 4 . 

Describing the interaction of plasma with a laser pulse of high intensity 

(rj ~ 1) is complicated, because one can not use a dipolar expansion 5 , which 

assumes i| < 1. But the limit of a very short pulse is t ractable 5 . If the 

pulse spectra is broad enough, i.e. UJP/8U> < 1, so that the pulse duration is 

shorter than the time for the electrons to set up a collective response, the 

plasma collective field can be treated as a perturbation to the laser field. 

Recent advances in pulse compression 3 now make possible pulses as short as 

T ~ 0.1 ps, for which the above inequality holds for plasmas with densities 

up to 10 1 8 c m - 3 . 
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Consider an electron and an ion (Z = 1) inside a laser pulse. For dis­

tances between them such that e 2 / r 2 < eaw/c, one can treat the ion field 

as a perturbation to that of the laser. For the fluxes under consideration 

(rj ~ 1), the minimum distance up to which the above inequality holds is 

Train ~ y/reX, where r e = e2/mc2 is the classical radius of an electron, and A 

is the wavelength of the radiation. For visible light, 

rmin r*J 10 9 cm. Clas­

sical mechanics can be employed if the de Broglie wavelength of an electron 

Ae = h/m^v ~ 1 0 - 9 cm (7 = l / ^ l . — v2/c2, and v is the typical electron ve­

locity in the laser pulse) is less than the distance between two particles. We 

see that over the range of distances, from 00 to Ae ~ 1 0 - 9 cm, where classical 

mechanics is valid, the ion field remains less than that of the laser and we 

can employ perturbation theory. 

The paper is organized as follows: In Sec. II we calculate the correlational 

energy after the pulse. In Sec. I l l , we study the relativistic interaction of 

an electron with an ion in the presence of a laser pulse. In Sec. IV, we 

generalize our results to finite initial velocity and derive the scattering matrix 

for ultrashort interactions. In Sec. V, our results are summarized. 

To simplify the presentation in Sec. I l l , we use m = c = — e = 1, so the 

nonlinearity parameter r? is in fact a; elsewhere, all quantities are expressed 
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in c.g.s. units. 

II. CORRELATIONAL ENERGY AFTER THE PULSE 

Consider an ultrashort laser pulse, propagating in the x direction, with 

the width Su> larger than the plasma frequency u>p. In this limit, the plasma 

collective field is smaller than that of the pulse. To zeroth order in u^/Soj2, 

the only effect of the laser in the framework of the fluid model is a displace­

ment of each electron in the direction of the pulse by 1 

^sG^Y-'w*'- ( I ) 

This displacement sets up a plasma wave behind the pulse with the energy 

given by 5 epi = 2,xh\n2e2. One can treat this value as a part of the total 

energy deposited in the plasma by the pulse. Another part comes from 

the change of the energy stored into the microfields (we neglect the plasma 

corrections to the exit velocity and displacement for very short pulses5), 

which are always present due to discrete nature of the plasma. This energy 

is usually refered to as a correlational energy6. Its equilibrium quantity is 

obtained by averaging the potential energy of two particles, using the two-

particle equilibrium correlation function 

9ss-{r) = 1 - - = : , (2) 



where Te is the plasma temperature, Aj is the Debye length, and r is the 

distance between two particles with charges qs and qs>. 

While the laser pulse clearly disturbs the plasma two-particle equilibrium 

distribution, for a short pulse, each Debye cloud is almost intact right after 

the pulse, since we assume Su > u)v. The change in electron temperature due 

to collisions with the ions inside the pulse is small, STe <C Te. Hence, one 

can use for the quantities A<* and Te their initial values before the pulse. The 

correlational energy density of the plasma consists of three parts, 

representing contributions from electron-electron, ion-ion, and electron-ion 

correlations respectively. Since, in our model, the only effect of the laser is 

an instantaneous displacement of each electron by the distance ho, it is clear 

that the interaction with the wave will change only the term e e,. Then its 

value after the pulse, e e t , is determined by the potential energy of the ion in 

the displaced cloud of electrons, namely 

eei = nqi<f)(ri), (4) 

where <^(r,) is an electric potential of the cloud at the ion's position and 

n — ne = n,- is the plasma density. 
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Let us choose the coordinate system with its origin at the center of a 

spherically symmetric electron cloud (see Fig. ). Then the radius vector of 

the ion is —ho. The electrostatic potential is determined from the solution 

of the Poisson equation 

«-*>-/£*&"• (5' 
where ne(r) — negei(r) is the cloud density. Using an expansion in Legendre 

polynomials, 

1 / ( l / r ) £ / ( V r ) ' f l ( c o s 0 ) , if h0 < r 
| r + h 0 | 1 ( 1 / M Hi(r/h0)lPi(cos 0), if h0 > r 

the integration in equation (5) can be carried out easily. We find an energy 

density difference Aecorr = 2Trn2e2hobo, where b0 =j qeqi j /T e is the classical 

distance of closest approach. The ratio of the increase in the correlational 

energy to the energy of collective plasma oscillations is 

epi h0 27r?72Te[eV] 

indicating the relative importance of collective effects in comparison to sin­

gle particle effects. Depending on the plasma temperature and the pulse 

duration, this fraction can be either greater or less than unity. This is in 

contrast to an ideal plasma, not subject to any external fields, where discrete 
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(collisional) effects are always down in magnitude by ~ nA^. For example, 

a very short, T ~ 0.01 ps, intense, 77 ~ 0.2 electro-magnetic pulse, propa­

gating through the Earth ionosphere plasma (n ~ 105 c m - 3 , Te ~ 0.01 eV, 

n\% ~ 1.2 • 103) deposits twice as much energy into the plasma microfields 

than into plasma oscillations. We show the regions, where Aecorr/tpi > 1, in 

the Fig. 2a. 

The quantity A e c o r r complements the picture of discrete losses investi­

gated in Ref. [5]. It is interesting to compare it with the incoherent Compton 

losses u$S (Eqs. (38), (52) in Ref. [5]). Their ratio scales like: 

A e c o r r = _1_ fu^y mf_ = 6.75 • 104 / c ^ \ 2 

In Fig. 2b, we distinguish, by regions in 77 — Te space, where each of these 

loss mechanisms dominates. 

III. SCATTERING OF AN ELECTRON BY AN ION IN THE 

PRESENCE OF A LASER PULSE 

We will briefly review the interaction of a single electron with a pulse of 

high intensity, and then we will carry out the analysis in the presence of the 

ion field. Let us start with equations of motion for an electron in a laser 
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pulse of linear polarization along y axis, 

| = a + v x ( „ x a ) , | - i . v , (8) 

where the wave vector n is in the ar-direction, the electron momentum is 

denoted by p , and the velocity by v. The dot stands for differentiation with 

respect to the phase argument, t — x, and 7 is the relativistic energy. After 

some algebra, one can find that the quantity 7 — n • p is a constant of motion, 

which is equal to 7 — n • p = 1 for an electron with zero initial velocity. Using 

this invariant, we solve for the proper time, r = t — x, and the displacement 

1 fT rT 

hx(T) = r / a2(u)du, hy{T) = / a(u)du, hz = 0. (9) 
2 Jo JO 

In obtaining (9) we have used conservation of canonical transverse momen­

tum, n x p = n x a. For an electron initially at the origin, the kinetic energy 

is then given by 

7(r) = 1 + \a\r). (10) 

Let us now address the problem of interaction of an electron with an ion 

in the presence of a laser pulse. We assume the ion with charge state Z = 1 to 

be stationary at the origin and the electron to have zero velocity and position 

fi = (a?j, y,-, Z{), when it is hit by the pulse at the point A (see Fig. 3). During 
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the body of the pulse the electron will move along the trajectory AB, at the 

end of which it will gain the exit velocity V B due to interaction with the ion. 

We now proceed to calculate the exit velocity and position of the electron. 

The natural length of this problem is A, the wavelength of a laser radia­

tion. The Coulomb force on the electron in dimensionless form (we express 

lengths in terms of A) is then given by 

f = - c ^ (ii) 

where £ = r e/A, with re being an electron radius. Now one can write down 

an equation of motion of an electron in the fields both of the ion and of the 

laser: 

- ^ = a + f + v x ( n x a ) , - ^ = (a + f ) - v . (12) 

By assumption, the ion field is smaller than that of the laser for distances 

up to 1 0 - 9 cm, so we expand all dynamical quantities h, 7 and so on, about 

the exact result, Eq. (9) and Eq. (10), the expansion parameter being /ju>a. 

Accordingly, the first order system of equations to be solved is 

^ = ^ ( ^ i - ^ ) a 2 ( ^ o - ^ ) - C / x ( r o ) 7 o ( r o ) (13) 

^ L = i ( * 1 - ^ ) « 2 ( * o - f e o ) - C [ / « ( 7 b ) p g + /y(Tb)pg] (14) 
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"""1 
dr 

X 

= Pi 

dtx 

~d7 = 7i 

(15) 

(16) 

^ = (U - hfMto - K) - C / , ( r 0 )7o(ro) (17) 

^ = - C UTO)7O(T0), (18) 

where r 0 = to — ^o a n < ^ f ( r o) i s a force vector, with electron's coordinates 

lying on its zero order trajectory (part AB in the Fig. 2) 

X(TQ) = Xi + AJ(r 0 ) , y(rQ) = yt- + fcg(r0), z ( r 0 ) = z f . (19) 

We can now subtract Eq. (14) from Eq. (13) to obtain an expression for 

the 7i — pf. Then we solve for the perturbation of the proper t ime 

7i ~ tf = C T [ / » - fy{u)a{u))du (20) 
JQ 

ti - K = C T <fe f [/x(rx) - / y («)a(u) ]du . (21) 
Jo Jo 

With these expressions for the first order quantities Eq. (13) can be solved 

explicitly. After integration twice by parts we obtain 

rf = \{f{r) £ du f\fx{v) - fy(v)a{v)\dv -

a\r) £[fx(v) - fy(v)a(v)}dv) - C £ \ ^ f y ( u ) + fx(u)]du, 
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and similar expressions for p\ and p\. Now the exit velocity can be calculated 

using V = po + P i ( T ) / ( 7 o ( T ) + 7 l ( T ) ) to give 

Vc

x = -Z [[Uu) + \az{u)fy{u))du, (22) 

V? = cf[aHMu)-fy(n)(l + ^a2(u))}du, (23) 

V; = - C fTUu)(l + l-a2(u))du. (24) 

Jo I 

The subscript "c" (cold) indicates that this solution assumed zero initial 

electron velocity . The exit displacement, given in Appendix, can be obtained 

by integrating px with respect to the proper time. 

The above equations allow simple interpretation. One can treat the zero 

order trajectory of the electron (Fig. 3) as a finite-mass string in an external 

force field, its shape given by parameterized Eqs. (19). This string has a 

mass tensor varying over u (u being a parameter, characterizing a current 

position on the string). Then the integrations in Eqs. (22), (23), (24) are, 

in effect, averaging the force of the ion over the inverse mass tensor of the 

string, the inverse tensor components given by respective coefficients in these 

equations: 
m'l = 1, m~xl = -a3{u), (25) 

" V 1 = a(s), (26) 
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< = (l + §«a(«0) , (27) 

™£ - mzi = "*« = m£ = 0, (28) 

ro«=C1+\a2{u)) • (29) 

This analogy will help us to understand dependence of V c on the elec­

tron's initial position r, . We fixed y, = 0 and Z{ = 0 . 1 and plotted V c versus 

X{ (see Figs. 4 and 5). For simplicity, we chose the form of the pulse to be 

a{u) = sin(a), 0 < u < Ty where T = Qir. The periodic behavior of V c versus 

Xi (Fig. 4) is due to periodic structure of the electron's zero order trajectory 

in this direction. The spikes on the curves correspond to the minimum ap­

proach to the ion. Their amplitude varies with respect to x,-, because the ion 

divides the string in varying ratio. The spikes are singular as z —)• 0, because 

the distance of minimum approach also tends to 0. The plots of V c versus y, 

(Fig. 5), Xi and 2, being fixed, do not exhibit periodicity, because of the lack 

of periodicity in the zero order trajectory of the electron in this direction. 

The exit velocity and displacement fully describe the scattering in the 

presence of the pulse. In Sec. IV, we use these quantities as initial conditions 

for the electron motion in the field of the ion after the pulse to describe the 

whole scattering process. 
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IV. SCATTERING MATRIX 

In this Section we extend the analysis given in Sec. Ill to the case of 

non-zero Vi initial velocity of an electron and obtain scattering matrix. We 

assume that V is nonrelativistic and find first order 0(Vi) corrections to our 

previous results. First, let us modify the quantities describing the electron 

motion in the wave alone. The invariant of motion 70 — p^ w ^ be 

7o -Pb = l - V T . (30) 

The relation between the phase argument of a and the proper time r 0 is then 

t0 - K = (1 - vfW (3i) 

The y component of momentum PQ is modified in a straightforward way 

Pt = V? + a. (32) 

Eqs. (30), (31), and (32) lead to the following expression for the electron 

kinetic energy 

7O(TO) = 1 + \a\ro) + a{TQ)V? + l-a2{rQ)Vf. (33) 

To find 0{Vi) corrections to the exit velocity V C , given in (22), (23), (24), 

we will now perform the same analysis as in Sec. Ill with new values of tQ—h^^ 
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pi etc., given in (30), (31), (32) and (33), to arrive at 

Vx \ / V* \ ( axrr ax„ a^ \ ( V? ' c \ I ^xx ^xy *-*xz VV I = I V< + ^ ^ ^ 
Vz I \ V; I \ azx azy azz / \ 

V? (34) 

The matr ix a ^ is given in the Appendix. It does not exhibit any symme­

try, because the electron-laser and electron-ion interactions possess different 

symmetries. 

So we know the exit velocity and displacement after the laser pulse. Next 

we consider the Coulomb scattering in the field of the ion, after the electron 

has interacted with the pulse, to obtain the final velocity of the electron at 

infinity. The exit velocity and displacement upon leaving the pulse are now 

taken as initial conditions in the scattering by the ion. The electron energy 

and its angular momentum are invariants of motion. At the very moment 

the electron exits the pulse, 

I = | V x R j , E=l-V*-^, (35) 

where R is the radius vector of the electron at that moment (see Appendix). 

Let us introduce contraction coefficient 

* - * ^ , (36) 

which is the ratio of the velocity at infinity V^, to the exit velocity V. The 
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impact parameter is then 

| V x R | 
b=—vT- ( 3 7 ) 

We are left to find the angle \ between Voo and V = V g (see Fig. 3). 

It can be done most easily in the plane of collision. Using the exact solution 

for the electron motion, we relate angles <f> and (p^ to R and b 

b/R - bjb (bv/b) 
cosd) — — -. = , COSOQO = — = , ( 3 8 ) 

where bv = 1/V^. Note that we use m — c — e = 1 units in this Section. 

The angle of rotation \ l s then given by 

_{4>-<\>oo, i f ( V - R ) < 0 
X~~\ 4> + <j>oo-n, if ( V - R ) > 0 ' [ 6 y ) 

where the sign of V • R determines whether an electron will follow part BC 

or BD of the trajectory (Fig. 3). The scattering matrix, which relates Voo 

to V , can be written in the form 

Cik = A;(cos x&ik + sin x«ij*nj + (1 - cos x)™;™fc)- (40) 

Its structure is simple: it contracts the absolute value of velocity from VB 

to VQO and rotates V in the plane of collision by the angle \i given in (39). 

The axis of rotation is parallel to the vector n = ( R x V)/(R V), which is 
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normal to the plane of collision. It turns out that matr ix (40) can be most 

easily obtained through the quaternion formalism. The quaternion, which 

rotates a vector around axis n by an angle x » is 

A = c o s ^ + n s i n ^ . (41) 

The rotation of an arbitrary vector b can be then written in the form 

b ' = A o b o A , (42) 

where o stands for quaternion multiplication and A is conjugated quaternion. 

After some algebra Eq. (42) gives matrix Cik (40). 

Now we can write the final velocity VQQ as a product of two matrices, we 

have found: 

VL = Cl3{ajkVt + V>). (43) 

Eq. (43) describes the whole scattering process from point A to oo (Fig. 3), 

which includes the interaction with the laser and Coulomb scattering in the 

field of the ion. 

The expression in parentheses is Vg, the exit velocity of the electron due to 

the interaction with the field of a single ion. It was obtained via linearization 

around the zero order trajectory of the electron. This description of the 
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scattering process can be incorporated into a collisional operator by averaging 

over the initial position n of the electron 7 , in order to describe the plasma 

response to several short pulses. The derivation of such a collisional operator 

is, however, beyond the scope of this paper. 

V . D I S C U S S I O N A N D C O N C L U S I O N S 

In summary, in this paper we investigated the role of discrete particle 

effects in the energy absorption from an ultra-short laser pulse of high inten­

sity. It was shown that for very short (< 0.09 ps) and moderately intense 

(77 ~ 0.01) pulses the change in correlational energy of the plasma at 1 eV 

temperature is greater than the energy stored in plasma oscillations. This 

dominance of discrete (collisional) over collective effects, even when nX^ ^> 1, 

is opposite to the usual collisional effects, which are always down in mag­

nitude by n\\. We note, however, that for very intense pulses, 77 ~ 1 with 

duration ~ 0.1 ps, the energy of plasma oscillations is greater than the cor­

relational energy, according to Eq. (6). 

Although collisions due to initial nonrelativistic thermal velocity do not 

take place during the laser pulse, each electron acquires a relativistic velocity 

in the laser pulse and moves a certain distance in the fields of the ions. As 

a result of these background fields, the exit velocity at the end of the pulse 
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is affected. This process can be called an "induced collision" to distinguish 

from an ordinary Coulomb collision, when the only fields present are those 

of the particles themselves. 

The scattering matrix for the induced collisions, Eqs. (22), (23), (24), and 

(34), is applicable to electron-ion collisions in the presence of the intense laser 

pulses. The corrections to the exit velocity and displacement of the electron 

can also be used to obtain a collisional operator that would describe the 

influence of several short pulses on the plasma. This is, however, beyond the 

scope of the present paper. 
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APPENDIX: CALCULATION OF THE SCATTERING MA­

TRIX 

Let us write first order corrections to the exit displacement due to the 

ion field. They are obtained by integrating P\{T),PX(T),PI(T) respectively, 
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which gives: 

hi 

h\ = 

h\ = 

- C l T a2{u)du / " [ / . ( * ) - fy{s)a(s)} - C f da 
JO JO JO 

- C [T2a(s)ds fS[fx(s) - fy(s)a(s)} + ( f a(s)[fx(s) 
Jo Jo Jo 

-fy(s)a(s)]ds - ( I du fU fy(s)(l + -a2(s))ds, 
Jo Jo I 

-( fds [Sfz(u)(l + l-a2(u))du. 
Jo Jo I 

Now we will determine coefficients of the a t J matrix (34). 

It is easy to find, using (30), (31), (32), (33), that equations of trajectory 

with the first order 0(Vi) corrections can be written as 

yo 
\ zo 

Xi 

Vi I + 
Zi 

V? + 
(K 

hi 
V 0 0 az., 

where the Oij matrix coefficients are given by 

<7XX(T) = fo (I + a2(u))du, crxy(r) = / 0

T a(u)du, 

<ryx{r) = fo a{u)du, ayy(r) = azz(r) = r . 

And the zero order trajectory is given by Eq. (9). 

We will denote the electron's radius vector, following zero order trajectory, 

by 

r(r) = [(*,- + h*(T))2 + (y,- + K{r)f + z}f>\ 
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Then after analysis similar to that of in Sec. I l l the a t J- matrix compo­

nents are: 

axx = 1 - C / o

T [ / * (* ) ( l + A*)) + \a\s)fy(s) - ^ ^ t ^ ^ 

<**v = -CJo Hs)Ms) + -a2(s)fy(s)+ ^ v ;]ds, 

fT 1 
aXz = - C / -za2{s)fz(s)ds, 

Jo L 
/• fT I \A fit/ \ t \t ( \ , ^xx^-^s)^^), dyx = ~C / a(s)ds / [fx{s) - a(s)fy{s) + 3 A i d s 

Jo Jo rJ(s) 
rT 1 + ±a2(s) /•* rT 

-< / I \ ds / a^du ~ < / /»W(1 + A*))^ 
Jo r°{s) Jo Jo 

i > fT / u [s<°xy{u) - a(u)ayy(u) 
Jo Jo r J ( u ) 

-CJ la(s)fy(s) + Vyyi^i1 + g0^3))***' 

ayz = -( / «(s)<fe / fy(u)du, 
Jo Jo 

azx = -( f fz(s)(l + a2(s))ds, 
Jo 

rT 
CJ fz(s)a{s)ds, 

T c„(s)(l + | a 2 ( , ) ) 

<*zy 

a a„ = l-C v / v ' 2 v "ds. lZZ -5 f ->/ \ 

rA\s) 
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Fig. 1 Displacement of the Debye cloud due to interaction with the laser 

pulse. 

Fig . 2 Regions of relative importance of A e c o r r in comparison with: a) 

energy of collective plasma oscillations and b) spontaneous Compton losses. 

Curves 1,2, and 3 correspond to the electron temperature, Te, 1, 0.1 and 0.01 

eV respectively. The pulse duration <5w~l is given with respect to SU>Q1 = 2n • 

10~ 1 3 . The region above each curve in Fig. (a) corresponds to Aecorr/epi > 1, 

while in Fig (b) it corresponds to A e c o r r jecompt < 1-

Fig. 3 Electron moves along the trajectory AE in the field of the ion (at 

the origin), when it is hit by the pulse at the point A. It is forced to move 

along the new trajectory AB, which is almost the same as its trajectory in 

the field of the pulse alone (drifting figure eight). At the point B it leaves 

the pulse with the exit velocity Vg and starts to move along hyperbola CD, 

B F being its axis of symmetry. Note, that trajectories AE, AB and CD do 

not necessarily lie in the same plane. 

Fig . 4 Components of the exit velocity , Vf, V c

y, V*, respectively versus 

initial £,• position of the electron, with t/2 = 0,2, = 0.1. The magnitude 

of velocity is presented in terms of c = 3 • 10 1 0 cm - velocity of light, and 

all lengths are measured in A = 1 0 - 5 cm - wavelength of radiation. The 
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form of the pulse is chosen to be a(u) = sin(u), 0 < u < T, where T = 6ir. 

As z —>• 0 the spikes on all graphs tend to ±00, forming discontinuities. 

This corresponds to electron crossing the ion at some point on its zero order 

trajectory. The periodic behaviour of all plots is due to periodicity of the 

zero order trajectory of the electron in x direction. 

Fig. 5 Components of the exit velocity, V*, V*, Vc

z, respectively, versus 

initial y; position of the electron, with Xi = 0, z, = 0 . 1 . Plots do not exhibit 

any periodicity due to the lack of periodicity in the zero order trajectory of 

the electron in y direction. 
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