
BNL- 52493 

UC-414 

DIVERSE TOPICS IN CRYSTALLINE BEAMS 

JIE WEI, 
ANDREW DRAWSEKE AND ANDREW M. SESSLER (LBL), 

XIAO-PING LI (BIOS YM TECHNOLOGIES) 

NOVEMBER 27,1995 

RHIC PROJECT 

Brookhaven National Laboratory 
Associated Universities, Inc. 

Upton, NY 11973 

Under Contract No. DE-AC02-76CH00016 with the 

UNITED STATES DEPARTMENT OF ENERGY ;*;! ft O T F 
l 

^mmm OF THS DOCUMENT is UNUMTE 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, not 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency, contractor, 
or subcontractor thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the 
United States Government or any agency, contractor or subcontractor 
thereof. 

Printed in the United States of America 
Available from 

National Technical Information Service 
U.S. Department of Commerce 

5285 Port Royal Road 
Springfield, VA 22161 

NTIS price codes: 
Printed Copy: A06; Microfiche Copy: A01 

ii 



D I V E R S E T O P I C S I N CRYSTALLINE B E A M S * 

JIE WEI 
Brookhaven National Laboratory, Upton, New York 11973 

ANDREW DRAESEKE and ANDREW M. SESSLER 
Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 

XIAO-PING LI 
BIOSYM Technologies Inc., 9685 Scranton Rd., San Diego, CA 92121 

ABSTRACT 

Equations of motion are presented, appropriate to interacting charged particles of 
diverse charge and mass, subject to the external forces produced by various kinds of 
magnetic fields and radio-frequency (rf) electric fields in storage rings. These equa­
tions are employed in the molecular dynamics simulations to study the properties of 
crystalline beams. The two necessary conditions for the formation and maintenance 
of crystalline beams are summarized. The transition from ID to 2D, and from 2D to 
3D is explored, and the scaling behavior of the heating rates is discussed especially in 
the high temperature limit. The effectiveness of various cooling techniques in achiev­
ing crystalline states has been investigated. Crystalline beams made of two different 
species of ions via sympathetic cooling are presented, as well as circulating "crystal 
balls" bunched in all directions by magnetic focusing and rf field. By numerically 
reconstructing the original experimental conditions of the NAP-M ring, it is found 
that only at extremely low beam intensities, outside of the range of the original mea­
surement, proton particles can form occasionally-passing disks. The proposed New 
ASTRID ring is shown to be suitable for the formation and maintenance of crystalline 
beams of all dimensions. 

1. In troduct ion 

In previous work, the nature of crystalline beams has been studied by many dif­
ferent investigators.[1]—[15] In particular, we have made a systematic study in a series 
of papers[16]-[22] which has consisted of deriving the equations of motion for charged 
particles undergoing Coulomb interaction in a real storage ring, and then using them 
to study many properties of crystalline beams. We have shown that the storage ring 
must be alternating-gradient (AG) focusing, that operation must be below the tran­
sition energy of the ring, and that the storage ring lattice periodicity must be much 
greater than twice the maximum betatron (transverse) tune. 

In this paper, we carry on our studies with investigations of a number of disparate 
crystalline beam subjects. First, we present in Section 2 the generalized equations 

*Work performed under the auspice of the U.S. Department of Energy, supported by NSF Grant 
DMR-91-15342, and by the DOE, Office of Energy Research, Office of High Energy and Nuclear 
Physics, under Contract No.DE-AC03-76SF00098. 
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of motion appropriate to the study. Previously, we have presented a rather lengthy 
derivation[16] which considered one species of ions with no longitudinal external force; 
since the generalization is straight-forward, we only present the results. Using these 
equations, we then discuss in Section 3 some results of the molecular dynamics (MD) 
simulations including the method of determining the ground state , the evaluation of 
the heating rates, and the scaling laws in comparison with that obtained from the 
intra-beam scattering (IBS) theory. 

In Section 4, we re-state the conditions for crystallization, emphasizing the second 
condition pertaining to the machine lattice periodicity and the maximum transverse 
tune. The phonon spectrum, which is the key to this condition, is investigated analyt­
ically for one-dimensional (ID), and numerically for 2D and 3D crystalline structures. 

Previously, we achieved crystalline states in the MD simulation by imposing 
once per lattice period a condition of periodicity while correcting the longitudinal 
slippage.[16] To investigate the effectiveness of conventional cooling methods, we em­
ploy in Section 5 more realistic models of conventional stochastic, electron, and laser 
cooling, as well as the proposed longitudinally tapered cooling. 

In Section 6, we study the development of crystalline beams consisting of two 
different ion species of similar rigidity, while only one species of which is subject to 
cooling. We show that sympathetic cooling due to intra-particle interaction cools the 
other species, resulting in crystalline structures of two types of ions. These structures 
possess more complicated properties than single-species structures. 

To extend our knowledge into bunched beams, we further investigate in Section 7 
the effect of a radio-frequency (rf) electric field upon the formation of 3D bunched 
"crystalline balls" circulating in the storage ring. Such "blobs of mat te r" should have 
interesting properties and applications different from that of usual crystalline beams 
which are finite only in the transverse directions. 

In the late 1970's, anomalous behavior in the Schottky signals was observed on 
the NAP-M ring, leading to the suggestion of crystalline beams and precipitating a 
great deal of theoretical and experimental work. It is thus interesting to use the tools 
that we have developed to reconstruct the original conditions of the NAP-M ring, and 
to see whether, theoretically, a crystalline state could have been realized. The results 
are summarized in Section 8. 

In Section 9, we apply the methodology to a ring which has been proposed for 
the careful study of crystalline beams; namely the New ASTRID ring. We determine 
the conditions under which ID, 2D, and 3D crystalline structures can be formed, and 
determine the cooling rate needed for crystallization. 

Finally, the conclusions are presented in Section 10. 

2. Equat ions of M o t i o n 

In order to adopt the molecular dynamics (MD) methods, we employ [16] a rotating 
frame (x, y, z, t) of a reference particle in which the orientation of the axes is rotating 
so that the axes are constantly aligned to the radial (x), vertical (y), and tangential (z) 
direction of motion. The equations previously derived for the motion of the particles 
in the presence of bending dipole and focusing quadrupole magnetic fields, can be 
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generalized for multi-species of ions under various external dipole, quadrupole, and 
sextupole magnetic fields and longitudinal electric fields. 

It is convenient to define a reference particle with charge s tate Z0 and atomic 
mass Mo. We scale dimensions in terms of the characteristic distance £, with £ 3 = 
r O /0 2 / / ? 2 7 2 , where ro = Zge 2 /Moc 2 , the velocity of the reference particle is f3c, its 
energy is 7A/0C2, and it moves on an orbit with bending radius p in magnetic field 
B0. We measure time in units of p/ftfc and energy in units of ^^Z^e2/^ For the 
i th species of ions with electric charge state Z{ and mass M,-, we define the relative 
charge and mass with respect to the reference values 

Zi = Zi/Zo, and m,- = M j / M 0 . (1) 

In a bending region with bending radius p, the equations of motion for particles of 
the ith. species can be derived as 

x - 2 - 7i + - ' - a * •+e-o? dVc a 

Zi Zi 
5 + 2 - — 7 x + — - 1 7 ' z 

dx 

dVa 
dy 

dVa 

(2) 

m. ,m,i dz 

where the dots denote differentiations with respect to the t ime t measured in the 
above units, the Coulomb potential is 

Va{x,y,z) = ^2 
ZiZj 

T mi^(xj - x)2 + (yj - y)2 + (ZJ - z)2' 
(3) 

and the summation, j , is over all the other particles. The Hamiltonian that corre­
sponds to Eqs. 2 and 3 is 

Hi(x,Px,y,Py,z,Pz]t) = !(j2 + p; + /?) + ! X

2

+(J±-I^J 2 2 
72 

( 
Zi 

(4) 

_ 2 - - ^ \7xPz + 
rrii rrii 

1 1 - x + VCi(x,y,z). 

In a straight section, where there is no bending of particles, there often are quadrupole 
magnets for focusing, sextupole magnets for chromatic correction, and electric field for 
acceleration or bunching. If the quadrupole and sextupole strengths are represented 
by 

P dBy p d2By 

and n 2 = - — — 5 - ^ - , (5) Tl! = 
B0 dx Bo dx2 ' 

3 



respectively, the equations of motion can be derived as 

x — 
Zi 

m; 
nxx + —{xl - j r ) 

dVc a 

y + —- (nu/ + n2{xy) 

dx 

dVa 
dy 

(6) 

dVr a 
dz + F„ 

where the electrical force Fs in the reduced units can be expressed in terms of electric 
field Es measured in the laboratory frame, 

Fs = 
' dz 

= Zj Z0eEsj f 
m, MQC2 \ tfl, 

(7) 

The corresponding Hamiltonian is 

«,-(*, P„y,P„«,P,;0 = Upl + PZ + P^-^^-y*) 

n2( Zi 
6 m; 

2 rrii 

(x3 - 3xy2) + VCi(x, y, z) + Us. 

(8) 

In the reduced units, the revolution period of the reference particle in the storage 
ring is Co/'p, where Co = 2wR is the circumference of the ring. 

Obviously, in the case that only one species of ions is studied, Zi = rra,- = 1, Eqs. 2 
- 8 become much simplified. 

3. Molecular D y n a m i c s R e s u l t s 

In previous papers, we have presented many computational results which the 
reader may wish to consult. In this section, we present results from several different 
MD studies of single-species un-bunched beam, emphasizing the method of determin­
ing the ground states, the scaling behavior of the heating rates, and the comparison 
with the IBS theory. 

3.1 A Study of ID to 2D, and 2D to 3D Transitions 
It has been well established[7] that at very low line density (beam intensity), a 

crystalline beam is a ID string. As the density is increased beyond critical values, the 
ground state first converts from ID into 2D extending in the plane of weaker focusing, 
then from 2D into 3D. As the density is increased even further, the structure expands 
in transverse dimension, while the intra-particle distance remains approximately the 
same. 

In order to determine the ground state at a given density and to study the tran­
sition from ID to 2D, and from 2D to 3D, we have undertaken extensive numerical 
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computations. For simplicity but without losing generality, we present an example 
using a constant gradient (CG) harmonic oscillator model, instead of an AG focusing 
ring, with the transverse focusing strengths Kx = 2.8 and Ky = 3.2. Fig. 1 shows 

i ' ' ' ' i 

Figure 1: Lowest energies achievable with a finite number of particles N per MD cell 
of length L in the MD calculations at various densities N/L. The crosses show the 
lowest energy achievable at the particular density. 

the lowest energies achievable with a finite number of particles N per MD cell of 
length L in the MD calculations at various densities N/L (The vertical axis shows 
scaled energy obtained by the expression 15N/L + 100E, where E is the sum of the 
average kinetic and potential energy of the particles, and L is in units of £.). When 
N/L < 0.8, the ground state is a ID chain of equally spaced particles, which can be 
obtained with any number of test particles per MD cell, as shown by the crosses in 
Fig. 1. Within the range 0.9 < N/L < 1.4, the ground state is a 2D zig-zag, which 
can be obtained only with even number of test particles per MD cell, again as shown 
by the crosses in Fig. 1. When N/L > 1.5, the ground state becomes 3D. The min­
imum number of test particles needed to achieve the lowest-energy state increases. 
For example, the lowest energy state for the N/L — 2 case can be obtained only when 
the number of test particles is an integral multiple of 8. Fig. 2 shows a 3D view of 
such a double-helix structure. 

3.2 Temperatures and Heating Rates 
For the t ime dependent Hamiltonian system discussed in Section 2, it is advanta­

geous to define the normalized beam temperature in terms of the deviation of Px, Py 
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Figure 2: A 3D view of a 3D double-helix structure at N/L = 2 in a constant-gradient 
potential. In this study, the transverse focusing strengths are Kx = 2.8 and Ky = 3.2. 

and Pz from their ground-state values, 

Tx = <(AP X ) 2 ) , Ty = {(AP y ) 2 >, and Tz = ( ( A P 2 ) 2 ) , (9) 

squared and averaged both over different particles and over a time period (typically 20 
lattice periods) that is long compared with the focusing period but short compared 
with the total t ime of observation. When the system temperature is sufficiently 
higher than the break-up temperature (transition between crystalline and "running" 
state[20]) of the crystalline state,[20] the normalized temperature T can be directly 
related to the conventionally used beam temperature TB, un-normalized rms beam 
emittance c X i V , and rms momentum spread A p / p by the relations 

C 
[-1x1 -*y> -lz\ 

2k B 
p212M0c2 pBx> Tsy, TBZ] — ifi 1L J_ l^£ (10) 

where ks is the Boltzmann constant, and J3Xjy are the average amplitude functions of 
the machine lattice. When the system temperature in one or more direction is lower 
than the break-up temperature, the conventionally used quantities TB, ex,y, and A p / p 
can not properly characterize the ordered state. 

In a typical storage ring, the particles under Coulomb interaction absorb energy 
from the AG lattice via a multi-phonon process. [22] In the absence of cooling, Fig. 3 
shows the rate of temperature increase (heating rate) as a function of temperature at 
various beam densities that correspond to ID (N/L = 0.25), single-shell 3D (N/L = 
1), and multi-shell 3D (N/L = 25) ground states. The machine consists of 10 FODO 
cells with 25% bending with fx = 2.8, vy — 2A, and the beam energy is 7 = 1.4. It is 
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Figure 3: Heating rates as functions of temperature at various beam densities N/L. 
Here, N is the number of particles per MD cell of length L in units of £. 

observed that the break-up temperature T w 1 corresponds to the peak heating rate, 
independent of the beam density. On the other hand, the peak heating rate increases 
with the beam density. Typically, strong correlation in particle position appears in 
all directions when the temperature is below T « 0.05. 

At low temperature, the heating ra te is low. Numerically, a large number of 
iteration steps is required to accumulate a noticeable amount of temperature increase. 
On the other hand, at high temperature the particle velocity is high. In both low and 
high temperature range, we often need refined iteration step size and increased number 
N of particles per MD cell to achieve high numerical accuracy. The comparison 
between different step sizes is shown by the filled and empty squares in Fig. 3. 

3.3 High Temperature Limit 
At temperatures high compared with that for the formation of crystalline struc­

ture, intra-beam Columb scattering (IBS) theory can be readily used to describe the 
beam heating. We expresses the heating rate in terms of the growth rate of the beam 
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temperature TB as 

1 dTBz 

r f dt 
dTBx 

Tfx dt 
dTay 

U B J 

where 

dt 

Z4N0r2LJ2c 'MQc' , 2 \ 5 / 2 

23/*A>pJyC0TBxTByTB{2 \ 2kB 
: ) 

+ 6 r 

2(1 - d2) 

2 
(' 1) 

d2^ 12TB> 
a 

2 « ^ A b 
TBl 

TBt 

d2, (12) 
IITBX + 12TBZ V 

F( ) is a "form factor" (Ref. [23]), Lc is the Coulomb logarithm, N0 is the total number 
of particles in the storage ring of circumference Co, 7 r is the relativistic factor of the 
transition energy, and A is the atomic mass number. Ignoring the dependence on 
the detailed beam configuration, the heating rate can be rewritten in terms of the 
normalized temperature T as 

T dt 
N pcLcp 
L 2^/^jy^TyT, 1/2' (13) 

where N/L = N0£/Coi *s the number of particles per unit length in units of £. The 
heating ra te at high temperature is shown to be linearly proportional to the number of 
particles iVo (or linear density N/L) of the beam. When the temperature increases, the 
rate decreases proportionally with T 5 ' 2 . Furthermore, the rate is linearly proportional 
to the beam velocity /9c, similar to the way that conventional cooling rate behaves. 

The results from the MD simulation can be readily compared with the IBS theory. 
In this temperature regime, we choose the MD time step so that the particle displace­
ment in one t ime step is much smaller than the typical intra-particle distance. The 
heating rate is evaluated as a function of the beam temperature for density N/L = 1. 
As shown in Fig. 3, the temperature dependence of the heating rate obtained from 
the MD simulation (filled squares) agrees well with that obtained from the IBS theory 
(dashed line). On the other hand, the MD results completely disagree with the IBS 
extrapolation at the low temperature regime. 

4. C o n d i t i o n s for Crystal l izat ion 

In previous works, we have derived two conditions which are necessary to form 
and maintain the crystalline beams. Since the present storage rings do not satisfy 
these conditions, there is considerable interest in designing and building rings suitable 
for the study of crystalline beams. In view of this fact, we present once again these 
conditions with more detailed discussion. 
4-1 First Condition 

The first condition requires that the ring is alternating-gradient focusing, as con­
trasted to constant-gradient focusing. In addition, it is required that the energy of 
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the particles is less than the transition energy, i.e. 

7 < IT- (14) 

In a typical ring, 7 r is approximately equal to the horizontal tune vx (number of 
betatron oscillation wavelengths in a circumference). 
4-2 Second Condition 

The second condition arises from the requirement that there is no linear resonance 
between the phonon modes of the crystalline structure and the machine lattice peri­
odicity. Note that this is a condition for the maintenance of a crystalline beam, in 
contrast to the first condition which is for the formation of a crystalline beam. 

In ID case, the phonon spectrum can be analytically derived in the smooth 
approximation. [22] Typically, the highest phonon frequency is close to the maximum 
betatron tune. In order for the beam to avoid the linear resonance produced by the 
periodic modulation of the machine AG lattice, the lattice periodicity u;j should be 
at least twice as high as the maximum betatron tune ma,x(i/x, vy). 

For 3D crystalline structures having many shells, the phonon spectrum may be 
found approximately by ignoring the detailed structure and considering the properties 
of a uniformly charged rod. The frequency of the monopole mode, which is likely to 
be the highest frequency of the beam, has been previously derived[24] to be y/2vXty. 
Thus, in the high density limit, the second condition becomes 

2\ /2 max(i/ x , vy) <u>/. (15) 

At intermediate densities, the phonon modes can no longer be found analytically. 
In this case, we first employ the molecular dynamics to determine the ground-state 
structures. Then, using a newly written computer program, we calculate the phonon 
spectrum in smooth approximation (The detailed description of the method and re­
sults will be published elsewhere.). It has been verified that the highest phonon 
frequency is always less than ^max{vx,vy). 

Therefore, in order to maintain crystalline beams at any beam density, the storage 
ring should be designed such that the lattice periodicity is at least 2 \ /2 as high as 
the maximum betatron frequency tune (Eq. 15). 

5. S t u d y of Cool ing M e t h o d s 

In finding the ground state in most of our early numerical simulations, we "cool" 
once per lattice period by simply imposing a condition of periodicity (by averag­
ing initial and final coordinates and momenta) while correcting Pz according to the 
amount of slippage in z for each particle. Imposing the periodicity condition is a fast 
and effective way of finding a periodic or ground state. However, it is experimentally 
unrealistic at least at the current stage of technology. Therefore, we made numerical 
models that describe the actual experimental cooling. Our work, quite clearly, sheds 
light upon the subject of what experimental cooling methods are effective for the 
crystalline formation. 
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5.1 Model for Stochastic, Electron, and Laser Cooling 
We simulate the actual cooling by reducing once per lattice period the momentum 

component P,- of each particle by a certain fraction, 

APi = -fiPi, i = x,y,z. (16) 

By observing the reduction of temperature as a function of time, we determine the 
effectiveness of cooling when fx, fy, and fz are varied. 

When the beam density is low such that the ground state is a ID chain, the 
ground state can be achieved by cooling in three directions with a rate higher than 
the maximum heating rate (Numerically, the cooling time is often several orders 
of magnitude slower than by imposing the periodicity condition). If cooling is only 
applied to the longitudinal direction (similar to regular laser cooling), the longitudinal 
temperature can be greatly reduced. Not surprisingly, the transverse temperature 
often can not be effectively reduced in this case for lack of sufficient IBS interaction. 

When the beam density is high so tha t the ground state is 2D or 3D extending in 
the radial direction, all particles must have the same average angular velocity and, 
therefore, have different average linear velocity. Typically, there is no place in the 
ring lattice where all the particles have the same linear velocity in the ground state. 
Therefore, cooling in only the longitudinal direction (fx = fy = 0) often fails to 
produce a periodic crystalline state. On the other hand, cooling in the transverse 
direction is very effective for attaining a periodic crystalline state. 

As an example, we study the case of a single-shell ground state (N/L = 1) in Fig. 3 
with the machine consisting of 10 FODO cells with 25% bending with 1/̂  = 2.8, i/y — 2.1, 
and 7 = 1.4. When cooling is applied only in the longitudinal direction (fx = fy = 0), 
temperatures in all directions can be greatly reduced (often to T < 0.1) through IBS 
interaction reaching an intermediate non-gaseous state, as shown in Fig. 4 along the 
fx = fy — ^ axis with fz > 0.03. However, since further reduction in temperature 
can not be achieved (except for the fz — 0.03 case), ordering in the beam can not be 
realized. 

When cooling is applied to the transverse direction (fz = 0), temperature in all 
directions can be greatly reduced. Ordering in the beam can be achieved when the 
cooling strength is in the range 0.04 < fx<y < 0.45. After the ordering is achieved, 
the same ground state as given by imposing the periodicity condition can be achieved 
when the actual transverse cooling is adiabatically turned off. On the other hand, 
rapid actual cooling in the longitudinal direction (fz > 0.06) almost always destroys 
ordering. 

The implication of these studies is tha t the present cooling techniques suffice in 
making ID crystals. In order to make higher density structures, it is necessary to 
develop cooling methods that are effective in the transverse as well as the longitudinal 
direction. 
5.2 Model for Tapered Cooling 

At the crystalline ground state, the radial displacement of the particle is linearly 
proportional to the particle momentum Pz. Therefore, an alternative method of 
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Figure 4: Beam crystallization by reducing the transverse (with fx = fy) and longi­
tudinal (linear) momentum deviation. The shaded area and the squares indicate the 
region of cooling strengths with which the beam is successfully crystallized. 

beam cooling, as previously discussed widely, is to impose a condition of longitudinal 
momentum (or velocity) variation with respect to the radial displacement (tapered 
cooling). We simulate this method by varying once per lattice period the longitudinal 
momentum Pz of each particle according to 

AJ>, = - / , ( i * - C „ * ) , (17) 

where, at the final stage of cooling when the temperature is extremely low (T < 0.1), 
we often assume fz = 1. In the example of single-shell ground state (Section 5.1), the 
ordering can be achieved when the coefficient Cxz is within about ±5% of the ideal 
ground-state value (Cxz w 0.285). 

6. Two-Species Crystals 

Different species of charged ion beams travelling together with the same velocity 
will exchange energy via Coulomb interaction. The beam with lower temperature will 
absorb thermal energy from the beam with higher temperature. If cooling is applied 
on one ion species, the other ion species, with its temperature reduced, will be cooled 
"sympathetically". 

In this section, we consider two species of ion beams with similar charge-to-mass 
ratio (Z/M) and similar rigidity, stored in the same storage ring. As we cool one 
species of ions, the total temperature of the two-species system decreases and, even­
tually, a crystalline state can be reached. As an illustrative example, we study the 
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system of equal density Ar+ [Z = 1, A = 39.9624) and S e 2 + (Z = 2, A = 79.9225) 
ions. The machine consists of 10 FODO cells with 25% bending with vx = 2.8, vy = 2.1. 
The bending radius is p — 1 m, and the average machine radius is R = 4 m. The 
beam energy is 7 = 1.00001. The characteristic distance is £ = 1.2 x 1 0 - 5 m. 

Only the A r + beam is externally cooled by imposing the periodicity condition 
in three directions (Section 5). Figs. 5 and 6 show the beam structure during the 

H 

* Ar* (cooled) 
oSe 2* 

2 

# 
-

K 

® 0 
>. 

• 
» 

-2 

. 1 1 1 . 1 ' 1 1 1 

0 
x© 

Figure 5: A two-species crystalline structure formed by A r + (A = 39.9624) and S e 2 + 

(A = 79.9225) ion beams of equal density (N(Av+)/L = N(Se2+)/L = 0.5, L = 40£) 
projected into the x — y plane. Only A r + beam is externally cooled. The temperatures 
are T(Ar+) = 5 x 10~ 6 , and T ( S e 2 + ) = 3 x 10" 4 , respectively. 

cooling process (after 100 revolutions of cooling on A r + ) when the temperature of 
the A r + beam is reduced to T = 5 X 1 0 - 6 , and the temperature of the S e 2 + beam is 
reduced sympathetically to T = 3 x 10~ 4 . The crystalline state is stable when the 
external cooling is removed. 

Due to the different charge-to-mass ratio Z/M between the different ion species, 
the average radial positions of the two beams are different. From Eq. 2, it can be 
estimated tha t the distance between the average radial beam centers xc is 

AM~-A|U (18) 

i.e., it is linearly proportional to the difference in charge-to-mass ratio, and to the 
ratio pf£ between the bending radius of the dipole magnets and the characteristic 
distance £. In Fig. 5, the positions of the A r + ions are radially more outward from 
the center of the machine because of their relatively smaller Z/M. 
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Figure 6: The same crystalline structure as shown in Fig. 5 projected into the z — <f> 
plane, where <f> is the polar angle. 

7. Longitudinal ly Bunched "Crystal Balls" 

We longitudinally bunch the beam of charged particles using rf cavities, located at 
one or more positions in the azimuth, with the rf electric voltage varying sinusoidally 
with t ime, 

V(f) = V o s i n ( W ) , (19) 
where VQ is the peak voltage, iv0 = f3c/R is the revolution frequency of the reference 
particle, and h is the cavity harmonic number. Relative to the reference particle 
(x = y = z = 0), a particle of positive (or negative) z arrives at the cavity at a later 
(or earlier) phase and, therefore, experiences an energy gain per cavity: 

iVa = e I Esds = eV0 sin f — z \ (20) 

In order to simulate the effect of a rf cavity, we employ Eq. 6 with Fs = 0 except in 
the region of the rf cavity. Because the cavity is a small fraction of the circumference, 
its effect can be approximated in a single numerical step using Eq. 20. 

We find from the MD numerical studies that an rf field is no impediment to the 
formation of crystalline beams. Clearly, the rf field produces longitudinal bunching. 
Hence, the crystalline structures are finite in extent in all three directions. Among 
the many cases ( ID, 2D, and 3D structures) that we have explored, we give one 
example in the series of figures from Fig. 7 to 11. The machine, having a periodicity 
of 10, consists of 10 FODO cells with 25% bending with vx = 3.1, vy = 1.6, and 
7 r = 2.9. The beam energy corresponds to 7 = 1.4. The rf voltage per lattice period 

13 



25 

15 

5 

-5 

-15 

- 8 - 6 - 4 - 2 0 2 4 6 8 
*® 

Figure 7: A multi-shell "crystal ball" structure with particle positions projected into 
the x — y plane. Note that the structure is bunched in all three directions. The 
normalized temperature is T ss 2 x 1 0 _ 1 ° . 

is Vo = 200 V. The machine parameters are chosen such that •K^fR/h^ = 1000, i.e., 
one rf wavelength corresponds to a distance from —1000£ to 1000£ (e.g. for 2 4 M g 2 + 

beam, £ = 6.4 x 1 0 - 7 ; if p = 1 m, R = 4 m, then h = 2.7 x 10 4 . ) . 
Fig. 7 shows a projection of the multi-shell structure into the transverse plane. In 

this example, N = 2000 particles are used for simulation. The structure is obtained 
by cooling (imposing the periodicity condition) the beam for 2,000 lattice periods 
(40,000 numerical steps). Figs. 8 and 9 show projections of the same structure into 
the x — z and y — z planes, respectively. Since one rf wavelength corresponds to a 
distance from —1000£ to 1000£, this crystalline structure extends over about 1/10 
of the rf period. The tilt in the x — z plane in Fig. 8 is a result of the particular 
azimuthal location relative to the rf cavity at which the projection is made. Of course, 
the crystalline beam breathes and shears as it moves along the FODO lattice. The 
trajectories of positions and momenta are displayed for one out of the 2000 particles 
in Figs. 10 and 11, respectively. The rapid change in Pz in Fig. 11 is caused by the 
energy gain at the rf cavity. 

The structure shown in Fig. 7 corresponds to a low temperature state of T « 
2 x 1 0 - 1 0 . After the cooling is turned off, the structure essentially remains unchanged. 
Further studies indicate that the heating rate for this bunched crystalline beam is 
similar to that for the un-bunched beam (Fig. 3). 

With given beam and machine parameters and cavity h, the peak voltage Vo 
determines the strength of the longitudinal focusing and, therefore, the longitudinal 
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Figure 8: The same multi-shell structure as shown in Fig. 7 with particle positions 
projected into the x — z plane. 
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Figure 9: The same multi-shell structure as shown in Fig. 7 with particle positions 
projected into the y — z plane. 

15 



8 

B F D 

8 8 1 8 , , . 8 
I I 

8 
x 

6 

4 
UJ» 

6 

4 
N 
Si 
>< 2 

_ 

0 

.o 

\ ^ ^ ^ ^ 
0 

.o 1 . 1 . 1 . 1 

0.0 0.2 0.4 0.6 
Time (FODO periods) 

0.8 1.0 

Figure 10: Typical particle trajectory of a bunched crystalline beam. Lattice compo­
nents are displayed on the figure: B is a bending section, F and D are focusing and 
de-focusing sections. 
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Figure 11: Typical particle momentum trajectory of a bunched crystalline beam. The 
location of the rf cavity is displayed on the figure. 
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size of the crystal. A higher (or lower) voltage results in a shorter (or longer) crystal 
length and higher (or lower) density in the longitudinal direction. Since the transverse 
intra-particle distance is mainly determine by the strength of the transverse focusing 
and the Coulomb force, this higher (or lower) longitudinal density results in a larger 
(or smaller) transverse crystal size. Obviously, if the voltage is sufficiently small, the 
crystal becomes de-bunched. 

With given machine and rf cavity parameters, the nature of the crystalline ground 
state depends upon the number of particles confined in the distance of one rf wave­
length (i.e. beam density). When the number of particles is small, the ground state 
is a ID chain of finite length with smaller intra-particle distance for particles near the 
chain center. This chain tilts along x direction in the x — z plane due to the energy 
increment caused by the rf cavity. As the beam density increases, the ground state 
becomes 2D extending in the plane of weaker transverse focusing. As the density 
increases further, the ground state becomes single and then multi-shell 3D, as shown 
in Figs. 7 - 9 . The intra-particle distance, which is mainly determined by the strength 
of focusing and Coulomb force, is independent of the beam density. The conditions 
for the formation and maintenance of crystalline beams as discussed in Section 4 also 
apply to the bunched beam. 

8. N A P - M S imula t ions 

Having developed the formalism which allows us to study both highly developed 
and incipient crystalline beam structures, we are in a position to study, theoretically, 
the experimental situation on the NAP-M ring when it was used to study crystal 
formation in the late 1970's.[25]-[28] Actually in the experiment, the physicists were 
simply using electron cooling to reach the lowest possible temperatures. Compared 
with the un-cooled beam, the Schottky noise power for the cooled beam is reduced 
by approximately two orders of magnitude. Typically, the Schottky power decreases 
with the decreasing beam intensity. However, when the beam intensity is below 
iV0 = 2 x 10 7 , the Schottky power becomes independent of the intensity, corresponding 
to a longitudinal beam temperature of Tg 2 = 1 K. It has later[28] been estimated that 
a crystalline state could have been observed at NAP-M at low intensity of N0 < 10 6, 
outside of the range of the original measurement. At that t ime, no detailed theoretical 
analysis was performed; now, we are in a position to do just that . 

We obtained the description of the NAP-M lattice and beam parameters pri­
marily by private communication with Nicoli Dikanskii. The machine circumference 
was 47.25 m, the lattice periodicity was 4, the transverse tunes were vx = 1.35 and 
vy = 1.26, the transition energy corresponded to 77- = 1.18, and the beam energy 
corresponded to 7 = 1.07. Electron cooling was employed to reduce the beam tem­
perature. The lowest achieved temperatures were transverse TBX-> TBV = 50 ~ 100 K, 
and longitudinal TBZ = 1 K. 

Using these parameters , we perform MD simulations in which electron cooling is 
simulated by reducing the momenta in three directions. Numerically starting from a 
high-temperature state, we turn off the cooling when the temperature falls into the 
desired range. Within the range of the experimentally measured beam intensity (from 
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No = 2 x 10 6 to 10 8 ), our MD simulation indicates no crystalline structure. 
In order to verify Dikanskii's speculation[28] that a crystalline state could have 

been observed at NAP-M at low intensity of N0 < 10 6 , we perform detailed study 
at the intensity of N0 = 1.5 X 10 5 , outside of the range of the original experimental 
measurement. Fig. 12 shows the density of the beam as a function of radial distance p, 
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Figure 12: Density as a function of the radial distance p for the NAP-M simulation 
with TBX ^ TBV ~ 50 K, and TBZ = 1 K, averaged over 22 ps and assuming N0 = 
1.5 x 10 5 . The radius p is measured in units of £ = 4.6/xm. 

obtained using 40 particles per MD cell averaging over 50 revolutions (or a t ime period 
of 22 ps). The beam extends transversely to about 20£, or 0.11 mm. Fig. 13 shows the 
density of the beam as a function of longitudinal distance z, again averaging over 50 
revolutions. Due to the relatively low beam intensity and relatively high transverse 
temperature, the beam behaves like a ID chain of "disks" formed by transversely 
oscillating particles. Because of the non-zero longitudinal momentum spread (Pz) or 
temperature (Tjgz), the disks drift in the longitudinal direction, occasionally passing 
each other for lack of IBS interaction at low particle density. 

In order to quantitatively determine the amount of longitudinal drift, we define 
the one-body correlation function GZ(T), 

Gz(T) = ((Zi(t+T)-Zi(t))%<U (21) 

where ( ) denotes the average over all the particles i and over t ime t. Fig. 14 shows 
GZ(T) as a function of t ime interval r at three different longitudinal temperatures 
TBZ = 10 K, 1 K, and 0.1 K, respectively, while the transverse temperatures are 
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Figure 13: Density as a function of the longitudinal distance z for the NAP-M sim­
ulation with TBX ~ TBV « 50 K, and TBZ = 1 K, averaged over 22 fis and assuming 
N0 = 1.5 x 10 5 . The distance z is measured in units of £ = 4.6^m. 
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Figure 14: Longitudinal correlation functions as functions of t ime interval r for the 
NAP-M simulations assuming i V o = 1 . 5 x 10 5. In the three cases shown, TBX « Tsy ~ 
50 K, and TBz = 10 K, 1 K, and 0.1 K, respectively. 
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kept constant at TBX ~ Tsy ~ 50 K (note the logarithmic scale). The zig-zag along 
each curve, with their amplitude proportional to the transverse temperature and their 
frequency the same as the horizontal betatron tune i/ x, is caused by the coupling be­
tween longitudinal (z) and horizontal (x) motion. At low temperature TBZ < 0.1 K, 
Gz is approximately a constant in r , and the disks are "frozen" in their longitudinal 
positions during the t ime of observation. At intermediate temperature TBZ ~ 1 K, 
Gz increases linearly with r , and disks drift and occasionally pass each other. In both 
cases, the longitudinal motion of the particles is much restricted, and the longitudi­
nal Schottky signal will be greatly suppressed as observed experimentally. At high 
temperature, i.e. TBZ > 10 K, the Coulomb interaction becomes negligible, and Gz is 
proportional to T 2 in this gaseous state. 

As long as the particle density is low so that the amplitude of the coupled z os­
cillation (which is of the same order as the transverse amplitude when TBZ is much 
smaller than Tsx,y) is much smaller than the longitudinal intra-particle distance, the 
rate of longitudinal drift is insensitive to the transverse temperature and beam inten­
sity. When the particle density is high so that the amplitude in z is larger than the 
intra-particle distance, the disk structure no longer exists due to the large Coulomb 
interaction. In this case, the beam behavior can be described by the conventional 
IBS theory as discussed in Section 3.3. 

9. N e w A S T R I D Simulat ions 

Detailed study of crystalline beams in the present ASTRID ring was presented in 
Ref. [21]. There, we have shown that only ID structures were stable, and that ID 
structures can only be achieved when the number of particles in the ring is less than 
3 .4x l0 5 . Furthermore, the maximum heating rate for the 100 keV 7 L i + beam was 
shown to be AT/T ~ 4 x 1 0 - 2 per lattice period, which corresponds to the minimum 
cooling rate needed for the crystal formation of 8 x l 0 3 (K/sec) at the temperature of 
1.5 K. 

Even without developing a ID crystal due to the high transverse temperature, one 
can develop an incipient crystal, analogous to what could have been observed at NAP-
M at low beam intensity. Based on the machine parameters given in Ref. [21], we 
have performed numerical simulations similar to those for NAP-M. Assume that the 
transverse temperature is about 10 3 K. In order to form longitudinally well separated 
"disks", the number of particles in the ring should be less than about 3 x l 0 4 . On the 
other hand, the currently achievable longitudinal temperature of 1 mK is sufficiently 
low to keep the disks "frozen" in their longitudinal positions. 

In the present ASTRID ring, 2D and 3D crystalline structures can not be main­
tained because the second condition (Section 4.2) is not satisfied. As a consequence, 
consideration is given to a proposed New ASTRID ring which satisfies both necessary 
conditions for the formation and maintenance of crystalline beams. According to the 
machine lattice obtained from Jeffrey Hangst, this machine has a periodicity of 4, 
and a circumference of 48.6 m. The transverse tunes are vx = 1.38 and vy = 1.32, 
and 7x = 1.29. The beam energy is 7 = 1.000016. Not surprisingly, ground states of 
all dimensions can be readily achieved. An example of a 3D state is given in Fig. 15. 
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The heating rates obtained for ID, 2D, and 3D crystalline states are similar to those 
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Figure 15: A 3D structure with particle positions projected into the x — y plane. The 
New ASTRID ring has a periodicity of 4 with vx = 1.38, vy = 1.32. The beam energy 
is 7 = 1.000016. The calculation is done with N - 400, and L = 100£. 

shown in Fig. 3. 
Numerical studies were made also for the case of vx — 1.67 and vy = 1.68. Since 

the second condition was in this case violated, it was again not surprising to find that 
only ID crystals could be formed and maintained, as shown in Fig. 16. 

10. Conclusions 

We have presented the equations of motion appropriate to interacting charged par­
ticles of diverse charge and mass, subject to the external forces produced by bending 
dipole, AG focusing quadrupole, and sextupole magnets, and by bunching rf cavities 
in real storage rings. Employing these equations in the molecular dynamics simula­
tions, we obtained heating rates of the crystalline beam as functions of beam density 
and temperature. In the high temperature limit, it has been shown that the MD 
results agree well with the intra-beam scattering theory. 

As presented in our previous papers, there are two necessary conditions for the 
formation and maintenance of the crystalline beam. The first condition requires that 
the storage ring is AG focusing operating below the transition energy. The second 
condition requires that the lattice periodicity of the ring is at least 2-\/2 as high as 
the maximum betatron frequency tune. 

Various cooling methods have been studied using the MD simulation. Provided 
that the cooling rate is adequate, the present cooling techniques suffice in making ID 
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Figure 16: The maximum phonon frequencies as functions of beam density at various 
design transverse tunes. The crystalline structure is unstable when the maximum 
phonon frequency is higher than half of the lattice frequency. Here, the lattice peri­
odicity is 4. 

crystals. In order to achieve higher-density ordered states, it is necessary to develop 
cooling methods tha t are more effective in the transverse direction. 

The formalism has been used to study the formation of crystalline beams of two 
different ion species of similar charge-to-mass ratio. It is shown that cooling only one 
of the two species can result in a crystalline state of both species; i.e., that the mutual 
interaction of the particles leads to sympathetic cooling. 

The formalism has also been used to study the effect of rf fields upon a bunch 
of charged particles. It is shown that "crystal balls" with finite extent in all three 
directions can be formed and maintained. 

We have studied the NAP-M ring where anomalous Schottky behavior was ob­
served. Using the tools that we have developed, we reconstruct the conditions of the 
NAP-M experiment. It is found that no crystalline state can be reached at the orig­
inal experimental range of beam intensity and temperature. On the other hand, at 
extremely low beam intensities, an incipient crystalline structure could be observed 
at the NAP-M installation with the particles forming into occasionally-passing disks. 

Finally, we have studied the New ASTRID ring which has been proposed for the 
formation and study of crystalline beams. Note that the existing rings in Denmark 
and Germany do not satisfy the second necessary condition and, consequently, would 
only allow the formation of ID structures. It is shown that the New ASTRID ring 
would be suitable for the formation of crystalline beams of all dimensions. 

In summary, we have shown that the formalism and numerical methods that 
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we have developed allow one to study a diversity of topics in crystalline beams. 
Such subject seems rich, indeed, and one eagerly awaits experimental realization of 
crystalline beams. 
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