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I. INTRODUCTION

Resonances are one of most interesting phenomena in scattering of quan-
tum particles. The problem of definition and studying resonances is payed
a lol of altention both in physical and mathematical literature (see, e. g,
the books (1] - [8]). Main difficulties connected with a rigorous definition of
resonance arc explicitly emphasized by B. Simon in his survey [9]. A pres-
ence of such difficulties is obliged, first of all, to the fact that in a contrast
to the usual spectrum, resonances are not an unitary invariant of an operator
(Hamiltonian of a quantum system). The generally accepted interpretation of
resonance as a complex pole of the scattering matrix continued analytically
on unphysical sheet(s) of the energy plane, goes back to the known paper by
G. Gamow [10]. For radially symmetric potentials, such an interpretation of
the two-body resonances has been rigorously approved by R. Jost [11]. Begin-
ning from E.C. Titchmarsh {12] resonances are considered as well as poles of
analytic continuation of the Green function (or its matrix elements between
suitable states [6], [7]). A survey of different physical approaches to studying
three-body resonances may be found c. g., in [5] and (13].

At the moment, one of the most effective approaches Lo practical calcula-
tion of resonances is the complex scaling method [14] (see also [7], [9]). This
method is applicable to the few-body problem in the case where interaction po-
tentials between particles are analytic functions of coordinates. The complex
scaling gives a possibilily to rotate the continuous spectrum of the N-body
Hamiltonian in such a way that certain sectors become accessible for obser-
vation on unphysical sheets neighboring with the physical one. At the same
time, the real discrete spectrum of the Hamiltonian stays fixed during all the
scaling transformation. Resonances in the sectors above turn out to be extra
discrete eigenvalues of the scaled Hamiltonian {7]. Thereby, when searching for
resonances onec may use standard methods to find discrete spectrum, Prac-
tical applications of the complex scaling method to concrete problems may
be found, in particular, in the recent papers [15] - [L7]. Alongside with the
complex scaling, another methods are used for calculations of three-body reso-
nances which are based in particular on solving the momentum space Faddeev
integral equations [18], [19] continued through the cut (see the survey [13] by
K. Méller and Yu.V. Orlov and the literature cited therein). In this approach,
resonances are searched for as poles of the T-matrix.

The present paper is devoted to developing a method to calculate three-
body resonances using the recently found explicit representations disclosing a
structure of the T-matrix on unphysical sheets as well as analogous representa-
tions for the scattering matrix and resolvent {20], [21]. These representations
were obtained in supposition that the interaction potentials were pairwise
and falling-off in the coordinate representation not slower than exponentially.
According to the representations [20], [21], the matrix M(z) = {Mas(2)},



a,f =1,2,3, constructed of the operator T'(z) Faddeev components [18] (19],
is exp11c1tly expressed on unphysical sheet I1; of the energy z plane in terms
of this matrix itself taken on the physical sheet and a certain truncation 5j(z)
of the total three-body scattering matrix S(z). Character of the truncation
is determined by the index (number) ! of the unphysical sheet concerned.
Respective representations for analytic continuation of the matrix S(z) and
resolvent R(z) follow immediately from the representations for M(z)|p .
main consequence of the representations admitting direct practical a.ppllca-
tions, is the fact that the T-matrix and resolvent as well as the scattering
matrix have nontrivial singularities on unphysical sheet II; exactly at those
values of the energy z where the corresponding matrix S;(2) has zero as eigen-
value. It is important that Sj(z) is considered on the physical sheet only.
Therefore, one can provide a search for resonances (poles of M(z), S(z) and
R(z) ) on a certain unphysical sheet Il; keeping z always on the physical one
and calculating only a position of zeros of the operator-valued function Si(z).
For all this, one can use any method allowing to calculate (on the physical
sheet) amplitudes of the processes necessary to construct the truncation Si(z).

In the present paper, the matrices Si(z) are computed on the base of the
numerical algorithm [22] elaborated to solve the Faddeev differential equations
in configuration space (see the book [19], survey [23] and references therein).
Certainly, when computing the amplitudes on the physical sheet one has to
extend the Faddeev differential formulation of the scattering problem as well
on the complex valies of z. It should be noted that, in the holomorphy domain
(see [21]) of the amplitudes, the differcntial formulation stays to be correct.

Unfortunately, the algorithm [19], [22], [23] (see also [24] — [27]) has been
worked out in details only for the processes (2 — 2,3). Thus, there may
be computed in practice only the amplitudes of elastic scattering and rear-
rangement for the processes (2 — 2) and the breakup amplitude into three
particles. A knowledge of these amplitudes is sufficient to compute those
truncations Si(2) of the three-body scattering matrix S(z), zeros of which are
“responsible” for resonances situated on the so-called two-body unphysical
sheets, i. e. those sheets of the energy Riemann surface where the parameter
z may be guided going around the pair thresholds only. As a concrete appli-
cation of the method concerned we.make a search for resonances in the nnp
system and in a model system of three bosons with the nucleon masses.

Let us describe shortly structure of the paper.

In Sec. 11, we introduce main notations and formulate the explicit represen-
tations [21] for the unphysical-sheet three-body T-matrix, scattering matrix
and resolvent which are used then to approve the numerical method of the
work.

In Sec. 11l the system nnp and a three-boson system are considered. For-
mulations of the boundary-value problems [19], [22], [23] are given for the Fad-
deev partial differential equations, corresponding to the processes (2 — 2,3)



in these systems and going out to a domain of complex cnergy values in the
physical sheet. Numerical method to solve these problems is described. Trun-
cated (partial) scattering matrices are constructed in terms of the amplitudes
for clastic scattering (2 — 2). Zeros of these matrices represent resonances
(including virtual poles) on the unphysical sheet connected with the physical
one by crossing the continuous spectrum interval between the deuteron energy
and three-body threshold. Results of numerical computations are exposed.
We conclude this introduction with some notation. Throughout the paper.
we understand by vz = A, z € €, A € IR, the main branch of the function

-

(z = A2, By p we denote the unit vector in the direction p € IR". p =

and by S"7!, the unit sphere in R™, p € 5",

II. EXPLICIT REPRESENTATIONS FOR T-MATRIX,
SCATTERING MATRIX AND RESOLVENT ON UNPHYSICAL
SHEETS

The scatiering matrix, T-matrix and Hamillonian resolvent (Green func-
tion) for a quantum-mechanical system are stringently connected with each
other. Therefore, all these three objects, considered as functions of energy,
have usually the same Riemann surface. Such a fact takes place at least in the
muliichannel scattering problem with binary channels and in the three-body
problem with quickly decreasing interactions [28], {21]. In a “first approxi-
mation”, the structure of the Riemann surfaces in these problems coincides.
The thing is that the branching points (in real axis) are stipulated to these
surfaces in the both problems by the same reason, namely by a presence of the
Cauchy-type integrals in the Lippmann-Schwinger or Faddeev cquations. In
the equations considered in the momentum rc;?rcsontation, the Cauchy-type
tutegrals are engendered by the kernels Ai-iZLp—%L* with A, the channel thresh-
olds and p, p € IR", the respective channel momentum variables. In the case
of the channels (2 — 2,3) in three-body problem and the odd-dimensional
channels (i. e., with n odd) in the matrix multichannel problem, the thresholds
A turn out to be the branching points of the second order. Even-dimensional
channels in the multichannel problem as well as the channel (3 — 2,3) in the
three-body problem give logarithmic branching points (see {21], [28], [13]).

The method used for calculation of resonances in the present work, is based
on the explicit representations [21] for analytic continuation of the T-matrix,
scattering matrices and Green function on unphysical sheets keeping true at
least for a part of the three-body Riemaunn surface. To describe this part
we introduce the auxiliary vector-function f(2) = (fo(2)), ia(=)y oo 10, (2).
Jaa(2)y oy Jama (2), San(2h oo fana(2))  with fo(2) = Inz and [, () =

(z = Aa)'/% Here, by A, ; we understand respective bound-state energies



of pair subsystems o, o = 1,2,3, j = 1,2,...,n,, numeraled {aking into ac-
count their multiplicities. It is supposed that n, < oo. The sheets II; of
the vector-function f(z) Riemann surface R are numerated via multi-index
l = (10111'11"‘)ll,ﬂ1,12|1,""12,".21[3'1,"‘, la‘na), where la'j = 0 if the sheet H‘
corresponds to the main (arithmetic) branch of the square root (z — A,)"/2
Otherwise, lo,; = 1 is assumed. Value of { coincides with the number of
branch of the function Inz, Inz = In|z| + i 2xl, + ¢¢ where ¢ = argz. For
the physical sheet identified by lo = l4,; = 0, @ = 1,2,3, j = 1,2, ...,nq4, we
use the notation [Ip. A “sticking” of the sheets II; of the surface R is realized
in intervals between neighboring thresholds along rims of the cut along the
continuous spectrum. A detailed description of the surface ® may be found
in {28].

The type R surfaces without extra branching points arise in the multi-
channel problems with binary channels only. Structure of the total three-body
Riemann surface is essentially more complicated. For instance, the sheets I,
with I, = 1 have additional branching points corresponding to resonances
of the two-body subsystems. In the sheets II; with Iy = 0, one can discover
(in the left half-plane) logarithmic branching points of a kinematical origin.
The part ®® of the total three-body Riemann surface where the representa-
tions [21] are valid, consists of the surface R sheets II; identified by Iy = 0
(such unphysical sheets are called two-body sheets) and two three-body sheets
identified by lp = £l n lp; = 1, a = 1,2,3, j = 1,2,...,na. Note that R(®
includes all the unphysical sheets neighboring with the physical sheet Ilq.

In the case of the nnp-system and a model three-boson system considered
below, the surface R is shown schematically in Fig. 1. In this case a single
pair threshold, the deuteron cnergy A = FE; is present only. Therefore, the
index [ of the sheets II; consists of two components only: { = (Ip,1}. In the
terminology accepted, the sheet I,y (see Fig. 1) is a two-body sheet, but
the sheets T,y u I 1y are three-body ones.

Construction of the representations for the T-matrix consists of the follow-
ing stages. At the first step, one carries out analytic continuation on unphysi-
cal sheets, of the absolute terms and kernels of the Faddeev integral equations
for the components Mys(z) {the continuation is understood in the sense of
distributions). As the absolute terms as the kernels after continuation are ex-
pressed in terms of the pair T-mairices and scattering matrices taken on the
physical shect. Transforming the Faddeev ecquations continued, one finds the
kernels Mog(P, P!, z)|,¢p, can be explicitly expressed in terms of these kernels
themselves taken on the physical sheet Tlg in their off-shell and/or half-on-
shell variants. It is supposed in the last case that the first argument P of the
kernels Mop(P, P',2)| ¢y, is taken on the energy (“mass”) shells |P{? = z or
Pal* = 2= Xajy 7 = 1,2,...,n4. Here, we use the notations P = {ky,ps},
rae kyypa, @ = 1,2,3, of the standard relative momenta {19]. Transferring in
the expressions obtained all the off-shell terms to the Lh. part and inverting
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I'IG. 1. Physical, Tlp, and neighboring unphysical, Mo,y My and M1ns
sheets of the Riemann surface in the three-nucleon (rnrp) and model three-boson
problems. The near (in figure) rim of the cut in the sheet Ilg is identified in the
interval between the deuteron energy E4 and three-body threshold z = 0 with the
remote rim of the cui in the sheet Il(p)). On the contrary, the remote rim in the
sheet Iy is identified in this interval with the near rim in the sheet Moy In
the interval (0,-+oc), one identifies the near rim of the cut in the sheet Il with
the remote rim in the sheet II(; 1). Respectively, the remote rim in the sheet ITg
is identified in this interval with the near rim in the sheet Il_11)- On the sheet
I(o,1), the virtual level zyes(*H) in the s-state of the nnp-system is marked, and the
resonance Zz.s(3B) in the model three-boson system. Also, the complex conjugate
pole Z..s(3B) is marked.



an operator arising there, one comes to a closed system of equations for the
half-on-shell components Mqs(P, P’,z)|zen“ This system admits an explicit
solution using the terms of the physical sheet only. As a result one gets the
following representations™ for the matrix M(z) = {Myp(2)},e,8 = 1,2,3,
continued on the sheet II;:

M(#)lg, = M(z) - B!(2) A(2)L5; () LB(2). (1
Here, the factor A(z) is the diagonal matrix,
A(z) = diag{Ao(2), A1,1(2), .oy A1ny (2)},
combined of the functions Ag(z) = —miz? and Aa; = —wiy/z — A, ;. Nota-

tions [ and L are used for diagonal number matrices whose nontrivial elements
are the sheet II; indices:

L= dia.g{lo, ll.l; veey 13'"3} u I.: = d1a.g{|10|, [1.11 ey l3,n3}-
By Si(z) we understand a truncation of the three-body scattering matrix:
S(z), S(z2): ¢—¢g, ¢= L,(S%) 591 75 L2(5?), defined by the equation
a=1j=1
Siz)y=1+L[S(z)-1]L

where [ is the identity operator in G. Also, we use the notations

B(z) = (j‘:gl‘fTM +V]) and BY(z) = (M(2)0'3}, [v + MT)1}).

Here, v = diag{v;,v2,v3} with v,, the pair potentials, o = 1,2,3. At the
same time,

01
Q:(l, 1, 1), T= 10 and \I’-'—‘diﬁ,g{wl,\l‘g,‘l’g}
11

D~ —

where Uo, @ = 1,2,3, are operators actingon f = (fi, fay .., fa) € .'é’l Ly(IR?)
J:
as

*For the sake of simplicity, we write here these representations as well as rep-
resentations for the scattering matrix and resolvent (see below Eqs. (2) and (3),
respectively) for the case of spinless particles only. A direct generalization of the
representations on the case of spin particles causes no difficulties.
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where, in turn, 1, ; is the bound state wave function of the pair subsystem
o corresponding to the level A, ;. By ¥" we denote operator adjoint 1o W.

Notation Jo(z) is used for operator restricting a function on the encrgy-shell
|P|? = z. The diagonal matrix-valued {unction

Ji(z) = diag{J11(2), .... Jany (2)},

consnsts of the operators J, j(z) of restriction on the energy surfaces |pa | =
2 — Ao j. The operators Q1, J(z) u J(2) represent the “transposed” matrices
2, Jo(z) and Jy(2), respectively. Operators INz)n JI(2) act in the expression
for B (as if) to the left.

Representations for the scattering matrix and resolvent on unphysical
sheets are an immediate consequence of the representations (1) for the matrix

M(z)lp,-

With some stipulations (see [21]) the rcprescntatlons for the scattering
matrix S(z) look as

$(2)ln, = €W {1+ 7 (2)5(2) ~ De(n } £(0. (2)

Here, & = diag{&o, 1,1, ., E3,ny} Where & is the identity operator in Ly(S%)
if Iy = 0 and &, the inversion, (£ f)(P) = f(—P), if Ip = £1. Analogously.
&a,; is the identity operator in La(5?) for [, ; = 0 and inversion for laj= 1
Notation ¢(!) is used for diagonal number malrix e(!) = diag{eo, ¢1,1, ..., €., }
with nontrivial elements eq,; = 1 if l; = 0 and ¢q,; = ~1 il [, ; = I; for all
the cases € = 1.

Analytic continuation R(z)|; of the resolvent fi(z) = (I — 2)™" of the
three-body Hamiltonian /I admits the representation

R(z)|p, = R+ QIALS;'LQ. ()

Here,

Q= (J,W:][(}[]—““r‘lclli]ro]m)’ Q' = ([/ - RVIL, QU — ReM YW}

with V = vy 4 v2 + v3 and Ry(z) = (Hy — 2)7!, the resolvent of the kinetic
energy opcerator 1 for the system under consideration.

There were holomorphy domains Hfl"’l) found in [21] for the truncated
scattering matrices S5i(z) in the physical sheet. Representations (1) and (3)
are valid in the same domains.



It follows from the representations (1)-—(3) that the resonances (the non-
trivial poles of M(z)|y, , $(2)l, and R(z)| ) situated on the unphysical sheet
[l; arc in fact those points z = z.s on the physical sheet where the matrix
Si(z) has zero as eigenvalue. Therefore, ¢ calculation of resonances on the un-
physical sheet 11y is reduced to @ search for zeros of the iruncation Si(z) of the
tolal three-body scallering malriz S(z) in the physical sheet. At the numerical
scarch for the resonances, one can use any method allowing to find analytic
continuation on the physical sheet, of the elastic scattering, rearrangement or
breakup amplitudes necessary to construct the respective truncation Si(z).

III. RESULTS OF SEARCH FOR RESONANCES IN
THREE-NUCLEON (nnp) AND THREE-BOSON SYSTEMS

One of the most effective methods for a sLud)‘J of concrete three-particle sys-
tems is the numerical algorithm [22] (see also (23], [19] and references therein)
based on the Faddeev differential equations for the wave function components
in the configuration spacc. This method gives opportunity of comparatively
casy calculations of the scaltering wave functions and respective amplitudes
for (2 — 2,3) processes. An extension of the differential formulation to a
domain of complex energies enables us to calculate analytic continuation of
the (2 — 2,3) amplitudes on the physical sheet. This is quite enough for us
to construct the truncated s-state scattering matrices Sy(z) whose zeros are
resonances on the respective {wo-body unphysical sheets I1; with lp = 0.

As to a search for resonances on the three-body unphysical sheets IT; with
lo # 0 (in particular on the sheets -y 1y and Ilg,,) in the three-nucleon
problemn), the situation is much more complicated. To construct §i(2) in this
case, onc has, alongside with (2 ~— 2), to calculate amplitudes for the pro-
cesses (3 — 2,3) with three asymptotically free particles in an initial stato.
Unfortunately, the reliable practical methods for calculation of the processes
(3 — 2,3) arc not developed so far even for the real energies. In particular,
when using the differential formulation of the scattering problem, one has from
the very beginning to separate explicitly contributions to the Faddeev com-
ponents not only from single-rescattering but also from double-rescattering
processes [19]. In the last case, onc has to take into account explicitly (see
[19]) a presence of the “light” and “shadow” zones for the correspondent waves,
and to use the Fresnel integral for description of intermediate regimes. More-
over, computations of the (3 — 2,3) amplitudes have to be carried out for
inany different directions of the incident momenium P. This circumstance is
itself a factor enlarging nurnerical complexity as compared with the case of
the processes (2 — 2,3).

Seo, in the present work we restrict ourselves with a search for the nnp
system resonances situated on the unphysical sheet [1(g ) only, connected with
the physical one by crossing the continuurn spectrum interval (Ey, 0) between
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the deuteron energy z = Fy and breakup threshold 2z = 0 (see Fig. 1). To
construct the truncated scattering matrix Sig1)(z) (in accordance with (1)-(3)
just its zeros represent resonances on the sheet Il 1)), it suffices to calculate
the clastic nd scattering amplitudes only.

To find these amplitudes we use the two-dimensional Faddeev integro-
differential equations [19] being a result of the partial and angular analysis
of the Faddeev diflerential equations. In addition we make an assumption,
rather usual in nuclear physics, that the nucleons involved interact in the s-
stale only. With this assumption the partial equations become exact. The
Faddeev component U] corresponding to the total spin S = 3/2 and total
orbital momentum L, satisfies the equation

(e = 2)Uj(z,y) = Vi(2)¥(z,) (4)

) 0% 9 L(L+1 . .

with H, = —-—————-—-I-(—_t-—l, the partial Laplacian and z, y, the absolute
9zt gyt Y2 h

values of the Jacobi vectors (19]. Respective partial component ¥4 (z,y) of the

total wave function for the nnp-system is expressed by the function U} (z,y)

as

1
Ui (z,y) = Ul(z,y) - -;— /du We(z,y,u) Ul (2", v') (5)
21

where 2’ = \/}fa:2+;3fy2—%3zyu and y' = \/;%z2+%y2+¥2§:cyu. The

geometric function k” is given by

pro ooy (-l LEL:-————L! Pi(u) (’\/gcos())k(' 9y-*
C T By \zsn0) SRR s

with Pi(u), the Legendre polynomial of the order k and 0 = arctg%, 0 =

!
arctg y—, The factor Vi(z) represents a triplet part of the nucleon-nucleon

interaction potential.
Function U} (z,y) satisfies the boundary conditions

UZ(‘T’y)l::O = 0 u Uz(w’ y)ly:ﬂ = 0' (6)

It satisfies also the asymptotical conditions
. . L
UL(z:y) ~2 %) [JL( z — Eqy) + al(z) exp {h/z - By + z%}] +

exp {i\/z—:p +i1r?[—’}
7 (")

+Ai(2,0)



where jy, is the Bessel spherical function of the order L and p = /% +y2
By 14(z) we denote the deuteron wave function and by a$(z), the quartet
amplitude for elastic nd-scattering in a state with angular momentum L. The
function A}(z,0) represents the partial Faddeev component of the breakup
amplitude of this system into three particles.

The Faddeev integro-differential equations for the doublet (S = 1/2) nd-
scattering look as

(HL = 2)Uf(ay 1(2,9) = Vi) (2} ¥z 12, 9) (8)

d d
where ¢, ¥4 = lIJ},,'L , is expressed by the vector U = U}{” as
L) Us,

1 1
v =Uf + -;—/du R*(w)BUE, B= g : (9)
3 ,

By V, we understand a singlet part of the nucleon-nucleon interaction poten-
tial.

The Faddeev partial components UdL satisfy as U], the boundary condi-
tions

Ui L( 1J)| 0{ UﬁL(way)L:o =0, : (10)

and have the asymptotics

szfL("E,y)p_'\:m i1 'l,b,;(.r) [][,( Z—EdJ) +aL z)exp{ \/Z_Ed‘/_*_z_}:l
i\/Eﬂ+i7—‘"2—}
\/ﬁ )

Here, a(z) is the doublet elastic nd-scattering amplitude in the state of the
nnp-system with angular momentum L. At the same time, the functions Af
and A3 ;, represent the partial Fa:ldeev components of the breakup amplitude
for this state. Remind that the physical breakup amplitudes in quarLoL and
doublet states arc expressed by the amplitudes respectively, A} and A1 L A2 L
via relations analogous to (5) and (9) (sce e. g., [19]).

A component of the truncated scattering matrix Sy in the state with
a fixed angular momentum L is diagonal. Its nontrivial quartet, s%(z), and
doublet, s3(z), clements are given by

(,xp{
+Ai.L(z’ 0)

i=1,2 (11)

s (z) =1+ 2iaj(2),

10



TABLE 1. Convergence of the nnp-system virtual level zpe,(°)

N Nél) ngz) Nés) p1, fm Pmar, fm zres(3H ), MeV)
40 10 20 30 0.40 19.0 2.9296
60 15 30 45 0.30 23.9 2.8229
80 20 40 60 0.25 29.9 2.7565
120 30 60 90 0.15 34.0 2.7434
160 40 80 120 0.10 39.1 2.7282
180 45 90 135 0.08 39.5 2.7275

s9(2) =14 2iai(z).

Thercfore, the sheet Il(o1) resonances in the state L of the nnp-system are in
fact, zeros of the scalar functions s (2) and s4(z). '

When solving the boundary-value problems (4), (6), (7) and (8), (10}, (11)
numerically at complex energies z, we use the same algorithm {19], [22], [23]
as at rcal z. First, we make a finite-difference approximation of the problems
above in polar coordinates p, 0. As mesh points we take the intersection
points of the ares p = p;, ¢t = 1,2,..,N,, and rays 0 = 85, j = 1,2,....Np.
0; < 0;41. At pg = 0 and given p, (sce Table I), the mesh points in p
for i > 2 arc chosen in such a way that piyy = p; + a(p; — picy) with a
parameter a (acceleration) not depending on the number of a mesh point.
All the results exposed below, are related to a = 1,01, The interval {0.7/2]

where the variable 0 changes, is divided by special points with numbers .\"ls“'),
k =1,2,3, into three subintervals, inside of which the mesh points in 0 are
distributed uniformly. When going from one interval to another (in direction
of the parameter 0 rise), the mesh step is divided by two. The choice of the
mesh described, is explained by a necessity to take into account essentially
more quick change of the Faddeev component values in the domain where p
and/or z [19] arc small. Usually, we chose the numbers of points in 0 and p the
same, Np = N,. A maximal value of the parameters Ny, N, has equaled to 180,
With these values, the eut-off radius pynar = pa, has reached 39 fin. Typical
values of the mesh parameters are given in Table 1 where N = Ny = V.

As a nucleon-nucleon interaction, the Malfliet-"Tjon potential MT' 1 T is
used in its initial version [29).

Having solved the problems (1), (6), (7) and (8), (10), (11) we calculate the
functions s (2) and s%(z). Resonances, considered as roots of these functions
in the complex plane, are found using the Newton method with a three-point
approximation of derivative.

As a test of the computer code we have calculated the bound-state energy

2 of the 2 nucleus as a pole of the function s§(z). More precisely, this pole

11



was found as a root of the inverse amplitude 1/af(z). Beginning with mesh
dimension 80 x 80, we obtained for I, the value —8.55 MeV. Hereafter all the
energics are given with respect 1o the breakup threshold. Note that the value
stated for [ is in a good agreement with known results on £ in the MT I-111
model (sce (26]).

When scarching for the nnp resonances on the sheet Mg,y at L =0,1, we
have inspected a domain of a range about 10 MceV in vicinity of the segment
[£4,0] in the complex z plane. Especially carefully we studied a vicinity
of the poinls 2z = —1.5 &+ 0.3 4 (0.6 £ 0.3) MeV interpreted in the recent
works [30], [31] as a location of an exited state energy of the 3 nucleus.
Unfortunately we have succeeded to find only onc root zes(°H) of the function
s58(z), corresponding to the known virtual state of the nap system at the total
spin S=1/2. Position of this root for different meshes is shown in Table ]
illustrating a degree of convergence in the method used. As one can see [rom
the table, for the maximal of the meshes examined, the mesh 180x180, we have
found ze. ()= —2.728 McV. This means that the calculated virtual level is
situated 0.504 McV to the left from the nd threshold Ey=—2.224 McV (in the
MT I-11F model [29]). Note that the shift Ey—zres(°) found from experimental
data on nd scatlering, is 0.515 MeV (see [13]). lts value computed in a
separabilized MT [-11] model on the base of the momentum spacc Faddeev
equations, cquals to 0.502 MeV {13]. As to the resonance 2 = —1.5 £ 0.3 +
(0.6 £0.3) McV at L = 0 discussed in [30], [31], it is quite possible to be
situated not on the two-body sheet, l(g,1) but on the three-body sheets Iy
or 11,1y (see Fig. 1). Due to the reasons mentioned at the beginning of the
section, we may unfortunately neither appeuy: nor disprove this hypothesis.
As it should b2 expected (sce the data on three-nucleon resonances in [13)),
we have failed to find any resonances in the quartet state al L = 0 as well as
al [ =1, .

Also, we have studied a model three-body system including identical spin-
zero bosons with masses of the nucleon. Remind that the Faddeev integro-
differential equations for such a three-boson system look exactly as the equa-
tions (1) except a necessity to replace the factor —1/2 in the expression (5)
with unity. The boundary conditions for respective partial Faddeev compo-
nents UJ7%(x, y) have the form (6) and (7) where instead of af (2) and A7(0, 2),
one has to substitute a]?(z) and A3P(0, z).

Component of the truncated scattering matrix Sig,1y for the three-boson
system is given in the state with the angular momentum L by

si8(2) = 1 + 2ia38(2).

Resonances on the sheet [(g,1) in this state are roots of the equation s32(z) = 0
considered on the physical sheet.

In the three-hoson problem we restrict ourselves with a treating the s-state
only and thereby, with a scarching for zeros of the function s38(z) at L = 0.
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FIG. 2. Surface of the function |s3B(z)| in the model system of three bosons with
the nucleon masses. The potential VC(r) is used with the barrier ¥ = 1.5 MeV. Po-
sition of the resonance zres(3B) corresponds to the minimal (zero) value of |s33(z)|.
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FIG. 3. Trajectory of the resonance z.s(3B) on the sheet I(p4) in the model
system of three bosons with the nucleon masses. The potential V¥(r) is used.
Values of the barrier V, in MeV are given near the points marked on the curve,
These points are distributed between V, = 0.85 MeV and ¥V} = 1.6 MeV with the

same step 0.05 MeV in V.
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FIG. 4. Dependence of the “deuteron” energy Ly (éurvc 1) and real part of the
resonance zres(3B) (curve 2) on the barrier value V}.

As a pairwise interaction between the bosons we have used the Gauss-type
potential supplied with an additional Gauss repulsive barrier term,

VE(r) = Voexp[—por’] + Vi exp[—pus(r — )]

where the values Vo = =55 MeV, po = 0.2 fm=2, gy = 0.01 fm™?, r, = 5 fm
have been fixed and the barrier amplitude Vj, varied. A resonance (with non-
zero imaginary part) on the sheet Iljgy arises in the system concerned just
due to the presence of the barrier term. Example of a surface of the s3P(z)
absolute value for the barrier amplitude V; = 1.5 MeV is shown in Fig. 2 (for
a 80%80 mesh). A trajectory of the resonance z.5(3B) (a zero of the [unction
5o8(2)) is shown for the changing barrier ¥, in Fig. 3. This trajectory was
watched for the barrier V, decreasing in the interval between 1.6 MeV and
0.84 MeV. When drawing the trajectory, we have used a 160 x 160 mesh. [t
can be seen from Fig. 3 that a behavior of the resonance concerned turns out to
be rather uncxpected: with monotonously decreasing real part, the imaginary
part of the resonance changes not monotonously and at ¥, = 1.15 MeV it
has an obvious minimum. There is this value of V; when recal part of the
resonance zys(3B) coincides with the “deuteron” energy Fy (see Fig. 4). When
Re 2;e5(3B), decreasing with V4, leaves £y behind, the value of Im z(3B)
increases at the beginning but then, after V, 2 1 McV falls off again until the
resonance crossing at ¥ = 0.84 MeV the real axis. Trajectory of the resonance

14



concerned in the lower complex half-plane is symmetric to the curve shown
in Fig. 3 with respect to the real axis. Respective points, symmetric to those
marked in Fig. 3, correspond to the same values of V.
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Konravosa E.A., Morosunos A K. [£4-96-19
Henoabsosanie jddepenumuinisix ypasitensit (Payeena
I pacucTros 'I'pCX‘lllC'l‘H‘!llth PEIOHANCOR

Ha ocnose anibix nipeacTagicinii st alainTiHuecKoro HPOAOIIKCHHA KOMIO-
HeHt (DupIeesd TPeXNactinoil T-mMarpiusl Ha HenBIUCCKIE HICTRL DHMAHOBOI
HOBEPXIIOCTH BHEPIHN paspalorall WIFOPITM PACcteTa Pe3eNANCOR B Jwlaue Tpex
KBanrospix yacri. Cormaeno npeacTasienisd noawea T-Marpiub MarpHiib pac-
cesnist 1 pyukttt Upina Ba nedisityeckix JHCTax, HITepupeTipycMble Kk
PCIONHANCH, COBIUIAOT ¢ TCMIT 3HAUCHIEMIT DHCPIINL, I8 KOTOPRIX NOjXO1suue
YCCUCHIS MUTPHLILL paccesiing Ha H3HUECKOM SHCTE HMEIOT cODCTBEI0e Yneio
HYJIb. AMINIHTYABE IPOUECCOB Ha QHBHUECKOM JICTE, HEOOXOQWIMBIC 1WIH HOCTPOCH IS
MATPHLBL paccestiiig, BHIUHCIANTC ¢ HOMOULLIO N QepetuiisibX ypaBuentii
dameena. PaspaGoTannuiil wiropiT™  IPUMENHETCS I8 HOHCKA PE3OIINCOR B
cHETEME P 1 MOJIENLIIOl cieTenme Tpex Gosonos,

PaGora suiontiena B JTaGoparopit BHIMHcTeAbHOT TEXHIKE M ABTOMATH3ALIH
it JTaGoparopnit reopernueckoii gusikn i H.H.Boromofosa OHSH.

Tpenpint OGLetSeNIOro IMICTHTYT HAepIbIX necierosaniit. JlvGna, 1996
penp $

Kolganova E.A., Motovilov A.K. E4-96-19
Use of the Faddeev Ditferential Equations
for Computations of Three-Body Resonances

Algorithm, based on explicit representations for analytic continuation of the
T-matrix Faddeev cemponents on unphysical sheets, is worked out for caleulations
of resonances in the three-body quantum problem. According to the representations,
poles of T-matrix, scattering matrix and Green function on unphysical sheets,
interpreted as resonances, coincide with those complex energy values where
appropriate truncations of the scattering matrix have zero as eigenvalue. Scattering
amplitudes on the physical sheet, necessary to construct scatlering matrix, are
calculated on the basis of the Faddeev differentinl equations. The algorithm
devcloped is applied to search for the resonances in the nup system and in o model
three-boson system.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation and Bogoliubov Laboratory of Theoretical Physics,
JINR.
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