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I. INTRODUCTION

Resonances are one of most interesting phenomena in scattering of quan-
tum particles. The problem of definition and studying resonances is payed
a lot of attention both in physical and mathematical literature (see, e. g.,
the books [1] - [8]). Main difficulties connected with a rigorous definition of
resonance arc explicitly emphasized by B. Simon in his survey [9]. A pres-
ence of such difficulties is obliged, first of all, to the fact that in a contrast
to the usual spectrum, resonances are not an unitary invariant of an operator
(Hamiltonian of a quantum system). The generally accepted interpretation of
resonance as a complex pole of the scattering matrix continued analytically
on unphysical sheet(s) of the energy plane, goes back to the known paper by
G. Camow [10]. For radially symmetric potentials, such an interpretation of
the two-body resonances has been rigorously approved by R. Jost [11]. Begin-
ning from E.C. Titchmarsh [12] resonances are considered as well as poles of
analytic continuation of the Green function (or its matrix elements between
suitable states [6], [7]). Л survey of different physical approaches to studying
three-body resonances may be found e. g., in [5] and [13].

At the moment, one of the most effective approaches to practical calcula-
tion of resonances is the complex scaling method [14] (see also [7], [9]). This
method is applicable to the few-body problem in the case where interaction po-
tentials between particles are analytic functions of coordinates. The complex
scaling gives a possibility to rotate the continuous spectrum of the TV-body
Ilamiltonian in such a way that certain sectors become accessible for obser-
vation on unphysical sheets neighboring with the physical one. At the same
time, the real discrete spectrum of the Hamiltonian stays fixed during all the
scaling transformation. Resonances in the sectors above turn out to be extra
discrete eigenvalues of the scaled Hamiltonian [7]. Thereby, when searching for
resonances one may use standard methods to find discrete spectrum. Prac-
tical applications of the complex scaling method to concrete problems may
be found, in particular, in the recent papers [15] - [17]. Alongside with the
complex scaling, another methods are used for calculations of three-body reso-
nances which are based in particular on solving the momentum space Faddeev
integral equations [18], [19] continued through the cut (see the survey [13] by
K. Moller and Yu.V. Orlov and the literature cited therein). In this approach,
resonances are searched for as poles of the T-matrix.

The present paper is devoted to developing a method to calculate three-
body resonances using the recently found explicit representations disclosing a
structure of the Т-matrix on unphysical sheets as well as analogous representa-
tions for the scattering matrix and resolvent [20], [21]. These representations
were obtained in supposition that the interaction potentials were patrwise
and falling-off in the coordinate representation not slower than exponentially.
According to the representations [20], [21], the matrix M(z) = {Mni}(z)},



a, /3 = 1,2,3, constructed of the operator T(z) Faddeev components [18], [19],
is explicitly expressed on unphysical sheet П/ of the energy z plane in terms
of this matrix itself taken on the physical sheet and a certain truncation Si(z)
of the total three-body scattering matrix S(z). Character of the truncation
is determined by the index (number) / of the unphysical sheet concerned.
Respective representations for analytic continuation of the matrix S{z) and
resolvent R(z) follow immediately from the representations for М ( г ) | П | . А
main consequence of the representations admitting direct practical applica-
tions, is the fact that the T-matrix and resolvent as well as the scattering
matrix have nontrivial singularities on unphysical sheet П; exactly at those
values of the energy z where the corresponding matrix Si(z) has zero as eigen-
value. It is important that Si(z) is considered on the physical sheet only.
Therefore, one can provide a search for resonances (poles of M(z), S(z) and
R(z) ) on a certain unphysical sheet П; keeping z always on the physical one
and calculating only a position of zeros of the operator-valued function Si(z).
For all this, one can use any method allowing to calculate (on the physical
sheet) amplitudes of the processes necessary to construct the truncation Si{z).

In the present paper, the matrices Si{z) are computed on the base of the
numerical algorithm [22] elaborated to solve the Faddeev differential equations
in configuration space (see the book [19], survey [23] and references therein).
Certainly, when computing the amplitudes on the physical sheet one has to
extend the Faddeev differential formulation of the scattering problem as well
on the complex values of z. It should be noted that, in the holomorphy domain
(see [21]) of the amplitudes, the differential formulation stays to be correct.

Unfortunately, the algorithm [19], [22], [23] (see also [24] - [27]) has been
worked out in details only for the processes (2 —• 2,3). Thus, there may
be computed in practice only the amplitudes of elastic scattering and rear-
rangement for the processes (2 —> 2) and the breakup amplitude into three
particles. A knowledge of these amplitudes is sufficient to compute those
truncations Si(z) of the three-body scattering matrix S{z), zeros of which are
"responsible" for resonances situated on the so-called two-body unphysical
sheets, i. e. those sheets of the energy Riemann surface where the parameter
z may be guided going around the pair thresholds only. As a concrete appli-
cation of the method concerned wemake a search for resonances in the nnp
system and in a model system of three bosons with the nucleon masses.

Let us describe shortly structure of the paper.
In Sec. II, we introduce main notations and formulate the explicit represen-

tations [21] for the unphysical-sheet three-body T-matrix, scattering matrix
and resolvent which are used then to approve the numerical method of the
work.

In Sec. Ill the system nnp and a three-boson system are considered. For-
mulations of the boundary-value problems [19], [22], [23] are given for the Fad-
deev partial differential equations, corresponding to the processes (2 -—• 2,3)



in these systems and going out to a domain of complex energy values in the
physical sheet. Numerical method to solve these problems is described. Trun-
cated (partial) scattering matrices are constructed in terms of the amplitudes
for elastic scattering (2 —> 2). Zeros of these matrices represent resonances
(including virtual poles) on the unpliysical sheet connected with the physical
one by crossing the continuous spectrum interval between the deuteron energy
and three-body threshold. Results of numerical compulations arc exposed.

We conclude this introduction with some notation. Throughout the paper,
we understand by \/z - A, z € С, А Е IR, the main branch of the function
(z — A)'/2. By p we denote the unit vector in the direction p € IR". f> = J-r.

and by Sn-\ the unit sphere in III", p e S"~].

II. EXPLICIT REPRESENTATIONS FOR T-MATRIX,
SCATTERING MATRIX AND RESOLVENT ON UNPHYSICAL

SHEETS

The scattering matrix, T-matrix and Hamiltonian resolvent (Green func-
tion) for a quantum-mechanical system arc stringently connected with each
other. Therefore, all these three objects, considered as functions of energy,
have usually the same Ilicmann surface. Such a fact takes place at least in the
multichannel scattering problem with binary channels and in the three-body
problem with quickly decreasing interactions [28], [21]. In a "first approxi-
mation", the structure of the Riemann surfaces in these problems coincides.
The thing is that the branching points (in real axis) are stipulated to these
surfaces in the both problems by the same reason, namely by a presence of the
Cauchy-typc integrals in the Lippmann-Schwinger or Faddcev equations. In
the equations considered in the momentum representation, the Cauchy-type

integrals are engendered by the kernels v-̂ —j-*—— with A, the channel thresh-
olds and p, p <E IR", the respective channel momentum variables. In the case
of the channels (2 —» 2,3) in three-body problem and the odd-dimensional
channels (i. e., with n odd) in the matrix multichannel problem, the thresholds
A turn out to be the branching points of the second order. Even-dimensional
channels in the multichannel problem as well as the channel (3 —• 2,3) in the
three-body problem give logarithmic branching points (sec [21], [28], [13]).

The method used for calculation of resonances in the present work, is based
on the explicit representations [21] for analytic continuation of the T-matrix,
scattering matrices and Green function on unpliysical sheets keeping true at
least for a part, of the three-body Riomaim surface. To describe this part
we introduce the auxiliary vector-function /(г) = (/«(-)),/i,\(z), ...,fiiUl(z).
/2,1(2), ...,/2,n,(z), /:),1(л),...,/;,|„з(л)) with fo{z) = In с and fnJ(z) =
(г - Anj)'/'2. Here, by AniJ we understand respective bound-state energies



of pair subsystems a, a = 1,2,3, j = 1,2,...,nQ, numerated taking into ac-
count their multiplicities. It is supposed that na < DO. The sheets П; of
the vector-function f(z) Riemann surface 5ft are numerated via multi-index
I = (?o,'1,1,-,'i,ni An—i'2,па,'з,1|->'з.пз)) where / a J = 0 if the sheet П;
corresponds to the main (arithmetic) branch of the square root (z — \aY^.
Otherwise, la,j = 1 is assumed. Value of /0 coincides with the number of
branch of the function In г, Inz = In |г | + г2ж1о + гф where ф = arg2. For
the physical sheet identified by /0 = la,j = 0, a = 1,2,3, j = 1,2, ...,no, we
use the notation По. A "sticking" of the sheets П/ of the surface SR is realized
in intervals between neighboring thresholds along rims of the cut along the
continuous spectrum. A detailed description of the surface 3f may be found
in [28].

The type Ж surfaces without extra branching points arise in the multi-
channel problems with binary channels only. Structure of the total three-body
Riemann surface is essentially more complicated. For instance, the sheets П/
with l0 — ±1 have additional branching points corresponding to resonances
of the two-body subsystems. In the sheets flj with IQ = 0, one can discover
(in the left half-plane) logarithmic branching points of a kinematical origin.
The part 5ft'3' of the total three-body Riemann surface where the representa-
tions [21] are valid, consists of the surface Sft sheets П; identified by /0 = 0
(such unphysical sheets are called two-body sheets) and two three-body sheets
identified by /0 = ±1 и lOii = 1, a = 1,2,3, ;' = l,2,...,nQ. Note that 3#3)

includes all the unphysical sheets neighboring with the physical sheet По-
In the case of the nnp-system and a model three-boson system considered

below, the surface 3?'3^ is shown schematically in Fig. 1. In this case a single
pair threshold, the deuteron energy A = Ed is present only. Therefore, the
index / of the sheets П; consists of two components only: / = ('oi'i)- ^n ^ e

terminology accepted, the sheet П(од) (see Fig. 1) is a two-body sheet, but
the sheets П(_ 1ф1) и П^д) are three-body ones.

Construction of the representations for the T-matrix consists of the follow-
ing stages. At the first step, one carries out analytic continuation on unphysi-
cal sheets, of the absolute terms and kernels of the Faddeev integral equations
for the components Map(z) (the continuation is understood in the sense of
distributions). As the absolute terms as the kernels after continuation are ex-
pressed in terms of the pair T-matrices and scattering matrices taken on the
physical sheet. Transforming the Faddeev equations continued, one finds the
kernels Map(P, P', -г)|2бП can be explicitly expressed in terms of these kernels
themselves taken on the physical sheet По in their off-shell and/or half-on-
shell variants. It is supposed in the last case that the first argument P of the
kernels Mop(P,P',z)\i(.ni is taken on the energy ("mass") shells | P | 2 = z or
\pa\

2 = г..— AO|j, j = 1,2, ...,na. Here, we use the notations P = {ka.pa}>
где ка,ра, а = 1,2,3, of the standard relative momenta [19]. Transferring in
the expressions obtained all the off-shell terms to the l.h. part and inverting



FIG. 1. Physical, П о , and neighboring unphysical, П(0,1), Щ\^) and II(_ 1 ( 1 j ,
sheets of the Riemann surface in the threc-nucleon (nnp) and model three-boson
problems. The near (in figure) rim of the cut in the sheet По is identified in the
interval between the deuteron energy Ej and three-body threshold z = 0 with the
remote rim of the cut in the sheet П(о,1). On the contrary, the remote rim in the
sheet По is identified in this interval with the near rim in the sheet П(од). In
the interval (0,+00), one identifies the near rim of the cut in the sheet По with
the remote rim in the sheet П^д). Respectively, the remote rim in the sheet 1IO

is identified in this interval with the near rim in the sheet Il^_ 11j)- On the sheet
П(о,1)> the virtual level zrcs(

3H) in the s-state of the ranp-system is marked, and the
resonance z r c s(3B) in the model three-boson system. Also, the complex conjugate
pole z r c s(3B) is marked.



an operator arising there, one comes to a closed system of equations for the
half-on-shell components Map(P, •P',^)|JGn,- This system admits an explicit
solution using the terms of the physical sheet only. As a result one gets the
following representations* for the matrix M(z) = {Map(z)} ,a,/3 = 1,2,3,
continued on the sheet П(:

М(*) | п , = M(z) - B^z)A(z)LSr1(z)LB(z). (1}

Here, the factor A(z) is the diagonal matrix,

A(z) = di

combined of the functions Ao(z) = —wiz2 and AOlj = —niy/z — AO|j. Nota-
tions L and L are used for diagonal number matrices whose nontrivial elements
are the sheet П; indices:

и i =
By Si(z) we understand a truncation of the three-body scattering matrix:

S(z), S(z) : Ф -* Q, g - L2(S5) © Ш L2{S2), defined by the equation
0=1j=i

where / is the identity operator in g. Also, we use the notations

= ( 1 д а + v ] ) and B\z) = (MWntjJ, [v + MT]¥JJ) .

Here, v = d\a.g{vi,v2,v3} with vQ, the pair potentials, a = 1,2,3. At the
same time,

0 1 l
= (l, 1,1), T = 1 0 1 and Ф = ^

w h e r e $ a , a = 1,2,3, areoperators acting o n / = (/,,/2,.. ,,/По) £ ® £2(IR
3)

as

'For the sake of simplicity, we write here these representations as well as rep-
resentations for the scattering matrix and resolvent (see below Eqs. (2) and (3),
respectively) for the case of spinless particles only. A direct generalization of the
representations on the case of spin particles causes no difficulties.



where, in turn, i/>aj is the bound state wave function of the pair subsystem
a corresponding to the level Xaj. By Ф" we denote operator adjoint to Ф.
Notation Jo(^) is used for operator restricting a function on the energy-shell
| F | 2 = z. The diagonal matrix-valued function

Ji(z) =

consists of the operators Ja,j(z) of restriction on the energy surfaces | p o | 2 =
г - AOj. The operators $1*, JQ(Z) и j{(z) represent the "transposed1' matrices
П, J0(z) and Ji(z), respectively. Operators JQ(Z) И j}(z) act in the expression
for B f (as if) to the left.

Representations for the scattering matrix and resolvent on unphysical
sheets arc an immediate consequence of the representations (1) for the matrix
М ( г ) | П | .

With some stipulations (see [21]) the representations for the scattering
matrix S(z) look as

S(z)\ni = S(l) {! + Sfl{z)[S(z) - />(/)} £(/). (2)

Here, € = d\a,g{£0,Situ—,£3.nt} where Eo is the identity operator in
if la = 0 and £0, the inversion, (£of)(P) = f(-P), if /0 = ±1. Analogously.
£a,i is the identity operator in Li{S2) for lQj = 0 and inversion for / n J = 1.
Notation e(/) is used for diagonal number matrix e(/) = diag{e0, с1л, ...,r:i,ni}
with nontrivial elements eaj = 1 if laj = 0 and caj = - 1 if lnj = 1; for all
the cases Co = 1.

Analytic continuation H(2)| n j of the resolvent R{z) = (II - z)~l of the
three-body Hamiltonian // admits the representation

Here,

with V = Vi + v2 + v3 and RQ(Z) = (Ho - z)~\ the resolvent of I he kinetic-
energy operator II0 for the system under consideration.

There were holomorphy domains Ilfho1' found in [21] for the truncated
scattering matrices Si(z) in the physical sheet. Representations (П and (.4)
are valid in the sariie domains.



It follows from the representations (1)—(3) that the resonances (the non-
trivial poles of М(г) | п , 6'(z)|n and /J(z)|n ) situated on the unphysical sheet
П; are in fact those points z •— zICS on the physical sheet where the matrix
Si{z) has zero as eigenvalue. Therefore, a calculation of resonances on the un-
physical sheet П; is reduced to a search for zeros of the truncation Si(z) of the
total three-body scattering matrix S(z) in tlu physical sheet. At the numerical
search for the resonances, one can use any method allowing to find analytic
continuation on the physical sheet, of the elastic scattering, rearrangement or
breakup amplitudes necessary to construct the respective truncation Si(z).

III. RESULTS OP SEARCH FOR RESONANCES IN
THREE-NUCLEON (nnp) AND THREE-BOSON SYSTEMS

One of the most effective methods for a study of concrete three-particle sys-
tems is the numerical algorithm [22] (see also [23], [19] and references therein)
based on the Faddeov differential equations for the wave function components
in the configuration space. This method gives opportunity of comparatively
easy calculations of the scattering wave functions and respective amplitudes
for (2 —» 2,3) processes. An extension of the differential formulation to a
domain of complex energies enables us to calculate analytic continuation of
the (2 —у 2,3) amplitudes on the physical sheet. This is quite enough for us
to construct the truncated s-state scattering matrices Si(z) whose zeros are
resonances on the respective two-body unphysical sheets П; with IQ = 0.

As to a search for resonances on the three-body unphysical sheets П| with
1ц ^ 0 (in particular on the sheets H(-i,i) and liftpl) in the three-nucleon
problem), the situation is much more complicated. To construct 5/(z) in this
case, one has, alongside with (2 —> 2), to calculate amplitudes for the pro-
cesses (3 —> 2,3) with three asymptotically free particles in an initial stabi.
Unfortunately, the reliable practical methods for calculation of the processes
(3 —> 2,3) are not developed so far even for the real energies. In particular,
when using the differential formulation of the scattering problem, one has from
the very beginning to separate explicitly contributions to the Faddeev com-
ponents not only from single-rescattering but also from double-rescattering
processes [19]. In the last case, one has to take into account explicitly (see
[19]) a presence of the "light" and "shadow" zones for the correspondent waves,
and to use the Fresnel integral for description of intermediate regimes. More-
over, computations of the (3 —У 2,3) amplitudes have to be carried out for
many different directions of the incident momentum P. This circumstance is
itself a factor enlarging numerical complexity as compared with the case of
the processes (2 —» 2,3).

So, in the present work we restrict ourselves with a search for the nnp
system resonances situated on the unphysical sheet П(Од) only, connected with
the physical one by crossing the continuum spectrum interval (Ej, 0) between



the deuteron energy z — Ed and breakup threshold z = 0 (see Fig. 1). To
construct the truncated scattering matrix S(o,i)(z) (in accordance with (l)-(3)
just its zeros represent resonances on the sheet П(о,1)), it suffices to calculate
the elastic nd scattering amplitudes only.

To find these amplitudes we use the two-dimensional Faddeev integro-
difFerential equations [19] being a result of the partial and angular analysis
of the Faddeev differential equations. In addition we make an assumption,
rather usual in nuclear physics, that the nucleons involved interact in the s-
state only. With this assumption the partial equations become exact. The
Faddeev component U4

L corresponding to the total spin S = 3/2 and total
orbital momentum L, satisfies the equation

№-z)^(x ly)=V,(x)«?(x1y) (4)

with HL = — -r—-—-тг~̂ -\ ^ 1 the partial Laplacian and x, y, the absolute
Ox' ay1 yl

values of the Jacobi vectors [19]. Respective partial component Ф^я, у) of the
total wave function for the nnp-systern is expressed by the function U^{x,y)
as

l

Ф J,(x, y) = Ul(x, y)-\jdu hb(x, у, и) Ul(x', y') (5)

- l

where x' = \j\x2 + \ y2 - ^ xyu and y' = yj| x2 + \ y2 + ^ xyu. The

geometric function hL is given by

with Pk{u)i the Legendre polynomial of the order к and 0 = arctg—, 0' =

arctg —. The factor Vt(x) represents a triplet part of the nucleon-nucleon

interaction potential.
Function Ul(x,y) satisfies the boundary conditions

ui(x>y)L=o ~ о и ui(xiy)\ =o= 0- (6)

It satisfies also the asymptotical conditions

Ug

L{x,y) ~ Ф<1(х) \JL{V2 ~ Ed y) + a4

L(z) exp I iyfz - Edy + i^—
L L &

9



where jjr, is the Bessel spherical function of the order L and p = y V + уг

By ipd{x) we denote the deuteron wave function and by (^(z), the quartet
amplitude for elastic n^-scattering in a state with angular momentum L. The
function A4

L(z, 0) represents the partial Faddeev component of the breakup
amplitude of this system into three particles.

The Faddeev integro-diiferential equations for the doublet (S = 1/2) nd-
scattering look as

(x,y) (8)

Л1 , is expressed by the vector U[ = ( .hL

*2,b / \U2,L /
as

B= (9)

By Vs we understand a singlet part of the nucleon-nucleon interaction poten-
tial.

The Faddeev partial components UfL satisfy as U4

L, the boundary condi
tions

(10)

and have the asymptotics

UfiL{x,y)

+AiiL(z,0)

Here, а^(г) is the doublet elastic rad-scattering amplitude in the state of the
nnp-system with angular momentum L. At the same time, the functions A'[ It

and A\L represent the partial Fa:ldeev components of the breakup amplitude
for this state. Remind that the physical breakup amplitudes in quartet and
doublet states are expressed by the amplitudes respectively, A\ and A\ L, Aj jr,
via relations analogous to (5) and (9) (see e. g., [19]).

A component of the truncated scattering matrix S(o,i) in the state with
a fixed angular momentum L is diagonal. Its nontrivial quartet, s^(z), and
doublet, s'Kz), elements are given by

10



TABLE I. Convergence of the 7inp-system virtual level zIea(
3H)

N

40
60
80
120

160
180

10
15

20
30
40

45

20
30
40
60

80
90

30
45

60
90

120
135

pu fm

0.40
0.30

0.25
0.15

0.10
0.08

Ртах, fm

19.0
23.9

29.9
34.0
39.1
39.5

г г „( 3 Л), MeV)

2.9296
2.8229

2.7565
2.7434

2.7282
2.7275

4(z) = 1 + 2ia{{z).

Therefore, the sheet П(оI) resonances in the state L of the rinp-system are in

fact, zeros of the scalar functions sq

L{z) a " d si(z)-

When solving the boundary-value problems (4), (6), (7) and (8), (10), (11)
numerically at complex energies z, we use the same algorithm [19], [22], [23]
as at real z. First, we make a finite-difference approximation of the problems
above in polar coordinates p, 0. As rnesli points we take the intersection
points of the arcs p = />,-, г = \,2,..,,NP, and rays 0 = 0j, j = 1,2 Л».
0j < 0j+i- At po = 0 and given p\ (see Table I), the mesh points in p

for г > 2 arc chosen in sucli a way that p l + i = p,- + a(p,- — p,_i) with a
parameter a (acceleration) not depending on the number of a mesh point.
All the results c-xpiscd below, arc related to a = 1,01. The interval [0. <г/2]
where the variable 0 J.iangcs, is divided by special points with numbers ,\g ,
к — 1,2,3, into three subintervals, inside of which the mesh points in 0 aro
distributed uniformly. When going from one interval to another (in direction
of the parameter 0 rise), the mesh step is divided by two. The choice of the
mesh described, is explained by a necessity to take into account essentially
more quick change of the Paddeev component values in the domain where p

and/or x [19] are small. Usually, we chose the numbers of points in 0 and /; t lit1

same, No = Np. A maximal value of the parameters No, Л'„ has equaled lo 180.
With these values, the cut-oif radius pmas — p^r lias reached 39 fin. Typical
values of the mesh parameters are given in Table I where N = No = A,,.

As a nuclcon-nucleon interaction, the Malfliel-Tjon potential MT I III is
used in its initial version [29].

Having solved the problems (4), (6), (7) and (8), (10), (11) we calculate the
functions s]Xz) a l u ' sl(z)- Resonances, considered as roots of theso functions
in the complex plane, arc found using the Newton method with a three-point
approximation of derivative.

As a test, of the computer code we have calculated the bound-state energy
Kt of the 3II nucleus as a pole of the function .ч'/,(-). More precisely, this pole

11



was found as a root of the inverse amplitude l/a'/,(z). Beginning with mesh
dimension 80x80, we obtained for Et the: value —8.55 McV. Hereafter all the
energies are given with respect to the breakup threshold. Note that the value
stated for Et is in a good agreement with known results on Et in the MT I—III
model (see [26]).

When searching for the nnp resonances on the sheet П(о,1) at L = 0,1, we
have inspected a domain of a range about 10 MeV in vicinity of the segment
[i?</,0] in the complex г plane. Especially carefully we studied a vicinity
of the points z = -1.5 ± 0.3 + г( 0 ' 6 ± °'3) M e V interpreted in the recent
works [30], [31] as a location of an exited state energy of the 3// nucleus.
Unfortunately we have succeeded to find only one root ггсв(

3/7) of the function
.S[j(̂ r). corresponding to the known virtual stale of the nnp system at the total
spin S-l/2. Position of this root for different meshes is shown in Table 1
illustrating a degree of convergence in the method used. As one can see from
the table, for the maximal of the meshes examined, the mesh 180x180, we have
found гг,,в('//) = -2.728 McV. This means that the calculated virtual level is
situated 0.501 MeV to the left from the nd threshold Ed = -2.224 MeV (in the
MT I—III model [29]), Note that the shift Ed-zTCS(

3H) found from experimental
data on nd scattering, is 0.515 MeV (see [13]). Its value computed in a
scparabilizcd MT I—III model on the base of the momentum space Faddeev
equations, equals to 0.502 MeV [13]. As to the resonance z — — 1.5 ± 0.3 +
i(0.G ± 0.3) McV at L = 0 discussed in [30], [31], it is quite possible to be
situated not on the two-body sheet. II(0,i) but on the Ihrce-bodtj sheets H(-i,i)
or U(i,i) (see Fig. 1). Due to the reasons mentioned at the beginning of the
section, we may unfortunately neither aprwov-; nor disprove this hypothesis.
As it should Ьс expected (see the data on Ihrcc-nucleon resonances in [13]),
we have failed to find any resonances in the quartet state at L ~ 0 as well as
at /, = 1.

Also, we have studied a model three-body system including identical spin-
zero bosons with masses of the nucleon. Remind that the Faddeev integro-
diffcrcntial equations for such a three-boson system look exactly as the equa-
tions (4) except a necessity to replace the factor -1/2 in the expression (5)
with unity. The boundary conditions for respective partial Faddeev compo-
nents UfH(x,y) have the form (6) and (7) where instead of a '(z) and Л^(0,г),
ori<! has to substitute a™(z) and A™{0,z).

Component of the truncated scattering matrix 5(0,i) for the three-boson
system is given in the state with the angular momentum L by

Resonances on the sheet II(o,i) in this state arc roots of the equation sj^(z) = 0
considered on the physical sheet.

In the three-boson problem we restrict ourselves with a treating the s-state
only and thereby, with a searching for zeros of the function s^(z) at L = 0.

12
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PIG. 2. Surface of the function |soB(z) | ш t n e model system of three bosons with
the nucleon masses. The potential VG{r) is used with the barrier Vb = 1.5 MeV. Po-
sition of the resonance z r e s(3B) corresponds to the minimal (zero) value of |^oB(2)l-
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FIG. 3. Trajectory of the resonance z r c s(3B) on the sheet П( 0 | 1) in the model
system of three bosons with the nucleon masses. The potential VG(r) is used.
Values of the barrier Vb in MeV are given near the points marked on the curve,
These points are distributed between Vb — 0.85 MeV and V/, = 1.6 MeV with the
same step 0.05 MeV in Vb.
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FIG. A. Dependence of the "dcuteron" energy Ed (curve 1) and real part of the
resonance zr(,s(3B) (curve 2) on the barrier value V\,.

As a pairwise interaction between the bosons we have used the Gauss-type
potential supplied with an additional Gauss repulsive barrier term,

G{r) =VG{r) = - n)2

where the values VQ = -55 MeV, ц0 = 0.2 frrT2, /д = 0.01 fm"2, rb = 5 fm
have been fixed and the barrier amplitude VJ varied. A resonance (with non-
zero imaginary part) on the sheet П(Од) arises in the system concerned just
due to the presence of the barrier term. Excimple of a surface of the SQB(Z)
absolute value for the barrier amplitude Vj, = 1.5 MeV is shown in Fig. 2 (for
a 80x80 mesh). A trajectory of the resonance 2rc5(3B) (a, zero of the function
slB(z)) is shown for the changing barrier VJ, in Fig. 3. This trajectory was
watched for the barrier Vj decreasing in the interval between 1.6 MeV and
0.84 MeV. When drawing the trajectory, we have used a 160 x 160 mesh. It
can be seen from Fig. 3 that a behavior of the resonance concerned turns out to
be rather unexpected: with monotonously decreasing real part, the imaginary
part of the resonance changes not monotonously and at Vb = 1.15 MeV it
has an obvious minimum. There is this value of Vj when real part of the
resonance zres(3I3) coincides with the "deuteron" energy Ed (see Fig. 4). When
Rez r c s(3B), decreasing with Ц,, leaves Ed behind, the value of Irn2rcs(3B)
increases at the beginning but then, after VJ, = 1 MeV falls off again until the
resonance crossing at Vb = 0.84 MeV the real axis. Trajectory of the resonance

14



concerned in the lower complex half-plane is symmetric to the curve shown

in Fig. 3 with respect to the real axis. Respective points, symmetric to those

marked in Fig. 3, correspond to the same values of Vj.
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.Колганова Е.А., Мотопилой А,К. 124-96-19
Использование дифференциальных уравнении Фаддеена
для расчетов трехчастичпых рсзопансов

На основе явных представлении для аналитического продолжения компо-
нент Фаддеена трехчистнчной '/-матрицы на нсфнзпчсскпс листы рнмаиокой
нонерхности энергии разработан алгоритм расчета резонанеов и задаче грех
квантовых частиц. Согласно представлениям полюса 7-матрииы матрицы рас-
сеяния и функции Грина на нефнзических листах, интерпретируемые как
резопапсы, совпадают с,темп значениями энергии, для которых подходящие
усечения матрицы рассеяния на физическом листе имеют собственное число
нуль. Амплитуды процессов па физическом лис те, необходимые для построения
матрицы рассеяния, вычисляются с помощью дифференциальных уравнении
Фаддеева. Разработанный алгоритм применяется дли поиска резопансон в
системе imp и модельной системе трех бозонов.

Работа выполнена в Лаборатории вычислительной техники и автоматизации
и Лаборатории теоретической физики им. Н.Н.Боголюбова ОИЯИ.

Препринт ОГ)],сл11|1011моп) института млернмх мсе.челоиашш. Лубка. 1''%

Kolganova E.A., Molovilov А.К. E4-96-I9
Use of the Faddeev Differential Equations
for Computations of Three-Body Resonances

Algorithm, based on explicit representations for analytic continuation of the
'/'-matrix Faddeev components on unphysical sheets, is worked out for calculations
of resonances in the three-body quantum problem. According to the representations,
poles of '/'-matrix, scattering matrix and Green function on unphysical sheets.
interpreted as resonances, coincide with those complex energy values where
appropriate truncations of the scattering matrix have zero as eigenvalue. Scattering
amplitudes on the physical sheet, necessary to construct scattering matrix, are
calculated on the basis of the Faddeev differential equations. The algorithm
developed is applied to search for the resonances in the imp system and in a model
three-boson system.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation and Bogoliubov Laboratory of Theoretical Physics,
JINR. •

I'rcprini ol'ihc Joint Institute for Nuclear Research. Dublin. l*>%
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