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A b s t r a c t : We highlight and examine in detail a discrepancy that exists between the
results of various single-channel and muitiparameter electron momentum
spectroscopy (EMS) studies into the outervalence states of hydrogen flu-
oride (HF). In an attempt to elucidate the nature of this problem and
the disagreement that exists between the best available theoretical mo-
mentum distributions (MDs), as calculated in the plane-wave-impulse-
approximation with wave functions at the near-Hartree-Fock limit, and
the most accurate experimental MDs, we have adapted a method, orig-
inally applied to extract atomic orbital information from Gompton pro-
files, to our 3a and ITT experimental MDs. In addition we have also
applied this technique to the 2s and 2p orbitals of neon, which is isoelec-
tronic with HF, with the ramifications of the results of this investigation
to HF also being outlined.
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The purpose of this letter is to resolve a situation that has arisen over the analysis of

the outervalencc lir and 3<r orbitals of HF by electron momentum spectroscopy (EMS).

Previous experience with EMS of molecules has shown that the correct relationship of

cross-section magnitudes between orbital manifolds is given by the plane-wave impulse

approximation (PWIA), using orbital wave functions that correctly describe the shapes

of the momentum distributions (MDs) up to a maximum momentum at least as high as

1 a.u. This could not be confirmed for HF by early experiments, because available self-

consistent-field (SCF) orbitals could not reproduce the MD shapes. A recent experiment

has raised questions over the measured relationships of ITT and 3<r MDs.

The original EMS investigation of HF by Brion el al. [1] at total energies of 400

and 1200 eV was a single-channel (2] coincidence experiment. Much-improved counting

statistics were achieved by a 1500 eV multiparameter [2] investigation by Braidwood et

ai [3J. The energy resolution 1.75 eV (FWHM) of [3] facilitated the deconvolution of the

peaks in the energy distribution at the angle <f> = 8° in non-coplanar symmetric geometry

[2], in comparison with the 2.1 eV (at 1200 eV) resolution of [lj. The ITT and 3a peaks

have separation energies 16.1 eV and 19.9 eV respectively.

The apparent inconsistencies are between different experimental measurements of the

cross-section ratio for 3cr to l7r at 0 = 8°, which is fundamental in setting the relative

scale of the 3cr and lir MDs. We note here that as the incident electron beam energies of

Brion et ai [1] (1200 eV) and Braidwood et ai [3] (ISOOeV) were somewhat different, the

observed momentum, at <j> = 8°, will be slightly different in each case ( 0.68 a.u. compared

to 0.73 a.u.). However this minor difference, which represents sampling the respective 3a

and IT MDS at slightly different places, is not significant and does not diminish the

argument that follows. The peak height ratio P of [3] is 0.48. The ratio of peak areas A

was determined in [1] to be 0.55, where this value came from notes of the original analysis

made by the authors of [1]. Braidwood et al. [3] electronically digitised the relevant data

in fig. 3 of [1] and then fitted these data using a numerical least-squares deconvolution

program. Each peak was represented by a Gaussian of width given by combining the

instrumental width (2.1 eV) with the natural widths [4] of the lir and 3cr states, which



are respectively 0.7 eV and 1.1 eV. The ratio A became 0.47 ± 0.04, which we believe

is the correct area ratio for [1]. The ratio P for [l] is 0.46. Note that the slightly larger

width of the 3cr peak increases its area/peak ratio somewhat, in comparison with the l7r

peak. The ratio of peak areas A for [3] was 0.49 ±0.01. The error here is much smaller

than for the reanalysed result of [l] due to the improved statistical quality of the data.

In a recent single-channel experiment, also conducted at 1200 eV, Hollebone et al. [5]

found the value 0.56 for the peak area ratio A [6]. This result would neoessarily have

a larger error than for the multiparameter experiment (3). Nevertheless we believe it is

inconsistent with (3J. The peak height ratio P of [5] is 0.49 \6], consistent with [1] and [3J.

A summary of this data for P and A of references [1], [3] and J5] is provided in table 1.

The peak area discrepancy must occur in the numerical processing of the energy spec-

tra. First, different natural widths [6] for IK are used for [3] and [5]. Estimates of natural

widths come from the PES spectrum [4], which is reproduced in our fig. 1. The lx state

gives rise to four peaks. Braidwood et al. [3] digitised the \-K spectrum and numerically

determined an envelope for the four peaks, arriving at the estimate 0.7 eV for the l7r

natural width. If we base the estimate on the intense first peak, we obtain the result 0.2

eV of [5]. This ignores the less intense contributions from the other peaks and must be

an underestimate. On the other hand, since the line profile is asymmetric, the estimate of

[3] might weight the less-intense peaks too much. In fact this difference does not explain

the peak area ratio discrepancy. We reanalysed the data of Braidwood el al. [3] using the

extreme unphysical choices 0 eV and 1.3 eV for the lw and 3<7 natural widths and 1.75

eV for the instrumental width, obtaining A = 0.51 ± 0.01, with a larger value of x2 than

for [3]. Thus the ratio A is insensitive (to better than 4%) to the valuer, employed for

the natural widths. We believe that this is due to the broad instrumental width in both

cases [1,3] and, in particular, to the significant broad tails of the instrumental response

function.

We submit that evidence for the origin of the discrepancy in the ratio A can be found

in fig. 1 of [5] where it is apparent that the real lir flux at the leading edge of the first

peak in their spectrum is not being taken into account in their fit. Presumably a similar



problem is also occurring at the tail of this peak. These tails are very important in

deciding the ratio A, since the ITT tail under the 3a peak is about twice as important as

the Za tail under the lir peak. We believe this to be the cause of the difference between

tlw result of Braidwood et at. (3J and Holtebone et at. [5] for A and thus the origin

of the discrepancy between them. Further, we are confident that if Hollebone el ai (5J

were to make allowance for this in their analysis then, certainly to within their statistical

uncertainties, all the three EMS measurements [1,3,5] would be reconciled.

In addition to the issues just described there has also been a discrepancy between the

most reliable available theoretical MD calculations and experiment for the \ir and, to

a lesser extent, 3a momentum distributions [3,5,7,8]. Indeed evidence for the continued

existence of this disagreement between theory and experiment is apparent in the most

recent theoretical work of Duffy et aL [9\, which included density functional theory

(DFT) results. We note here that all their calculations were conducted within the plane-

wave impulse approximation (PWIA) framework and that whilst the DFT approach [9]

improved the level of agreement with experiment [3] for the 3<T to lir cross section ratio

{values at their respective peaks) over that obtained using Hartree-Fock wavefunctions,

a significant discrepancy still remained. Consequently in an attempt to shed mote light

on the nature of this discrepancy we have adapted and applied a technique, originally

developed by Schmider et ai [10] to extract atomic orbital information from Compton

profiles, to our preferred 3a and lit MD data [3]. A brief description of this procedure

is now given below along with some details of the PWIA and distorted-wave impulse

approximation (DWIA) frameworks.

EMS measures the momentum profile Fi(q) for states i of the residual ion in an ioni-

sation reaction where the measured incident and two outgoing electron momenta are kg,

ka, kfi and

ko. (1)

For molecular targets in the kinematic range relevant to EMS there is a large body of



evidence [11,8] supporting the conclusion that the PWJA gives a quantitative relationship

between the measurements and the target-ion structure, represented by the electronic

ground states 0 of the target and t of the ion. The PWIA is

(2)

where the structure amplitude is defined by

(3)

For atom targets in the region of 1 keV incident energy it is necessary to implement

a refinement of the PWIA. The DWIA replaces the plane-wave states of the external

electrons in (3) by the appropriate elastic-scattering states xt:fcHk)> thereby taking into

account the effect of the rest of the system on the reaction. The DWIA is

(4)

We will use the DWIA to describe the momentum profile in subsequent formalism,

since the PWIA is a special case of it.

Further understanding of the structure amplitude comes from defining an appropriate

set of target orbitals. (qi|0) is a one-electron function, the Dyson orbital. It is useful to

define a normalised Dyson orbital a by the weak-coupling approximation,

>> (5)

which assigns certain states i to an orbital manifold ot, identified by identical shapes of the

momentum profiles for all i G a, characteristic of the orbital a. 5t
a is the spectroscopic

factor. Orbital manifolds are identified in all EMS experiments. They are due to the

splitting of the one-hole ion state or, obtained by annihilating an electron in the target

orbital a, which is occupied in the independent-particle configuration, by ion-state cor-

relations. The correlations are described in a configuration-interaction representation by



admixtures of determinantal configurations formed by excitations of particles and holes

in the independent-particle configuration.

The momentum profile is

/ ) | a x ( + ) ( k o ) ) | 2 . (6)

The intensity for states i € a is proportional to Sf.

The weak-coupling approximation is confirmed experimentally by verifying two of its

consequences. These are the spectroscopic sum rule for the manifold a

i. (7)
i

and the similarity of momentum profile shapes for the states i € a. In almost every known

case the belief that the relative normalisation of states i e a is given by the spectroscopic

factor is confirmed by identifying enough states i to exhaust the sum rules (equation (7))

for different manifolds, which are then compared.

Until recently EMS analysis was performed in terms of orbitals obtained from self-

consistent-field calculations of the target structure- In most cases these orbitals were

sufficient Lo describe profile shapes, but glaring exceptions arc known, for example the lbi

manifold of water [12J, which is essentially a one-state manifold but is not well described

by a Hartree-Fock orbital. It is well described by a density-functional calculation [9].

Here we consider the experiment as a probe for the normalized Dyson orbital (q]a)

and we ask what function the experiment yields as an estimate of this orbital. The

probe is described by the spherically-averaged impulse approximation, with appropriate

weighting factors for experimental resolution. The estimate of the orbital is unravelled

from the experimental data by a statistical inverse-scattering procedure that has been

used previously [10] to extract atomic orbital information from Compton profiles. We

determine the orbital shape and the partial sum of spectroscopic factors for a manifold

a, represented by a normalisation factor C, by fitting EMS momentum profiles [13].

The experimental partial sum of momentum profiles /^{(Jp) at the set of data points



is fitted by choosing a set 6 of parameters to minimise the sum of weighted

squares of the deviations.

In spectroscopic experiments it is valid to consider the energies of the external electrons

as well resolved, but to take into account angular resolution in the measurement of k^

by integrating the momentum profile over a solid angle Jc with a normalised weight factor

WA (k, k/j) and similarly for kg. The weight of the point fi in the fit is the inverse of the

variance of Fa{g^).

The orbital a is represented as a linear combination of orthonormal basis orbitals /3,

whose symmetry is the same as a but whose principal quantum numbers are different.

[a) = £c*9li3); a ) j 3=l ( . . , n . (9)
a

The fitting is constrained by the unitarity of the transformation matrix Cop, which en-

sures that the resulting orbitals are orthonormal. The unitarity constraint is achieved by

parametrizing the coefficients with the set of Jacobi-type planar rotation matrices R (Oj),

which have the same dimension as c^p- The set 6 of fitting parameters comprises the ro-

tation angles Oj and the normalization constraint G, which must be included because one

overall normalization is not experimentally determined. Each fit determines n orbitals a,

including the ones relevant to the data fitted.

The 3<r and lit orbital manifolds of HF have provided an apparent exception to the rule

that the PWIA gives correct relative normalisation of states in orbital manifolds [3,5,7],

Determination of their respective partial sums of spectroscopic factors has been hampered

by the fact that their individual momentum profile shapes are not well described by the

appropriate Hartree-Fock orbital. Figures 2 and 3 compare the PWIA momentum profiles,

using the fitted 3<r and ITT orbitals and the corresponding basis orbitals, with our preferred

experimental data [3]. Table 2 shows the fitting coefficients. The SCF basis orbitals were



calculated using the program GAMESS (14] with a STO-3G basis that yielded a total

energy -99.958 a-u., compared with the experimental value [5] -100.460 a-u.

Considering figure 2 in more detail then it is immediately apparent that the present

estimate of the normalized Dyson orbital (see table 2 for coefficients) provides a much

better fit to the experimental 3a MD data [3J than does that obtained using the basis

3c orbital. Furthermore we note (see table 2) such a high quality fit was achieved using

an orbital which allowed for about a 12% la, 2a and Aa contribution. A very similar

story for the l7r state is also found in figure 3. In this case the present orbital (see

table 2 for coefficients), compared to that obtained by using the basis l7r orbital, again

provides a far superior fit to the experimental \TT data [3}. Once again this excellent fit

was achieved using an orbital which allowed for about a 11% 2TT, 37T, 4TT contribution.

If we now calculate the ratio R of the normalisation constants G, determined in the fit

to provide best agreement with experiment, then we find R = 0.48 ± 0.02, a value in

excellent agreement with that anticipated from the PVVIA calculation ( R = 0.50 because

of the two-fo3d degeneracy oi the \n orbital ), provided all the experimental flux for the

respective Zcr and ITT orbitals was observed.

Clearly, we have found functions that estimate the normalized Dyson orbitals from

the experimental 3a and ITT MD data within the spherically-averaged PWIA framework.

Relative error estimates are small. Braidwood el al. [3], when confronted with the

discrepancy between their MDs and those obtained with the then best available orbitals

in a PWIA calculation, looked to Ne, which is isoelectronic with HF, to try and glean

further information on the reaction mechanism. For Ne we used the distorted-wave Bom

approximation (DWBA) in the analysis.

We have revisited Ne here, using the fitting technique [10] we discussed earlier, with the

results for the coefficients co/j being summarised in table 3 and the MDs being illustrated

in figure 4 for the 2p state and figure 5 for the 2s state. Note that in figure 5 we have

used the more recent Ne 2s results of Samard2ic et al. [15], for the main 2s lane of Ne at a

binding energy of 48.46 eV, in our analysis. Occupied basis orbitals were obtained from a

Hartree-Fock calculation [16J. Unoccupied basis orbitals were obtained from an effective
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local potential [17] and they are orthogonalised to the occupfed orbitals. It is apparent

from the present analysis (see figures 4 and 5) that whilst the present wavefunctions do

provide a somewhat better fit to the respective 2p and 2s experimental MD data, in

both cases the fit obtained using the appropriate basis 2p and.2s orbitals, to within the

uncertainty on the experimental data points, is still very good. This point is also borne

out by expansion coefficients for the present 2p and 2s wavefunctions as given in table 3.

In both cases the basis 2p and 2s orbital coefficients dominate in the experiment so that

the respective wavefunctions are almost pure Hartree-Fock.

The present analysis, through the normalisation coefficients G, also derives a spectro-

scopic factor for the main 2s line of 0.913 ± 0.014 relative to 1 for the 2p manifold, in

excellent agreement with the appropriate 2p and 2s Sf values reported in Samardzic et

al. [15]. We have confirmed the earlier observation of Braidwood et al. 3̂] that to obtain

a good fit to the experimental MD data, a distorted-wave framework must be employed

in the atomic case. The HF analysis confirms earlier results that the PWIA is sufficient

for MD shapes up to about 1 a.u. and also for relative normalisations of MDs for states

of an orbital manifold.
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Figure Capt ions

Figure 1: Binding energy spectrum for HF from Brieri et al [4], showing the 3<T
and 1TT intensities.

Figure 2: A comparison of PWIA calculations for HF 3<r with experiment. (—)
present orbital, ( ) single Za orbital and (o) data of Braidwood et
al. [3]. The present la, 2CT, 3a and 4a orbitals were constructed from
GAMESS 92 [14].

Figure 3: A comparison of PWIA calculations for HF ITT with experiment. (—)
present orbital, ( ) single ITT orbital and (o) data of Braidwood et
aL [3]. The present ITT, 2TT, 3JT and 4TT orbitals were constructed from
GAMESS 92 [14].

Figure 4: A comparison of DWBA calculations of neon 2p with experiment. (—)
present orbital, ( ) single 2p Hartree-Fock orbital and (o) data of
Braidwood el at[3].

Figure 5: A comparison of DWBA calculations for neon 2s with experiment. (—)
present orbital, ( ) single 2s Hartree-Fock orbital and (o) data of
Samardzic ei al. [15],
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liable Captions

Table 1: Values of the 3a to ITT peak height (P) and peak area (A) ratios at <f> = 8°
of the available EMS studies on HF.

Table 2: Fitting coefficients and their standard deviations for the In and 3a or-
bitalsofHF.

Table 3: Fitting coefficients and their standard deviations for the 2s and 2p orbital
manifolds of neon.
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Table 1:

Reference [1] 0.46

Reanalysed [1] 0.46

Reference f3) 0.48

Reference [3j 0.49

Table 2:

In- orbital
Basis coefficient

0.55

0.47 ± 0.04

0.49 ± 0.01

0.56

3<7 orbital
Basis coefficient

ITT 0.93940 ± 0.00900

2JT 0.17390 ± 0.01000

3TT 0.24600 db 0.03600

4TT -0.01635 db 0.02200

la 0.32999 ±0.11810

2a -0.06595 ± 0.00770

3CT 0.93782 ± 0.03940

4<r 0.08520 =b 0.00540

Table 3:

2 s orbital
Basis coefficient

2p orbital
Basis coefficient

Is

2s

3s

4s

-0.02311

0.99971

-0.00099

0.00739

± 0.06255

± 0.00145

db 0.00045

± 0.00102

2p

3p

4p

0.99993

0.00724

0.00908

±

±

±

0.00009

0.00390

0.00628
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